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Liver cancer is a leading cause of cancer-related deaths worldwide, highlighting the
need for innovative approaches to understand its complex biology and develop
effective treatments. While traditional in vivo animal models have played a vital role
in liver cancer research, ethical concerns and the demand formore human-relevant
systems have driven the development of advanced in vitro models. Spheroids and
organoids have emerged as powerful tools due to their ability to replicate tumor
microenvironment and facilitate preclinical drug development. Spheroids are
simpler 3D culture models that partially recreate tumor structure and cell
interactions. They can be used for drug penetration studies and high-throughput
screening. Organoids derived from stem cells or patient tissues that accurately
emulate the complexity and functionality of liver tissue. They can be generated from
pluripotent and adult stem cells, as well as from liver tumor specimens, providing
personalized models for studying tumor behavior and drug responses. Liver
organoids retain the genetic variability of the original tumor and offer a robust
platform for high-throughput drug screening and personalized treatment strategies.
However, both organoids and spheroids have limitations, such as the absence of
functional vasculature and immune components, which are essential for tumor
growth and therapeutic responses. The field of preclinical modeling is evolving, with
ongoing efforts to developmore predictive and personalizedmodels that reflect the
complexities of human liver cancer. By integrating these advanced in vitro tools,
researchers can gain deeper insights into liver cancer biology and accelerate the
development of novel treatments.
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Introduction

Primary liver cancers, notably cholangiocarcinoma (CCA) and hepatocellular
carcinoma (HCC) encompass a heterogeneous group of malignancies that present
significant clinical challenges. These cancers are often characterized by a lack of specific
biomarkers and frequently manifest as asymptomatic in their early stages, resulting in
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delays in diagnosis and adverse prognoses (Valle et al., 2021; Tsung
et al., 2024; Banales et al., 2020). CCA is further categorized based on
its anatomical location within the biliary tree, which includes
intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA) forms
(Ilyas et al., 2018). Currently, surgical resection is the only curative
treatment available for these primary liver cancers, underscoring the
urgent need for effective pharmacological interventions (Orcutt and
Anaya, 2018).

In this landscape, advanced in vitro three-dimensional (3D)
culture models have emerged as crucial tools for enhancing our
understanding of liver cancer biology. These sophisticated models
allow for a more accurate representation of the tumor
microenvironment, facilitating the exploration of molecular
mechanisms, identification of new therapeutic targets, and
expedited yet reliable screening of potential novel drugs
(Nuciforo and Heim, 2021; Blidisel et al., 2021). Additionally,
patient-derived organoids (PDOs) are gaining prominence as
innovative platforms for developing personalized treatment
strategies.

This review highlights recent studies using 3D models to assess
drug responses and advance treatment options for liver cancer. By
focusing on their integration into preclinical research, it underscores
their significance in discovering and developing effective therapies.

3D in vitro models in primary
liver cancer

Spheroids in hepatocellular carcinoma:
insights into cancer biology and therapeutic
strategies

Since the 1970s, tumor spheroids have been employed to
simulate tumor biology, forming 3D multicellular aggregates
primarily derived from two-dimensional (2D) cancer cell cultures
and occasionally including stromal components such as endothelial
cells and fibroblasts (Inch et al., 1970; Shoval et al., 2017; Österholm
et al., 2012). These spheroids self-assemble using anchoring-
independent culture methods or scaffold systems like Matrigel
droplets (Calvisi et al., 2023; Jubelin et al., 2022). A significant
advantage of spheroids over 2D cultures is their ability to maximize
cell-to-cell interactions and replicate the gradients of oxygen and
drug transport found within tumors (Habanjar et al., 2021).

In HCC, the existence of a subpopulation of cancer cells with
stem-like characteristics is well documented (Yamashita et al., 2009).
Tumor spheroids are particularly useful for investigating potential
stemness markers in HCC that may serve as targets for anti-cancer
stem cell therapies (Wang YY. et al., 2024; Roy et al., 2024).

Sorafenib, a multi-tyrosine kinase inhibitor, is the first targeted
therapy approved for HCC. Although it exhibits significant
anticancer and anti-angiogenic effects, some patients develop
resistance (Kong et al., 2021). Recent studies have created
spheroids from sorafenib-resistant HuH7 cell lines to evaluate
alternative treatments in a fibrotic microenvironment (Sariyar
and Karagonlar, 2023; Sariyar et al., 2023). In their work, Sarıyar
et al. noted a significant reduction in the CD133-positive stem cell
population and an increase in CD24 and EpCAM-positive cells in
sorafenib-resistant spheroids, suggesting that these markers may

contribute to drug resistance. They tested new drugs, Gefitinib (an
EGFR inhibitor) and PP2 (a Src-family kinase inhibitor), finding
that their combination was more effective in inducing cell death in
resistant spheroids compared to single treatments (Sariyar
et al., 2023).

To assess the toxicity of anti-HCC therapies while preserving
healthy liver tissue, Royo et al. developed 3D spheroids from both
HCC cells (HEPG2 and HuH7) and healthy liver cells. Treatments
with standard anti-HCC drugs (Dacarbazine, Methotrexate,
Sorafenib) revealed a marked decrease in tumor cells, with
Sorafenib showing the strongest impact. The study also tracked
liver-derived extracellular vesicles as indicators of hepatocyte
damage, revealing that spheroid treatments increased vesicle
release, thereby providing a dual approach to evaluating drug
efficacy and toxicity (Royo et al., 2024).

Anti-PD-1 immune checkpoint inhibitors (ICIs) are approved
systemic therapies for HCC (Sankar et al., 2024). However, patients
with mutated β-catenin often have poor outcomes (Akasu et al.,
2021). A recent study utilizing HCC-derived spheroids explored the
role of β-catenin in immune evasion, showing that silencing β-
catenin enhanced the infiltration of peripheral blood mononuclear
cells (PBMCs) into spheroids (Dantzer et al., 2024). Conversely,
treatment with CHIR-99021, a GSK3β inhibitor, reduced immune
infiltration, indicating a possible mechanism by which β-catenin
aids tumor escape from immune surveillance.

In efforts to enhance NK cell-mediated tumor responses, a
recent study introduced antibody-based therapies known as NK
cell engagers (NKCEs), specifically targeting Glypican-3 (GPC3) in
HCC (Arulanandam et al., 2023). The addition of CYT-303, an
NKCE that binds both NK cells and GPC3, significantly augmented
the cytotoxic effects of peripheral blood-derived NK cells on Hep3B
spheroids in a dose-dependent manner, offering a promising avenue
for immunotherapy in HCC.

Investigating the effects of CHIR-99021 on stromal cells, one
study developed spheroids composed of HCC cells and hepatic
stellate cells (HSCs) (Song et al., 2024). Given the connection
between liver fibrosis and HCC, these mixed spheroids
demonstrated increased expression of epithelial-mesenchymal
transition (EMT) markers. Treatment with CHIR-99021 reduced
these markers and highlighted the potential for antifibrotic strategies
in HCC therapy. Table 1 summarizes the drugs tested and their
targets identified through HCC spheroid research.

Spheroids derived from HCC cells exhibit complex architectures
that enhance the reliability of 3D models, especially when
incorporating stromal components. Co-culturing with immune
cells like T and NK lymphocytes offers efficient platforms for
evaluating novel therapies aimed at boosting anti-tumor
immunity. These developments underscore the importance of 3D
models in advancing our understanding and treatment of
liver cancers.

3D spheroid models for
cholangiocarcinoma research

Similar to HCC, spheroids have gained prominence in CCA,
where they effectively mimic the low oxygen levels present in tumor
environments (Vanichapol et al., 2015). Metabolomic studies have
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TABLE 1 Overview of disease types, experimental models, target biomarkers and therapeutic agents.

Disease Model Drug Target/
Biomarker

Ref.

HCC HepG2 spheroids 4µ8C plus Doxorubicin ER-stress Kopsida et al. (2024)

Talazoparib — Zhang et al. (2024a)

Hep3B spheroids NK cell engager CYT-303 GPC3 Arulanandam et al.
(2023)

HuH7 spheroids — SERPINE2 Zhang et al. (2024b)

HepG2 and HuH7 spheroids — TESC Ye et al. (2024)

Hep3B, HuH7 and SK-Hep1 spheroids Prasugrel USP1 Bian et al. (2024)

HuH7 and Mahlavu spheroids G4 stabilizer RHPS4 plus Sorafenib CTC1 Kipcak et al. (2024)

HuH7 and SNU449 spheroids — lncRNA-KCNQ1OT1 Majumdar et al. (2024)

HepG2 or HuH7 and HSCs heterospheroids Benja-ummarit Ferroptosis Sandech et al. (2024)

HuH7 and HSCs heterospheroids Gefitinib plus PP2 EGFR and Lyn Sariyar et al. (2023)

CHIR-9901 DNMT3B Song et al. (2024)

Murine PDOs — HKDC1 Fan et al. (2024)

Murine NAFLD-associated PDOs Supplementation of Lactobacillus
acidophilus

Prophylaxis Lau et al. (2024)

Murine and human PDOs — YTHDF1 Zhang et al. (2024c)

Human PDOs Proteasome inhibitors plus Dinaciclib Proteasome and CDK Lim et al. (2022a)

Atezolizumab PD-L1 Zou et al. (2023)

4µ8C plus Doxorubicin ER-stress Kopsida et al. (2024)

Talazoparib — Zhang et al. (2024a)

— SERPINE2 Zhang et al. (2024b)

Kpt185 XPO1 Yang et al. (2024b)

Cpd-63 PTPRE Dong et al. (2024)

— FDX1 Sun et al. (2024b)

Erastin Ferroptosis Li et al. (2024b)

— WDR20 Jiang et al. (2024)

— SLC25A15 Zhang et al. (2024d)

— METTL16 Wang et al. (2024b)

SAHA or AZD5363 plus Lenvatinib HDAC or AKT Yan et al. (2024)

— MRPL12 Ji et al. (2024)

— MCB1 Xiang et al. (2024)

ABCB1 inhibitors plus Doxorubicin ABCB1 Blukacz et al. (2024)

HB Human PDOs — EGR1 Pan et al. (2024a)

CCA KKU-M213 spheroids Ceritinib ALK Myint et al. (2024)

KKU-M213 or KKU-M156 and hCAFs heterospheroids Crenigacestat γ-secretase Mancarella et al.
(2024)

HUCCT1 or SNU1079 and HSCs, fibroblasts, and endothelial
cells heterospheroids

siRNA-tMNVs and RNP-tMNVs PD-L1 Gondaliya et al. (2024)

Human PDOs NTRC 0652-0 Lck Conboy et al. (2023)

RPS6-V-PMO RPS6 Fu et al. (2024)

(Continued on following page)
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demonstrated that iCCA spheroids exhibit altered metabolic
profiles, including heightened glucose consumption and lactate
excretion, indicative of a glycolytic shift (Ciufolini et al., 2024).
Furthermore, analyses of various iCCA cell lines confirmed that
spheroids display diminished antioxidant capacity and increased
oxidative stress (Phukhum et al., 2023). These metabolic alterations
enhance the relevance of iCCA spheroid cultures as models for
studying anaerobic metabolism and tumor stress.

The 3D structure and metabolic changes observed in iCCA
spheroids contribute to an enriched stem gene expression profile,
significantly enhancing their tumorigenic properties compared to 2D
cultures (Raggi et al., 2017). Consequently, spheroids are frequently
used to evaluate novel treatments for CCA (Marin et al., 2019).

Recent advancements include the development of novel 3D
heterospheroids composed of human cancer-associated fibroblasts
(CAFs) and iCCA cells (Mancarella et al., 2024). CAFs are known to
facilitate CCA progression through extracellular matrix deposition
and interaction with malignant cells (Carloni et al., 2022). Studies
have shown that these heterospheroids enhance iCCA cell
proliferation and invasion. Notably, treatment with Crenigacestat,
a γ-secretase inhibitor, reduced the viability and invasion of hCAF-
iCCA heterospheroids (Mancarella et al., 2024), highlighting the
potential for targeting stromal interactions in therapeutic strategies.

Mesenchymal stromal cells (MSCs) are emerging as potential
components in the tumor microenvironment of iCCA, as they can
contribute to liver fibrosis and differentiate into CAFs (Haga et al.,
2015; Gan et al., 2021; Russo et al., 2006). The concept of MSCs
pertains to a subset of non-hematopoietic cells found in the stromal
bone marrow that are multipotent and possess the ability to self-
renew. Recently, this definition has broadened to include cells
originating from any connective tissue that can produce various
types of stromal cells. MSCs also circulate in the bloodstream and
can migrate to sites of inflammation (Dominici et al., 2006; Bianco

et al., 2013; Ridge et al., 2017). Recent research demonstrated that
adding MSCs to spheroids derived from patient-derived xenograft
(PDX) models could restore lost signaling pathways, indicating their
dual role in either promoting or inhibiting tumor growth. This
emphasizes the importance of stromal elements in CCA modeling
(Sueca-Comes et al., 2024).

The past decade has seen an increased exploration of ICIs in
cancer, including anti-PD-L1 therapies approved for various cancers
and CCA (Fiste et al., 2021). Recent studies utilized iCCA spheroids
to test RNA-based anti-PD-L1 therapies, revealing that multicellular
spheroids better mimic the tumor microenvironment and can
effectively assess immunomodulatory responses (Gondaliya et al.,
2024). Table 1 summarizes the drugs tested and their targets
identified through CCA spheroid research.

3D in vitromodels, particularly tumor spheroids, offer enhanced
insights into CCA biology and the tumor microenvironment,
proving essential for developing new therapeutic strategies. Their
ability to incorporate stromal components and accurately reflect
metabolic and immune interactions makes them invaluable for
preclinical cancer research.

Liver patient-derived organoids

The concept of organoids emerged in 2009, originating with the
development of 3D cultures that mimic the structure and function of
human organs, initially focusing on intestinal organoids. This
foundational research paved the way for liver organoids,
providing insights into liver tissue regeneration and early-stage
diseases, and eventually extending to liver cancer models (Sato
et al., 2009; Huch et al., 2013; Takebe et al., 2013). PDOs are 3D
cultures derived from tumor tissues that maintain the architecture
and heterogeneity of the original tumors. They are typically sourced

TABLE 1 (Continued) Overview of disease types, experimental models, target biomarkers and therapeutic agents.

Disease Model Drug Target/
Biomarker

Ref.

GSK3326595 PRMT5 Elurbide et al. (2024)

— PYGB Pan et al. (2024b)

Surufatinib plus photodynamic
therapy

GPX4 and ACSL4 Huang et al. (2024a)

Irinotecan plus Cisplatin — Rao et al. (2024)

KRIBB-11 HSF1 Cigliano et al. (2024)

Sarizotan or Sarizotan plus Cisplatin MAL2 Huang et al. (2024b)

VDAC1 antagonist VDAC1 Conti et al. (2024)

M2698 plus Dasatinib S6K/AKT Luk et al. (2024)

Icaritin plus Gemcitabine plus
Cisplatin

- Kang et al. (2024)

ACSL4, Acyl-CoA synthetase long-chain family member 4; ALK, Anaplastic lymphoma kinase; CDK, Cyclin-dependent kinase; CTC1, Conserved Telomere Maintenance Component 1;

DNMT3B, DNA methyltransferase 3B; EGFR, Epidermal growth factor receptor; EGR1, early growth response 1; FDX1, Ferredoxin 1; GPC3: Glypican-3; GPX4: Glutathione peroxidase 4;

HDAC, Histone deacetylase; HKDC1, Hexokinase domain containing 1; HSF1, Heat Shock Factor 1; Lck, Tyrosine-protein kinase Lck; Lyn, Tyrosine-protein kinase Lyn; MAL2, T cell

differentiation protein 2; MCB1, Multiubiquitin chain-binding protein 1; MNVs, Milk-derived nanovesicles; MRPL12, Mitochondrial ribosomal protein L12; PD-L1, Programmed death ligand

1; PRMT5, Protein arginine-methyltransferase 5; PTPRE, Protein tyrosine phosphatase receptor epsilon; PYGB, Glycogen phosphorylase brain form; RNP, ribonucleoprotein; RPS6, Ribosomal

protein S6; RPS6-V-PMO, Phosphorodiamidate morpholino oligomer; SERPINE2, Serpin family E member 2; siRNA, small interfering RNA; SLC25A15, Solute carrier family 25 member 15;

TESC, Tescalcin; USP1, Ubiquitin-specific protease 1; VDAC1, Voltage-dependent anion-selective channels 1; WDR20, WD repeat-containing protein 20; YTHDF1, YTH domain family 1.
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from surgically resected tissues or needle biopsies, allowing for
minimal tissue use and timely sample collection (Nuciforo and
Heim, 2021; Nuciforo et al., 2018; Thorel et al., 2024).

PDOs are cultured in specialized matrices, such asMatrigel, with
nutrient-rich media, preserving the histological and genetic
characteristics of the parent tumor (Broutier et al., 2017). A
recent biobank of liver cancer PDOs includes 44 HCC,
5 hepatoblastoma (HB), 12 iCCA, and 4 mixed HCC-CCA PDOs
(Ji et al., 2023). Comprehensive genomic, epigenomic,
transcriptomic, and proteomic analyses identified four molecular
subtypes of liver cancer PDOs: L-LM (best prognosis), L-PL (poor
prognosis, high proliferative signals), L-ICC (RAS signaling), and
L-DM (altered drug metabolism) with distinct drug responses.

High-throughput screening revealed general sensitivity to
TOP2 inhibitors, HDAC inhibitors, and BET PROTAC inhibitors
while uncovering subtype-specific responses, L-PL showed high
sensitivity to PI3K pathway inhibitors, while L-DM exhibited
sensitivity to FGFR inhibitors. Studies indicated a relationship between
Lenvatinib resistance and EGFR expression, and predictive models based
on PDO proteogenomic data identified potentially effective drug
combinations, such as Lenvatinib plus Temsirolimus (amTOR inhibitor).

A recent report established long-term PDO cultures from
66 liver cancer patients, achieving a 40.9% success rate. This
involved a two-step digestion method to minimize fibrotic tissue
and utilized different media conditions for initiation and passaging.
Drug screening from these PDOs yielded a successful treatment
regimen for a diagnosed iCCA patient, highlighting the predictive
potential of PDOs (Rao et al., 2024).

Studies employing pharmacogenomic profiling of liver cancer
PDOs revealed significant intra-tumor heterogeneity, complicating
treatment responses. Screening over 100 patients provided insights
into drug sensitivities, revealing a cumulative sensitivity of 73% to
seven targeted therapies, yet only 37.1% of patients benefited from
monotherapy. Transcriptomic analysis identified 254 genes associated
with Lenvatinib sensitivity, and a machine-learning approach yielded
a panel of predictive biomarkers (Yang H. et al., 2024).

Additional research using PDOs and xenografts assessed a panel
of 80 drugs to identify alternatives for Lenvatinib resistance. Key
candidates included Romidepsin (an HDAC inhibitor), which
displayed consistent effectiveness and enhanced immune responses
when combined with anti-PD1 therapy (Sun L. et al., 2024). In a study
focusing on the Chinese population, 64 organoid lines were evaluated
for genomic and transcriptomic profiles, identifying variable genes
and enrichment in pathways related to proliferation, resistance
mechanisms, and immune evasion; this research emphasized the
role of PDOs in predicting drug efficacy (Zhu et al., 2024).

As interest in PDOs for drug testing grows, numerous recent
studies have aimed to evaluate the effectiveness of new therapeutic
agents using these models. Table 1 summarizes the drugs tested and
their targets identified through PDO research.

Hepatocellular carcinoma patient-derived
organoids (HCC-PDOs): challenges
and advances

The establishment of HCC-PDOs has been particularly
challenging due to factors such as low success rates, difficulties in

developing them from well-differentiated specimens, larger necrotic
areas, the predominance of healthy cells over malignant ones, and
the heterogeneous nature of HCC tumors (Broutier et al., 2017; Sun
L. et al., 2024; Li K. et al., 2024; Airola et al., 2024; Zhang et al., 2023).
Despite these challenges, successful cultivation of HCC-PDOs has
demonstrated their ability to accurately recapitulate tumor biology,
thus representing a substantial advancement in disease modeling
and providing valuable tools for identifying therapeutic targets and
biomarkers.

PDOs may help maximize the application of drugs that have
shown promise in preclinical studies but failed in clinical settings.
For instance, a study by Lim et al. screened 268 drugs in PDOs
derived from HCC-PDX and identified three proteasome inhibitors
(Bortezomib, Carfilzomib, Ixazomib) and one CDK inhibitor
(Dinaciclib) as having significant antitumor effects. Their
combination was found to have the highest cytotoxicity with
minimal effects on non-malignant cells, confirming stronger
tumor inhibition than sorafenib (Lim JJ. et al., 2022).

The potential of HCC-PDOs in studying liver regeneration was
recently reported, using PDOs generated from poorly differentiated
HCC specimens injected into the right superior lobe of
immunodeficient mice. The findings indicated an enhanced
regenerative potential compared to animals that were not
subjected to resection, thereby providing a model with greater
physiological relevance than traditional models (Haak et al., 2024).

Clinical applicability for personalized therapy using HCC-PDOs
is an emerging goal. For example, in the case of a 74-year-old patient
with a rare neuroendocrine-differentiated HCC, PDOs were
established post-surgery to guide treatment. Despite initial drug
screenings, the patient’s condition deteriorated rapidly (Meier et al.,
2022). Conversely, another case showed successful application of
PDOs for pharmacological screening in a 55-year-old patient,
leading to a significant reduction in tumor markers and size,
ultimately facilitating surgical resection (He et al., 2024a).

Murine HCC organoids have also been established, particularly
in transgenic mice with specific gene deletions in hepatic progenitor
cells, leading to the development of aggressive HCC tumors with
high metastatic potential (Zhang et al., 2023; Li et al., 2018).

Collectively, these developments underscore the importance of
HCC-PDOs in precision medicine and the need for further studies
to validate their clinical relevance.

Cholangiocarcinoma patient-derived
organoids (CCA-PDOs): advances in disease
modeling and treatment

Research on CCA-PDOs is expanding due to their potential in
disease modeling, drug testing, and personalized medicine. Given
the complex nature of CCA and the lack of effective treatments,
PDOs provide valuable insights. Significant studies have established
protocols for generating CCA-PDOs from bile duct tissues,
successfully reproducing the tumor’s histological and genetic
features (Saito et al., 2019; Maier et al., 2021).

Recent analyses of PDOs identified two major iCCA
subtypes—small-duct and large-duct—with distinct genetic and
histological characteristics. Integrative genomic profiling revealed
differences in key signaling pathways (KRAS, TGFβ, and ERBB2)
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enriched in large-duct tumors, underscoring the potential of
organoids for personalized therapeutic strategies (Lee et al., 2023).

A case report demonstrated the utility of PDOs in guiding
conversion therapy for a 59-year-old woman with advanced
pCCA. After initial therapies failed, PDOs were created from a
biopsy to assess drug sensitivity. Results indicated responsiveness to
Gemcitabine and Cisplatin, leading to an adjusted treatment
regimen that resulted in significant tumor shrinkage, making
surgical resection possible. Following surgery, the patient
remained disease-free at the 12-month follow-up, highlighting
the effectiveness of PDOs in personalized treatment planning (He
et al., 2024b).

Innovative technologies are enhancing drug screening in CCA
organoids. Kinome profiling across different organoid models
revealed distinct kinase activity patterns that correlated with
tumor responses to specific inhibitors, suggesting a promising
approach to personalized treatment strategies targeting pathways
like EGFR, PDGFRβ, and MAPK (Lieshout et al., 2022).

Label-free brightfield microscopy, in conjunction with an
organoid-specific image analysis pipeline, demonstrated the
selective growth inhibition of iCCA-PDOs by Sorafenib,
particularly in tumor cells, and identified potential applications
for low-dose Sorafenib in patients with KRAS mutations (Koch
et al., 2022).

Another study developed a protocol for inducing branching
morphogenesis in cholangiocyte and cholangiocarcinoma
organoids, providing a model for studying biliary function and
pathology (Ober et al., 2023).

Co-culture models of patient-derived
organoids in liver cancer research

Despite significant advances in liver PDOs, challenges remain in
replicating the complex interactions between tumors and their
stroma and accurately reflecting intratumor heterogeneity.

A recent study examined the role of CAFs in HCC tumor
initiation. Mice treated with diethylnitrosamine (DEN) had LGR5+
knock-in cells to model HCC. Co-culturing organoids with primary
CAFs enhanced the proliferation of LGR5+ PDOs and increased
tumor growth and metastasis in vivo (Zhang et al., 2023).

Another study developed a co-culture model of human HCC
spheroids or PDX-derived organoids and endothelial cells in
macroporous hydrogels. Direct co-cultures showed increased
angiogenesis-related proteins and induced an inflammatory
phenotype, suggesting a pro-angiogenic environment in HCC
(Lim JTC. et al., 2022).

Zhou et al. (2022) established a co-culture system integrating
CCA-PDOs with immune cells to evaluate immune-mediated
cytotoxicity. The experiments demonstrated that T cells were the
primary mediators of organoid cytotoxicity, producing effector
cytokines like interferon-gamma (IFN-γ) and tumor necrosis
factor-alpha (TNF-α) upon interaction with organoids. Their
findings revealed patient-specific cytotoxic effects, emphasizing the
importance of soluble factors in immune responses (Zhou et al., 2022).

To study tumor-stroma interactions and chemotherapy
resistance, a co-culture system was created using eCCA organoids
and tumor-associated macrophages (TAMs). The findings indicated

that eCCA organoids co-cultured with TAMs were more resistant to
chemotherapy agents, underscoring TAMs’ role in supporting
tumor growth and drug resistance. This model could serve as a
robust platform for personalized drug testing and understanding
TAMs’ contributions to treatment mechanisms (Guo et al., 2024).

Future developments may incorporate additional tumor
microenvironment (TME) cells and optimized culture conditions
to enhance preclinical models.

Organoid-on-a-chip technology in liver
cancer research

The organoid-on-a-chip technology offers a promising
approach to studying liver tumors and advancing drug
development. This innovative technology integrates organoids
with microfluidic devices, creating an environment that closely
mimics in vivo conditions. Microfluidic devices facilitate precise
control of factors like nutrient gradients, oxygen levels, and shear
stress, simulating the dynamic environment of human tissues, thus
offering a more physiologically relevant system than static (both 2D
and 3D) cultures (Telles-Silva et al., 2022).

Recent developments have led to the creation of a microfluidic
platform featuring hepatic spheroids and organoids, designed to
sustain liver-specific functions through efficient nutrient and oxygen
exchange. This vascular-like network enables continuous flow,
closely simulating liver blood vessels. Cultured within this
system, hepatic spheroids and organoids demonstrated sustained
viability, preserved morphology, and liver-specific protein
expression, highlighting a stable microenvironment. The
organoids exhibited active liver enzymes, including critical
CYP450 isoforms for drug metabolism. The platform successfully
mirrored in vivo toxicity profiles in response to hepatotoxic drugs
like acetaminophen, indicating its potential for accurate preclinical
testing (Bonanini et al., 2022).

Zou et al. (2023) introduced a micro-engineered organoid-on-a-
chip platform for predicting immunotherapy responses in HCC
patients. This model integrates MSCs with HCC organoids to
replicate key aspects of TME. Co-culturing PDOs with MSCs
significantly enhanced organoid growth and the expression of
tumor markers like alpha-fetoprotein and Ki67. The study
assessed the platform’s utility in predicting immunotherapy
responses by treating the organoid model with anti-PD-
L1 antibody. The results revealed varying responses to
immunotherapy, reflecting the heterogeneity observed in clinical
settings. MSCs influence the immune microenvironment,
promoting macrophage differentiation toward an M2 phenotype
while enhancing immune cell recruitment and exhibiting immune
suppression through cytokine secretion. These findings suggest that
MSCs in the TME play a significant role in mediating resistance to
immunotherapy, potentially explaining the variable patient
responses (Zou et al., 2023).

Discussion

Applying spheroids and organoids in studying HCC and CCA
represents a significant advancement in cancer research. These 3D
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models provide a more accurate representation of tumor
architecture, cellular interactions, and heterogeneity than
traditional 2D cell cultures. They are essential for
investigating cancer biology, drug response, and resistance
mechanisms. Figure 1 provides a schematic representation of
the design of some recent models, along with their corresponding
applications.

Despite these advancements, challenges persist, including
variability in organoid cultures, the necessity for enhanced
standardization, and difficulties in fully recapitulating the tumor
microenvironment. Nevertheless, ongoing refinements of these
models are expected to improve their clinical relevance,
facilitating drug development and enhancing our understanding
of cancer progression.

The development and use of spheroids and organoids in
research represent a shift in biomedical sciences, especially
when compared to traditional animal models. These advanced
3D cell culture systems offer significant advantages in terms of
biological relevance by providing human-relevant alternatives to
animal testing. They align closely with the principles of the
3Rs—Replacing, Reducing, and Refining—by substituting

animal models with human-derived systems, diminishing
reliance on animal studies, and refining experimental
methodologies (Tosca et al., 2023). This approach allows for
high-resolution insights into cellular dynamics and molecular
mechanisms without the invasive techniques necessary in
animal research.

These models present a promising avenue for personalizing
cancer treatment, reducing reliance on animal models, and
improving predictions of human-specific drug toxicity and
efficacy, thus progressing liver cancer research and therapeutic
innovation.

General conclusion

Research on both spheroids and organoids has revolutionized
the field of liver cancer, offering in vitro models that faithfully
replicate the characteristics of original tumors. These models serve
as powerful tools for identifying therapeutic targets, biomarkers, and
effective treatments, marking a significant advance toward the
realization of personalized medicine.

FIGURE 1
Advances in Spheroids and Organoids for Liver Cancer Research. A schematic overview of advances in the applications of spheroids and PDOs in
liver cancer research. (A)Heterospheroids combiningmesenchymal cells and cancer cells to better mimic the tumormicroenvironment. The 3D cultures
are used to investigate tumor-stroma interactions and test novel treatments. (B) PDOs: Co-cultures and microfluidic devices with PDOs and stroma
components. 1) HCC-PDOs with CAFs or endothelial cells mimic the interaction between cancer cells and the TME. 2) CCA-PDOs with T-cells
enable the study of tumor-immune cell interactions and checkpoint inhibitor responses; CCA-PDOs with TAMs highlighting the role of macrophages in
tumor growth. 3) Organoids-on-Chip integrate organoids in a dynamic microfluidic culture, that incorporates endothelial cells and PBMCs. These
systems mimic vascularization and immune surveillance, which are crucial for proving therapy efficacy. Cancer-Associated Fibroblasts (CAFs);
cholangiocarcinoma (CCA); Hepatic Stellate Cells (HSCs); Hepatocellular Carcinoma (HCC); Patient-Derived Organoids (PDOs); Interferon-Gamma
(IFN-γ); peripheral blood mononuclear cells (PBMCs), Tumor Necrosis Factor-alpha (TNF-α), Tumor-Associated Macrophages (TAMs); Tumor
Microenvironment (TME). Figures were created with BioRender.com (free version), Microsoft Paint 3D and with Bioicons.com.
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