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Editorial on the Research Topic
Epigenetic regulation of genome integrity and its implications in
human diseases

The epigenetic paradigm encompasses a vast network of factors that form the building
blocks and regulatory core of the eukaryotic chromatin. Among the key determinants of
epigenetic regulation, covalent chromatin modifications, including histone modifications
and DNA methylation, histone variants, RNA modifications and non-coding RNA have
been the most extensively characterized. The epigenetic machinery modulates DNA
accessibility and the recruitment of DNA-binding factors, thus playing pivotal roles in
nearly all chromatin-templated cellular processes, such as transcription, DNA replication,
DNA damage repair, and chromatin organization. On the one hand, epigenetic factors wrap
around the genomic DNA, serving as a mediator of gene-environment interactions, as well
as a protective layer against external and internal stimuli, which ensures high-fidelity
genetic duplication and DNA repair. On the other hand, chromatin represents a structural
barrier that limits the exposure and accessibility of the genomic DNA to various protein
complexes, which is precisely regulated to permit or restrict certain DNA-based
transactions. Therefore, the dynamic and reversible nature of epigenetic modifications
allows for a certain degree of phenotypic plasticity, while preserving genomic integrity.

Histones, a group of positively charged proteins, facilitate the packaging of the eukaryotic
genome into a more condensed and manageable structure, known as nucleosomes, the basic
repeating units of the chromatin. Each nucleosome consists of a histone octamer, with two
copies of the core histones H2A, H2B, H3, and H4, around which approximately 147 base pairs
of DNA are wound in a left-handed superhelical turn. Histones undergo extensive post-
translational modifications (PTMs), some of which play crucial roles in altering DNA-histone
interactions and local chromatin environment, including methylation, acetylation,
phosphorylation, etc (Bannister and Kouzarides, 2011; Millán-Zambrano et al., 2022). As an
integral component of the epigenetic code, different histone marks are believed to convey
specific messages, while the collective PTMs form an intertwined molecular network, charting
the chromatin into distinct functional domains (Zhou et al., 2011).Withmore than 100 different
types reported, histone modifications are dynamically regulated by a plethora of catalyzing
(writers) and removing (erasers) enzymes, and interpreted by a dedicated group of proteins that
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can recognize these chemical tags through specific domains (readers).
Remarkably, these enzymes can modify both histones and non-histone
proteins, thus expanding the regulatory reach of the epigenetic
apparatus. Vazquez et al. unveiled the interplay between Sirtuin 7
(SIRT7), an NAD+-dependent histone deacetylase, and p53, a hallmark
tumor suppressor, and the functional relevance in embryonic
development and tumor progression. Interestingly, SIRT7 has been
shown to regulate p53 activity through p300/CBP-associated factor
(PCAF)-mediated degradation of murine double minute (MDM2), a
p53 E3 ubiquitin ligase (Lu et al., 2020). González et al. reported a novel
role of H2A.Z, a non-canonical variant of histone H2A, in the
regulation of pericentric heterochromatin through a complex
interplay with heterochromatin protein 1 (HP1). Of note, loss of
H2A.Z leads to hyper heterochromatinization and increased genome
instability related to centromeric defects. Taken together, these reports
support the diverse and sometimes controversial roles of histone
modifications and associated factors in chromatin regulation.

DNA methylation is another pillar of the epigenetic paradigm that
can be stably inherited across multiple cell divisions. 5-methylcytosine
(5mC) and its derivative forms, such as 5-hydroxymethylcytosine
(5hmC), are amongst the best characterized epigenetic marks in the
eukaryotic system. Once thought to be irreversible, 5mC is dynamically
catalyzed by DNA methyltransferases (DNMTs) and actively removed
by a group of enzymes including the ten-eleven translocation (TET)
family proteins (Wu and Zhang, 2017). By opposing the installment of
chromatin activators, or directly recruiting repressive complexes
through methyl-binding protein domains, DNA methylation is
generally associated with transcriptional silencing. Importantly, the
inhibition of heterochromatic repeats by DNA methylation prevents
their recombination and translocation, therefore safeguarding genome
integrity. Notably, the DNA methylome in cancer cells is characterized
by genome-wide hypomethylation associated with genomic instability
and promoter hypermethylation associated with silencing of tumor
suppressor genes (Esteller, 2007). Over the past decades, our knowledge
of DNA methylation has been rapidly advancing in both physiological
and pathological settings, thanks in part to technological developments.
For example, DNA methylation is extensively integrated into the
epigenetic network through crosstalk with histone modifications (Li
et al., 2021). Targeting DNA methylation by DNMT inhibitors has
shown promising potential in boosting antitumor immunity by
activating transposable elements, providing novel therapeutic
avenues for cancer treatment (Jones et al., 2016; Jones et al., 2019).
Besides cancer, faulty DNA methylation has also been frequently
documented in other human diseases, including inflammatory and
neurological disorders. Ren et al. provided a comprehensive summary
of the roles of DNAmethylation in idiopathic pulmonary fibrosis (IPF),
revealing the mechanistic understanding of its pathogenesis and
theranostic opportunities by targeting DNA methylation.

RNA modification is an emerging aspect of epigenetic
regulation, forming the so-called “epitranscriptome” that is
critical for proper RNA functions, such as transcription and
translation. More than 170 different types of RNA modifications
have been identified, which have broad effects on gene expression by
regulating the folding, stability and transport of RNA, and its
interaction with other proteins (Roundtree et al., 2017;
Cappannini et al., 2023). Much like histone and DNA marks,
RNA modifications are covalent chemical changes to RNA
molecules mediated by a growing fleet of writers and erasers,

with a group of reader proteins exerting the downstream effects.
For example, N6-methyladenosine (m6A), one of the most prevalent
and studied mRNA modifications, is installed by the METTL3/
METTL14 methyltransferase complex, which regulates gene
expression by affecting various features of RNA metabolism (Fu
et al., 2014; Roundtree et al., 2017). Modification of transfer RNA
(tRNA), the most heavily modified RNA species, is crucial for
accurate and efficient protein synthesis. Aberrant tRNA
modifications are closely related to human diseases like
mitochondrial dysfunction and cancer, known as “RNA
modopathies” (Suzuki, 2021; Delaunay et al., 2024). Zhang et al.
summarized the latest progresses in RNA modifications and their
functional significance in prostate cancer, with a focus on their
effects on key androgen receptor signaling pathways and tumor
microenvironment.

In summary, the epigenetic blueprint governs a wide range of
normal cellular functions, such as embryonic development and stem
cell differentiation. Chen et al. presented a review of the mechanisms
of induced pluripotent stem cells (iPSCs) and their applications.
iPSC, originally achieved by ectopic expression of four transcription
factors, Oct3/4, Sox2, Klf4, and c-Myc (OSKM), known as
“Yamanaka factors”, can also be obtained by chemical
reprogramming targeting epigenetic factors (Hou et al., 2013; Xu
et al., 2015; Takahashi and Yamanaka, 2016). Deregulation of the
epigenetic apparatus is increasingly recognized as a key player and
even one of the drivers of numerous human diseases, presenting
both challenges and novel therapeutic strategies for clinical
intervention. In recent years, the understanding of chromatin-
based epigenetic inheritance mechanisms, such as nucleosome
assembly and parental histone segregation, has further
demonstrated the intimate coupling of epigenetic maintenance
and genetic integrity (Du et al., 2022). Consequently, mutations
of parental histone chaperones lead to loss of heterochromatin
silencing, defective DNA damage repair, aberrant lineage
specification, cell fate alterations and tumor progression. These
reports, together with the studies discussed above, underscore the
need for a more systematic examination of this essential and
expansive molecular network.
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