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In recent years, stem cell therapy has become a pivotal component of
regenerative medicine. Stem cells, characterized by their self-renewal capacity
and multidirectional differentiation potential, can be isolated from a variety of
biological tissues, including adipose tissue, bone marrow, the umbilical cord, and
the placenta. The classic applications of stem cells include human pluripotent
stem cells (hPSCs) and mesenchymal stem cells (MSCs). However, numerous
factors can influence the normal physiological function of stem cells. For
instance, in diabetes mellitus, advanced glycation end products (AGEs)
accumulate in the extracellular matrix (ECM), impairing the physiological
function of stem cells. These substances are closely associated with aging and
the progression of numerous degenerative diseases. AGEs can create an
environment that is detrimental to the normal physiological functions of stem
cells. By binding to the primary cellular receptor for advanced glycation end
products (RAGE), AGEs disrupt the physiological activities of stem cells. The
binding of RAGE to various ligands triggers the activation of downstream signaling
pathways, contributing to the pathophysiological development of diabetes,
aging, neurodegenerative diseases, and cancer. Therefore, there is an urgent
need for comprehensive research on the impact of AGEs on stem cells, which
could provide new insights into the therapeutic application of stem cells in
regenerative medicine.
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1 Introduction

Stem cells (SCs) possess unique self-renewal capacity and
multidirectional differentiation potential. They can be derived
from various biological tissues, including bone marrow, adipose
tissue, the umbilical cord, and the placenta. Additionally, SCs exhibit
multiple functions, including nutritional support, migration ability,
and immunosuppression, and hold broad potential for research and
application in regenerative medicine (Naji et al., 2019). In
regenerative medicine, treatment strategies focus on tissue repair
and cell replacement. The self-renewal capacity and multidirectional
differentiation potential of SCs offer extensive applications in
treating various diseases (Hoang et al., 2022). Numerous studies
focus on exploring the effects of SCs on various diseases. Currently,
SCs are utilized directly as therapeutic agents, as exosomes, or
synergistically with other drugs. For instance, bone marrow
mesenchymal stem cells (BMSCs), a type of biomaterial, have
shown promising results in cell therapy, demonstrating high
safety and low immunogenicity, and can be rapidly applied to
treat diseases (Hoang et al., 2022; Lotfy et al., 2023). Stem cell
therapy now spans various fields, including cardiovascular diseases
(Zhang et al., 2021a), digestive system diseases (Wang et al., 2021),
and cancer-related treatments (Barisic and Childs, 2022). However,
available data on the safety of autologous or allogeneic mesenchymal
stem cells (MSCs) therapy are often preliminary, thus, precise
control over SC characterization, production and delivery
methods, and therapeutic regimens is still required (Naji
et al., 2017).

In recent years, significant advancements in stem cell therapy
have led to a clearer understanding of its functions and mechanisms,
highlighting its immense therapeutic potential. Moreover, various
factors influencing the physiological function of SCs have garnered
widespread attention and research. Numerous studies have shown
that under pathological conditions, the accumulation of Advanced
Glycation End Products (AGEs) within the extracellular matrix
(ECM) significantly threatens the normal physiological function
of SCs (Mouw et al., 2014). This nonenzymatic glycosylation process
differs from enzyme-directed glycosylation (Figure 1). It occurs
spontaneously between carbohydrates and molecules containing
free amino groups, including proteins (Fournet et al., 2018a).
AGEs, as nonenzymatic glycation end products, are composed of
macromolecules such as proteins, lipids, or nucleic acids and can be
classified into two categories: exogenous and endogenous (Singh
et al., 2001). AGEs can trigger various pathological mechanisms in
the body, including cross-linking with proteins to alter their
properties and functions, and activating intracellular signals
through receptor and nonreceptor-mediated mechanisms, which
increase reactive oxygen species (ROS) and inflammation-related
factors (Uribarri et al., 2015). AGEs can accumulate in cells, tissues,
and organs throughout the body, leading to oxidative stress and
inflammatory responses, and causing detrimental effects on human
health. Under the influence of AGEs, the activation of downstream
signaling pathways triggers the release of various inflammatory
cytokines, which may contribute to the development of diabetes,
kidney disease, rheumatoid arthritis, neurodegeneration, cancer and
other diseases (Ahmad et al., 2018).

Overall, the cytotoxic effects of AGEs are primarily reflected in
irreversible damage to protein structure and functional integrity,

resulting from both intermolecular and intramolecular cross-
linking. AGEs can cross-link with each other and bind to specific
proteins, thereby altering their structure and disrupting their
functional properties (Uribarri et al., 2015). This covalent cross-
linking leads to the inactivation of biologically active proteins and
enzymes, resulting in protein hydrolysis and resistance to digestion.
It also creates catalytic sites for ROS formation, thereby exacerbating
inflammation and oxidative stress (Wan et al., 2022). Furthermore,
AGEs induce various metabolic and biochemical disorders by
interfering with intracellular signal transduction processes, and
their interactions with different cell surface receptors trigger
various cell-mediated pathophysiological responses. For instance,
when AGEs bind to the homologous receptor RAGE, they activate
multiple downstream signaling pathways, directly affecting the
physiological function of SCs (Kume et al., 2005; Uribarri et al.,
2015; Ahmad et al., 2018).

This article aims to provide a comprehensive review of how
AGEs exert multifaceted effects on the physiological functions of
SCs, including their survival, proliferation, differentiation potential,
with the goal of exploring the underlying mechanisms in detail. To
elucidate the correlation between the physiological function of SCs
and the accumulation of AGEs in the ECM, focusing on how AGEs
affect the physiological function of SCs. Additionally, we summarize
the current methods for addressing the effects of cytotoxic AGEs on
SCs. By answering and discussing these questions, we will advance
our understanding of the physiological mechanisms and influencing
factors of SCs.

2 Sources of AGEs

The accumulation of AGEs primarily occurs through two
pathways: endogenous and exogenous pathways. Exogenous
AGEs are widely present in various foods. The formation of
exogenous AGEs is, in fact, closely associated with cooking
methods employed in the food industry. Specifically, during food
heat treatment, the application of dry heat technologies, such as deep
frying, barbecuing, and baking, significantly promotes AGE
production. These exogenous AGEs contribute significantly to the
total AGEs in the human body (Kellow and Coughlan, 2015). When
these AGEs are ingested into the human body through the daily diet,
approximately 10%–30% are absorbed and enter the systemic
circulation, while the rest are excreted through metabolic
pathways (Garay-Sevilla et al., 2021; Khalid et al., 2022). More
than 20 AGEs have been identified, with the most common ones
being N-ε-carboxymethyl-lysine (CML), N-ε-carboxyethyl-lysine
(CEL), pentosidine, pyrraline, glyoxal-lysine dimer (GOLD),
methylglyoxal-lysine dimer (MOLD), among others (Figure 2)
(Singh et al., 2001).

The formation of endogenous AGEs predominantly occurs via a
complex, multistage glycosylation process known as the Maillard
reaction. The synthesis of endogenous AGEs involves three steps: 1.
The aldehyde group of reducing sugars undergoes nonenzymatic
glycation with proteins to form Schiff bases, resulting from the
condensation of electrophilic carbonyl groups of reducing sugars
with free amino groups; 2. Schiff bases undergo structural
rearrangement to produce more stable Amadori products; 3.
Amadori products dehydrate and degrade to form AGEs (Xu
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et al., 2023) (Figure 3). Within an organization, glycation results in
protein aggregates forming through three different mechanisms: 1.
covalent bonds are formed between AGEs; 2. Oxidation of thiol
groups into disulfide bridges; 3. New reactive groups are formed
inside proteins. The chemical cross-links created by AGEs
contribute to protein network formation and ECM cross-linking,
thereby significantly increasing structural rigidity (Fournet et al.,
2018b). This nonenzymatic glycosylation process accelerates under
hyperglycemic conditions, as commonly seen in diabetes
(Stratmann, 2022). The Maillard reaction generates numerous
highly reactive carbonyl AGE precursors. Among these
precursors, dicarbonyl compounds serve as critical intermediates
in carbonyl AGE formation due to their unique chemical properties,
playing an indispensable role in the generating endogenous AGEs.
In addition, dicarbonyl compounds can be generated through
various other reaction pathways and ultimately converted into
AGEs. For example, Schiff bases follow the Namiki pathway
during oxidation and can be converted into dicarbonyl
compounds; Glucose undergoes automatic oxidation through the
Wolff pathway under metal catalysis, generating dicarbonyl
compounds. Under the oxidation of the acetone pathway, fats
also create a series of highly active dicarbonyl compounds. The
endogenous production pathways of these dicarbonyl compounds,
also known as α-Acetaldehyde, include glucose autooxidation, the
polyol pathway, and lipid oxidation. Imbalances in ketone
metabolism, especially under hyperglycemic conditions, lead to
dicarbonyl stress, a phenomenon particularly common in diabetic
patients (Kellow and Coughlan, 2015; Uribarri et al., 2015; Kuzan,
2021) (Figure 3).

3 Effects of AGEs on SCs survival and
proliferation

AGEs significantly impact the survival and proliferation of SCs,
with numerous studies demonstrating their inhibitory effect on SCs
proliferation across various sources (Kroemer et al., 2010; Zhang
et al., 2021b; Liang et al., 2022; Dobrucki et al., 2024). This effect is
closely linked to the impact of AGEs on the ECM. The ECM offers
localization and structural support for cells, influencing tissue and
organ formation, differentiation, and maintenance by modulating
growth factor and receptor levels and regulating the cellular
environment’s pH. (Mouw et al., 2014). Blackburn et al. (2017)
demonstrated that AGEs significantly impair cell adhesion within
the ECM. Specifically, the adhesion ability of BMSCs is significantly
diminished when interacting with AGE-modified collagen. This
interaction heightens cellular sensitivity to apoptosis, diminishes
the progenitor cell population, and impairs SCs differentiation into
vascular tissue.

AGEs contribute to apoptosis and senescence in SCs. One of the
primary mechanisms of apoptosis involves initiating a cascade of
reactions via the activation of cysteine-containing caspases
(Cavalcante et al., 2019). In addition to AGEs, RAGE recognizes
various ligands, including pro-inflammatory cytokine mediators of
the S100/calcogranulin family, high-mobility histone B1 (HMGB1),
and the mucopolysaccharide β-amyloid. This nuclear protein is
released upon cell necrosis and functions in the extracellular
environment. As a pattern recognition receptor, RAGE shares
ligands and signaling pathways with many members of the
receptor family (Uribarri et al., 2015; Dobrucki et al., 2024).

FIGURE 1
Identification of glycation reaction and glycosylation reaction.
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AGE-RAGE binding induces oxidative stress and activates the
mitogen-activated protein kinase (MAPK) pathway. MAPK
belong to the serine/threonine kinase family, which is not only
involved in apoptotic signaling, but also accelerates the process of
stem cell apoptosis (Ahmad et al., 2018).

In addition to influencing apoptosis, AGEs also regulate another
form of cell death—autophagy. Apoptosis involves the orderly
fragmentation of cells into apoptotic bodies, which are swiftly
recognized and removed via phagocytosis. Autophagy is an
intracellular degradative process in which endogenous or
exogenous cytoplasmic components are delivered to lysosomes
for degradation. Its primary function is to maintain cell survival
and homeostasis by recycling and reusing essential components
under stress or nutrient limitation (Kroemer et al., 2010). While
autophagy is crucial for cellular homeostasis, excessive autophagy

can have harmful effects In Zhang et al. study (Zhang et al., 2021b), it
was found that knocking out RAGE can inhibit cell autophagy,
indicating that AGEs/RAGE promote autophagy. In Liang et al.
(2022) study, it was also found that receptors for AGEs and RAGE
are associated with fibrosis and autophagy. Furthermore, inhibiting
RAGE provides cardiac protection by reducing hypertrophy and
fibrosis in mice. Similarly, Zhang et al. (2023) observed that AGE/
RAGE interactions stimulate autophagy.

4 Impact of AGEs on the differentiation
potential of SCs

The regeneration of tissues is intricately linked to the
differentiation of SCs. For instance, during bone development,
MSCs migrate to the target site of bone formation, thereby
initiating the first stage of bone development. The mechanism of
osteogenesis in the human body involves two main pathways: 1. The
direct differentiation of cells into osteoblasts, a process known as
intramembranous osteogenesis; 2. The indirect pathway,
endochondral osteogenesis, involves the differentiation of
chondrocytes and their eventual transformation into bone tissue.
This osteogenic process ensures normal bone development and
formation. Currently, most osteogenic studies focus on osteogenic
differentiation as the primary strategy for osteogenic differentiation
(Ding et al., 2022). Various mechanisms affect the differentiation
process of MSCs, including the AGE/RAGE pathway (Wang et al.,
2022), Wnt/β-catenin pathway (Zhang et al., 2018), Notch-Hes1
pathway (Islam and Aboussekhra, 2019), TGFβ pathway (Notsu
et al., 2014). The osteogenic differentiation potential of SCs has
remarkable plasticity and can be regulated and transformed through
a variety of mechanisms. For instance, specific growth factors or
pharmacological agents can effectively direct SC differentiation into
osteoblasts. These growth factors or drugs direct the transformation
of SCs into osteoblasts by interacting with intracellular signaling

FIGURE 2
Chemical structure of common AGEs. CML, N-ε-carboxymethyl-lysine; CEL, N-ε-carboxyethyl-lysine; GOLD, glyoxal-lysine dimer; MOLD,
methylglyoxal-lysine dimer.

FIGURE 3
The main process of endogenous AGEs production. CML, N-ε-
carboxymethyl-lysine; CEL, N-ε-carboxyethyl-lysine; GOLD, glyoxal-
lysine dimer; MOLD, methylglyoxal-lysine dimer.
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pathways that regulate gene expression and cellular function (Fu
et al., 2021).

4.1 AGE/RAGE pathway

Sun et al. (2020) proposed that the AGE/RAGE axis can inhibit
the osteogenic differentiation of BMSCs. Their study employed
inhibition of the AGE/RAGE axis to mitigate dysfunction in SCs
differentiation. Okazaki et al. found that AGEs constrained the
osteogenic differentiation of mouse stromal ST2 cells by
inhibiting Osterix (OSX) expression and partially increasing
RAGE expression. Furthermore, AGEs interfere with the process
of SCs differentiation into bone cells by potentially reducing
osteocalcin production while increasing RAGE expression
(Okazaki et al., 2012). AGEs exert a more pronounced impact
during the immature stage of osteoblasts compared to the
differentiation stage, inhibiting differentiation and reducing the
number of mature osteoblasts (Ogawa et al., 2007). Stolzing et al.
(2010) added different doses of AGEs to cultured MSCs and found
that the self-renewal and osteogenic differentiation of MSCs were
significantly reduced. Under osteogenic differentiation conditions,
the extent of this effect depended on the concentration of AGEs in
the culture medium. Furthermore, the proliferation of MSCs
significantly increased in the low-concentration group, while
normal proliferation and osteogenic differentiation of MSCs were
impaired in the high-concentration group. They also observed that
AGEs suppressed osteocalcin mRNA expression in rat MSCs,
thereby hindering their differentiation. Lin et al. (2016) reported
that HMGB1 facilitate the osteogenic differentiation of BMSCs while
also increasing the expression of RAGE and Toll-like receptors 2 and
4 (TLR2/4) bound to HMGB1. RAGE, a high-affinity receptor for
HMGB1, can activate the p38/MAPK and NF-κB pathways upon
binding to HMGB1, thereby promoting the osteogenic
differentiation of BMSCs (Park et al., 2004). The p38/MAPK
pathway plays a crucial role in cell cycle regulation (Barnum and
O’Connell, 2014); Kim et al. reported (Kim and Kwon, 2013) that
COMP-Ang1 induces the upregulation of the PI3K/AKT and p38/
MAPK pathways, thereby facilitating the attenuation of osteogenic
differentiation of MSCs by AGEs via the Ang1/Tie2 pathway.

4.2 TGF-β pathway

TGF-β is a crucial factor in regulating the differentiation of
MSCs and plays a vital role in stem cell differentiation (Li et al.,
2024). Notsu et al. considered that AGEs increase TGF-β by binding
to RAGE, and the AGE-TGF-β pathway has a negative effect on the
differentiation of MSCs into osteoblasts, impairing their
differentiation. This indicates that TGF-β is one of the factors
influencing the differentiation potential of SCs (Notsu et al.,
2014). In recent years, joint cartilage regeneration technology has
advanced significantly, driven by continuous improvements in
biological scaffold materials. TGF-β3, as an important isoform of
the TGF-β family, plays a pivotal role in mesenchymal stem cell
differentiation through both Smad-dependent and non-Smad
pathways. Its active involvement and tightly regulated role in the
bone healing process have been widely recognized. In recent years,

there has been increasing interest in the potential of TGF-β3 to
promote and induce the proliferation, osteogenesis, and
chondrogenic differentiation of adult SCs in biological scaffold
materials. In particular, the induction of TGF-β3 is particularly
significant in the early stages of the osteogenic process, providing
new therapeutic strategies and research ideas for bone tissue
regeneration. These studies not only help us to understand the
mechanism of cartilage repair and regeneration deeply, but also
provide a solid theoretical basis and experimental foundation for
future clinical applications (Li et al., 2018; Roth et al., 2019; Martin
et al., 2021).

In general, the role of TGF-β3 in cartilage formation is cell-type
specific. Jin et al.’s reported that the inhibitory effect of TGF-β3 on
chondrocytes is achieved through the activation of Notch signaling,
which inhibits the proliferation of mesenchymal cells and pre-
cartilage condensation (Jin et al., 2007). In another study, they
also reported a similar finding regarding the inhibitory effect of
TGF-β3 on the differentiation of MSCs, which is that TGF-β3
downregulates Protein Kinase C-α (PKC-α) mediated activation
of connexin 43, integrin β4, and ERK, inhibiting chondrogenic
differentiation of mesenchymal cells (Jin et al., 2008). In contrast
to the inhibitory effect of TGF-β3 onMSC differentiationmentioned
above, Zheng et al. found that knocking out the TβRIII gene can
promote TGF-β3-induced MSCs cartilage differentiation,
demonstrating the positive induction effect of TGF-β3 on
mesenchymal stem cell differentiation (Zheng et al., 2018).
Similarly, Jin et al. found that TGF-β3 stimulates the
differentiation of MSCs into chondrocytes and inhibits the
differentiation of chondrocytes. This is because TGF-β3 promotes
chondrogenic differentiation of mesenchymal cells by activating the
PKC-α and p38 MAPK pathways (Jin et al., 2006). Based on the
multiple studies on TGF-β3 specified above, it can be concluded that
the differences in TGF-β3 are due to its various functions,
manifested as a mixed effect of induction and inhibition on the
differentiation process of MSCs.

Overall, it is crucial to investigate the complex signaling
pathways and mechanisms by which AGEs affect the
differentiation process of SCs. This will not only aid in revealing
the mechanisms by which AGEs influence SC differentiation, but
also provide insight into potential strategies to reverse the toxic
effects of AGEs.

4.3 Wnt/β-catenin pathway

The Wnt/β-catenin pathway, a central signaling pathway,
precisely regulates cell polarity, determines the differentiation fate
of cells, guides the migration process of cells, and has a profound
impact on spindle formation, organ development, and stem cell
renewal (Nayak et al., 2016). Currently, 19 Wnt ligands have been
identified, and all of these ligands specifically bind to a seven-
transmembrane Wnt receptor named Frizzled (FZD) (Houschyar
et al., 2019). The Wnt pathway, a well-established osteogenic
differentiation pathway, is a complex system comprising three
distinct pathways, which are believed to be activated upon Wnt
receptor activation: the canonical Wnt/β-catenin cascade, the
noncanonical planar cell polarity (PCP) pathway, and the Wnt/
Ca2+ pathway.
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In the canonical Wnt/β-catenin cascade, the central event is the
nuclear translocation of the β-catenin protein and its regulation of
target genes. In the absence of Wnt ligands, β-catenin is degraded by
intracellular complexes-primarily composed of glycogen synthase
kinase 3 (GSK-3). However, once the canonical Wnt/β-catenin
cascade is activated, Dishevelled proteins (Dvl) are triggered,
which in turn inhibit GSK-3, thereby stabilizing β-catenin and
promoting its nuclear translocation and target gene expression.
Atypical Wnt signaling also plays a crucial role in the
differentiation of bone tissue. Unlike the canonical Wnt/β-
catenin cascade, the atypical Ca2+ dependent Wnt pathway
uniquely promotes osteogenesis in MSCs. When the Wnt ligand
binds to the FZD receptor, it activates G proteins, triggering the
release of Ca2+ ions from the endoplasmic reticulum. This process
initiates the Protein Kinase C (PKC) pathway and continue signaling
to promote osteogenesis (Ahmadi et al., 2022). The Wnt pathway is
initiated when Wnt ligands bind to FZD receptors, activating G
proteins that subsequently trigger the release of Ca2+ ions from the
endoplasmic reticulum, which then initiates the PKC pathway. Low-
density lipoprotein receptor associated protein 5/6 (LRP5/6) or
receptor tyrosine kinase-like orphan receptors (RORs) function
as common receptors alongside FZD, facilitating the binding of
Wnt proteins to their receptors. The involvement of these co-
receptors dictates the downstream effects following successful
ligand binding, initiating either the canonical Wnt/β-catenin
cascade or the noncanonical planar cell polarity (PCP) pathway
(Houschyar et al., 2019; Ahmadi et al., 2022) (Figure 4). Zhou et al.
(2023) found that AGEs can impair the osteogenic differentiation
process of BMSCs by upregulating the expression of fat and obesity-
related gene FTO. This process is regulated by FTO to modify the
SOST transcript with m6A, increase the mRNA stability recognized
by YTHDF2, inhibit the Wnt signaling pathway, and ultimately
disrupt the differentiation of BMSCs into bone. Minear et al. (2010)
amplified the cell Wnt response by removing the Axin 2 gene in a
mouse model and found that delivering liposome vesicles containing
purified Wnt-3a protein can promote the Wnt pathway, leading to
increased proliferation and early differentiation of BMSCs, thereby
accelerating fracture healing.

Growth factors activate aspects of the Wnt pathway. The TGF-β
pathway is a membrane-to-nucleus signaling cascade activated by
receptor-mediated transcription factors. Due to structural and
functional considerations, the 32 family members are classified
into TGF-β and bone morphogenetic proteins (BMPs)
subfamilies, along with other variations (David and Massagué,
2018). BMPs have been extensively studied, with BMPs 2, 6, and
9 being the primary isoforms. As potent growth factor, BMPs
stimulate MSCs to differentiate into osteoblasts (Carreira et al.,
2014). The functional Wnt signaling pathway constitutes the core
mechanism of BMP-induced osteogenic differentiation of MSCs.
There is a significant interaction between the Wnt and the TGF-β
pathways, as they share some key regulatory targets, thus forming a
complex signaling network. Among them, β-catenin, a key node in
this network, plays a crucial role in regulation (Case and Rubin,
2010). β-catenin plays various roles during different phases of bone
repair. In the initial stages following injury, it modulates the
osteoblast-to-chondrocyte ratio within the callus tissue induced
by MSCs, ensuring a balanced and coordinated repair process
(Bao et al., 2017). In the later stages of bone healing, β-catenin

induces osteoblasts to differentiate and produce an osteogenic
matrix, promoting bone reconstruction and regeneration (Wang
et al., 2017). Zhang et al. (2009) suggest that BMP2 regulates β-
catenin by stimulating the expression of Lrp5 in osteoblasts and
inhibiting the expression of β-Trcp. Chen et al. (2019) also found
that the key growth factor BMP2 stimulates the Wnt/β-catenin
pathway to promote the osteogenic differentiation of BMSCs. The
addition of Wnt-3a enhances the osteogenic effect of BMP9.
However, it is counteracted by the downregulation of β-catenin
or the increased expression of FrzB, which acts as an antagonist of
the FZD receptor (Boland et al., 2004).

5 Strategies for dealing with the toxic
effects of AGEs on SCs

Effective intervention in AGEs-induced damage is critical for
promoting the normal physiological activity of SCs. Given the
central role of AGEs in stimulating tissue fibrosis and mediating
matrix cross-linking, strategies such as reducing AGEs formation,
enhancing AGEs degradation, and blocking AGEs cross-linking
show promise as therapeutic approaches. Currently, interventions
targeting AGEs focus on blocking the pathways through which they
exert their effects, thereby mitigating the deleterious impact of AGEs
on SCs’ physiological functions. In this process, AGE/RAGE and
Wnt/β-catenin signaling pathways have become the focus of our
attention, and they provide important clues for us to understand the
mechanism of AGEs and develop effective interventions.

5.1 Targeting the AGE/RAGE pathway

The glyoxalase system is integral, serving as a key enzyme system
present in all mammalian cells. This system consists of two enzymes
that act in concern: glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2). The
AGE/RAGE pathway alleviate differentiation dysfunction of BMSCs
by enhancing the activity of Glo1. AGEs activate complex signaling
pathways by binding to RAGE, thereby triggering various toxic
effects in the organism. These enzymes catalyze sequential reactions,

FIGURE 4
Effects of AGEs on the canonical Wnt/β-catenin cascade; Dvl,
Dishevelled; GSK-3β, glycogen synthase kinase 3 beta; βcat, β-catenin.
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with reduced glutathione (GSH) serving as a catalytically active and
essential component. The Glo1 enzyme plays a crucial role in the
metabolic process by catalyzing the nonenzymatic isomerization of
the active dicarbonyl metabolite methylglyoxal (MG) with
glutathione to produce dithiol acetaldehyde. Additionally,
Glo2 catalyzes the hydrolysis of S-D-lactoylglutathione to
generate D-lactic acid, thereby efficiently supplementing the
glutathione consumed in the Glo1-catalyzed process. Due to this
synergistic action, the glyoxalase system is able to efficiently process
dicarbonyl compounds in vivo and maintain normal metabolic
functions of cells (Rabbani and Thornalley, 2019). Wang et al.
(2019) used glycine to inhibit the formation of AGEs, and the
study described that Glo1 also mediates this effect. In Jandial
et al. mouse model (Jandial et al., 2018), blocking Glo1 resulted
in increased AGE production and upregulation of RAGE expression.
Consequently, Glo1 inhibition caused cellular accumulation of MG,
triggering rapid modifications of proteins, lipids, and DNA,
ultimately inducing apoptosis. To counteract the adverse effects
of AGEs on primary SCs, an effective strategy involves blocking the
interaction between AGE and RAGE. The discovery of Zhang et al.
can be utilized with the RAGE inhibitor FPS-ZM1, which can
attenuate the adverse effects of AGEs on the osteogenic potential
of SCs (Zhang et al., 2018). Rasheed et al. (2011) found that
knocking down RAGE by pre-treating soluble RAGE (sRAGE) or
using siRNAs effectively reduced the cytotoxicity of AGEs. Based on
the above research, activating Glo1 or directly inhibiting the binding
of AGEs to RAGE is a highly feasible strategy to mitigate the toxic
effects of AGEs.

5.2 Promoting DNA demethylation

Alterations in the Wnt/β-catenin pathway significantly influence
bone metabolism. Notably, elevated concentrations of Wnt3a can
inhibit the osteogenic differentiation of BMSCs, indicating that
regulating the Wnt/β-catenin pathway needs to be fully balanced to
avoid adverse effects on stem cell differentiation. Therefore,
comprehensive research on the Wnt/β-catenin pathway and its
interaction with DNA methylation processes is highly important for
optimizing the physiological functions of SCs in AGEs -induced
environments (Boland et al., 2004). In Liang et al.’s study, DNA
methylation was found to have a substantial impact on the
expression of Wnt/β-catenin signaling pathway genes, which also
proves that the impact of DNA methylation on the physiological
function of MSCs is achieved through the Wnt/β-catenin pathway
(Liang et al., 2015). DNA methylation is a molecular modification that
determines cell identity and lineages by regulating gene expression and
maintaining genomic stability. Under the action of DNA
methyltransferase, the covalent bond at the cytosine 5 carbon
position of the CpG dinucleotide in the genome binds to a methyl
group.DNAmethylation induces changes in chromatin structure, DNA
conformation, stability, and the dynamics of DNA-protein interactions,
thus exerting control over gene expression (Nishiyama and Nakanishi,
2021). DNMT1, DNMT3a and DNMT3b play indispensable roles in
DNAmethylation. Recent research by Zhang et al. (2018) demonstrated
that the expression of DNMT1 and DNMT3a was upregulated,
indicating that AGEs increased the level of DNA methylation in
ADSCs. To reverse this effect, the investigators used FPS-ZM1,

which successfully rescued the loss of osteogenic differentiation in
ADSCs by inhibiting AGEs induced DNA methylation. In a study
by Li et al. (2020), when ADSCs were cultured in a medium containing
AGEs, they exhibited high levels of 5-mC andDNMTs, accompanied by
a significant reduction in osteogenic differentiation capacity in vitro.
However, by applying DNMT inhibitors (5-aza-dC), investigators
found that the osteogenic differentiation potential of ADSCs was
improved. The promotion of DNA demethylation enhanced the
osteogenic differentiation of ADSCs, highlighting the critical role of
DNA methylation levels in regulating this process.

6 Conclusion

Both endogenous and exogenous AGEs negatively affect the
physiological function of SCs. These strong oxidants continuously
weaken the cell’s natural defense mechanisms, leading to abnormal
oxidative stress and inflammatory responses. However, this
unfavorable situation is not irreversible and stem cell therapy is a
potential coping strategy to curb the damage caused by AGEs
effectively. Elucidating the underlying mechanisms of the impact
of AGEs on stem cell toxicity and devising pertinent solutions are
vital for advancing stem cell therapy technology.
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