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Neurodegenerative diseases are characterized by the progressive breakdown of
neuronal structure and function and the pathological accumulation of misfolded
protein aggregates and toxic protein oligomers. A major contributor to the
deterioration of neuronal physiology is the disruption of protein catabolic
pathways mediated by the proteasome, a large protease complex responsible
for most cellular protein degradation. Previously, it was believed that proteolysis
by the proteasome required tagging of protein targets with polyubiquitin chains, a
pathway called the ubiquitin-proteasome system (UPS). Because of this, most
research on proteasomal roles in neurodegeneration has historically focused on
the UPS. However, additional ubiquitin-independent pathways and their
importance in neurodegeneration are increasingly recognized. In this review,
we discuss the range of ubiquitin-independent proteasome pathways, focusing
on substrate identification and targeting, regulatory molecules and adaptors,
proteasome activators and alternative caps, and diverse proteasome complexes
including the 20S proteasome, the neuronal membrane proteasome, the
immunoproteasome, extracellular proteasomes, and hybrid proteasomes.
These pathways are further discussed in the context of aging, oxidative stress,
protein aggregation, and age-associated neurodegenerative diseases, with a
special focus on Alzheimer’s Disease, Huntington’s Disease, and Parkinson’s
Disease. A mechanistic understanding of ubiquitin-independent proteasome
function and regulation in neurodegeneration is critical for the development
of therapies to treat these devastating conditions. This review summarizes the
current state of ubiquitin-independent proteasome research in
neurodegeneration.
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Introduction

Neurodegeneration causes an irreversible decline in cognition and motor coordination
due to the progressive breakdown of neuronal structure and function. A defining feature of
neurodegeneration is the accumulation of misfolded protein aggregates, which are toxic to
the cell and cause neuronal damage by disrupting essential cellular processes. A
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fundamental mechanism in the formation of these aggregates is
disruption of neuronal proteostasis, the balance of protein synthesis
and degradation. This is mediated in part through the proteasome, a
multi-subunit protease complex responsible for the majority of
protein degradation, including the misfolded and damaged
proteins implicated in neurodegenerative diseases (Zheng et al.,
2016; Türker et al., 2021; Cuanalo-Contreras et al., 2023; Davidson
and Pickering, 2023). The proteasome functions through multiple
proteolytic mechanisms based on its composition and interactors.

The cell’s main degradative machinery, called the 26S
proteasome, consists of a cylindrical 20S core particle (20S) that
contains catalytic sites for proteolysis and a 19S regulatory cap (19S)
that acts as a proteasome activator (PA) to facilitate recognition,
unfolding, and rapid degradation of substrates. The 26S proteasome
is the central hub for the ubiquitin-proteasome system (UPS), a
catabolic pathway that targets proteins for destruction through 1)
covalent attachment of polyubiquitin chains by a series of ubiquitin
ligases, 2) recognition and de-ubiquitination by the 19S cap, and 3)
ATPase-dependent unfolding and translocation of substrate
proteins to the interior of the 20S core for degradation (Hershko
et al., 1981; Hershko and Ciechanover, 1992; Ciechanover and
Schwartz, 1998). The catalytic subunits of the 20S core include
β5 (PSMB5; chymotrypsin-like activity), β2 (PSMB7; trypsin-like
activity), and β1 (PSMB6; caspase-like activity), which cleave
peptide bonds with different specificities and are responsible for
the breakdown of proteins into short peptides (Baumeister et al.,
1997; Kisselev et al., 1999; Unno et al., 2002). These peptide products
are then used as a source of amino acids for biosynthesis or for other
cell type-specific functions including antigen recognition,
modulation of neuronal signaling, and intercellular
communication (Vabulas and Hartl, 2005; Basler et al., 2013;
Ramachandran and Margolis, 2017; Limanaqi et al., 2019; Türker
et al., 2024). While the UPS is the best-characterized mechanism of
proteasome activity (Bingol and Schuman, 2005; Patrick, 2006; Yi
and Ehlers, 2007) and extensive reviews have been written on its role
in neurodegenerative diseases (Ciechanover and Brundin, 2003;
Dantuma and Bott, 2014; Zheng et al., 2016; Watanabe et al.,
2020; Schmidt et al., 2021; Davidson and Pickering, 2023), many
questions remain which are being actively explored and which will
not be the focus of this review.

In addition to the UPS, the 20S proteasome is highly abundant
and found with a broad set of activators and associated proteins
important for various proteolytic functions, especially those affected
by neurodegenerative disease (Fabre et al., 2014; Opoku-Nsiah and
Gestwicki, 2018; Türker et al., 2023). While 20S proteasomes were
previously believed to be non-functional without a regulatory 19S
cap, increasing evidence has indicated unique, ubiquitin-
independent roles of the 20S core particle and its interacting
partners, particularly in degradation of intrinsically disordered,
oxidized, or misfolded proteins (Jariel-Encontre et al., 2008;
Baugh et al., 2009; Ben-Nissan and Sharon, 2014; Erales and
Coffino, 2014; Opoku-Nsiah and Gestwicki, 2018; Davidson and
Pickering, 2023), important hallmarks of neurodegeneration.
Because a large portion of proteins in the human genome
contain intrinsically disordered regions under physiological
conditions, and because 20% of proteins may be degraded
through ubiquitin-independent proteasome pathways under
normal or stress conditions, it is likely that these pathways are

more important for quotidian function than previously appreciated
(Baugh et al., 2009; Ben-Nissan and Sharon, 2014; Pepelnjak et al.,
2024). In this review, we focus on ubiquitin-independent
proteasomal mechanisms and the emerging role these
mechanisms plays in neurodegeneration.

Search scheme and article selection

PubMed and Google Scholar search engines were first used to
identify research articles using search terms including ubiquitin-
independent proteasome, neurodegeneration, 20S proteasome,
Alzheimer’s Disease, Parkinson’s Disease, Huntington’s Disease,
protein aggregation, oxidative stress, PA200, PA28, and aging,
among others. However, results from these keyword search terms
did not distinguish well between the UPS and ubiquitin-
independent mechanisms, so alternative tools employing artificial
intelligence (AI) were used. These included Consensus and Semantic
Scholar–the primary tools used–as well as Elicit and Research
Rabbit. Consensus, Elicit, and Semantic Scholar were leveraged to
search databases of >200 million peer-reviewed scientific papers
using natural language processing to interpret questions about
research topics rather than keywords (e.g., “What roles do
ubiquitin-independent proteasome mechanisms play in
neurodegenerative disease?” or “Can the 20S proteasome degrade
tau without a proteasome activator?”), using machine learning to
process the content and context of literature, and using large
language models to suggest relevant articles or provide a
summary of conflicts and consensus in the literature with
references, reducing bias in the search results. After curating a
collection of the most relevant articles based on these searches,
Research Rabbit was used to visualize connected papers, identifying
additional article suggestions. Aside from AI tools, other papers
were identified by scanning the references of pertinent articles. After
identification, full-text articles published in or before October
2024 were reviewed for ubiquitin-independent proteasome
mechanistic relevance. Original articles and reviews were
included, and retracted papers were excluded. All articles were
peer-reviewed except for one pre-print (indicated in the text).
The writing of this review was not AI-generated, and AI tools
were used for article identification only.

Proteasome substrate identification

For decades, evidence has demonstrated that the proteasome has
diverse mechanisms of substrate recognition and degradation
beyond the canonical UPS pathway (Jariel-Encontre et al., 2008;
Baugh et al., 2009; Ben-Nissan and Sharon, 2014; Erales and Coffino,
2014), and a growing number of protein substrates targeted to the
proteasome without ubiquitination have been discovered
(Rosenberg-Hasson et al., 1989; Bercovich and Kahana, 1993;
Coffino, 1998; Sheaff et al., 2000; Bossis et al., 2003; Myers et al.,
2018; Makaros et al., 2023). Recent advances include a systematic
analysis of human 20S proteasome substrates using a method called
proteasomal-induced proteolysis mass spectrometry, developed by
Pepelnjak et al. to identify a range of proteins degraded by the
ubiquitin-independent 20S (Pepelnjak et al., 2024). Another
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technique, Global Protein Stability peptidome screening, was
developed by Koren et al. (2018) and subsequently applied to
identify ubiquitin-independent proteasome substrates (Makaros
et al., 2023). These papers and others have demonstrated that
proteins central to neurodegeneration, including tau (important
in AD and other tauopathies) (David et al., 2002; Grune et al.,
2010; Ukmar-Godec et al., 2020), α-synuclein (important in PD and
other synucleinopathies) (Tofaris et al., 2001; Nakajima et al., 2005;
Alvarez-Castelao et al., 2014; Makaros et al., 2023), huntingtin
(important in HD) (Juenemann et al., 2013), as well as many
proteins important in stress, transcriptional regulation (like
RNA-binding partners and transcription factors), phase granule
separation (Myers et al., 2018), and cell cycle regulation (Sheaff
et al., 2000; Touitou et al., 2001; Asher et al., 2005; Wiggins et al.,
2011), can be degraded through ubiquitin-independent mechanisms
(Pepelnjak et al., 2024). These techniques suggest that ubiquitin-
independent degradation is far more prevalent than previously
believed, although in some cases, more orthogonal approaches or
in vivo data approximating normal physiology may be needed to
definitively support this claim. Although significant advances are
rapidly emerging, the exact targeting mechanisms of ubiquitin-
independent degradation are still under investigation. However,
the 20S proteasome is known to degrade intrinsically disordered
proteins (IDPs) like α-synuclein (α-syn) and tau more efficiently
than structured proteins (Grune et al., 2010; Alvarez-Castelao et al.,
2014; Myers et al., 2018; Ukmar-Godec et al., 2020), and there may
be additional specific motifs (Touitou et al., 2001; Bossis et al., 2003;
Makaros et al., 2023), including C-terminal degrons (Touitou et al.,
2001; Makaros et al., 2023), and structural features including
exposed hydrophobic residues (Kisselev et al., 2002), that are
recognized for targeted degradation. It has also recently been
demonstrated that the 20S can degrade ubiquitinated substrates,
degrading the ubiquitin tag along with the proteinmore quickly than
the 26S can deubiquitinate and digest, a mechanism increased
during hypoxic stress conditions to clear misfolded/damaged
proteins rapidly (Sahu et al., 2021).

To protect the cell from excessive proteolysis, entry into the
catalytic chamber of the 20S core is tightly regulated, with its
external α-rings partially obstructing the protease active sites
(Wenzel and Baumeister, 1995; Groll et al., 2000). To allow
substrate entry, 20S proteasomes may interact with pore-opening
proteasome activators (PAs) (Knowlton et al., 1997; Hendil et al.,
1998; Ortega et al., 2005), or they may allow direct substrate access
without a PA (Kisselev et al., 2002). As a standalone molecule, the
20S can recognize and interact with hydrophobic regions of
misfolded proteins, which act as degradation signals, as well as
IDPs and oxidized proteins (Kisselev et al., 2002; Förster et al., 2003;
Raynes et al., 2016; Deshmukh et al., 2023). Because IDPs lack a
rigid, well-defined structure, they are more flexible and can more
easily enter the narrow entry channel of the 20S proteasome
(Suskiewicz et al., 2011), whereas structured proteins require
unfolding or linearization by the 19S cap ATPases (Wenzel and
Baumeister, 1995; Dong et al., 2019). The independent 20S can
undergo conformational changes in its α-rings without ATP
hydrolysis that permit self-gated entry of unstructured, oxidized,
or misfolded proteins through the narrow entry pore (Kisselev et al.,
2002; Förster et al., 2003). This capacity for protein degradation
without ubiquitination or energy consumption makes the 20S

proteasome uniquely suited to remediate the accumulation of
toxic protein aggregates in neurodegenerative diseases, which
often cause mitochondrial damage, oxidative stress, and further
impairment of the UPS (Ding et al., 2006; Pickering et al., 2010; Li
et al., 2011; Huang et al., 2013; Höhn et al., 2020). Importantly,
substrate degradation by ubiquitin-independent proteasomal
mechanisms, the UPS, or non-proteasomal pathways like
autophagy are not necessarily mutually exclusive in the cell, and
some substrates may be degraded by one mechanism in some
conditions and another mechanism in other conditions, such as
oxidative stress (Grune et al., 2010; Suskiewicz et al., 2011; Ben-
Nissan and Sharon, 2014; Manfredonia and Kraut, 2022). It is also
well-documented that autophagic pathways may be used to clear
certain isoforms of these proteins, hypermodified forms, or
aggregates, which will not be discussed here (Lee et al., 2013;
Watanabe et al., 2020). Increasing research has shed light on how
these substrates are targeted and the variety of mechanisms used to
facilitate or regulate their degradation through the proteasome.

Proteasome activators (PAS)

The best-understood mechanisms of substrate targeting are
through PAs. Prior research has demonstrated that interaction
with 20S molecules require many PAs to use a C-terminal tri-
peptide HbYX motif (hydrophobic residue, followed by tyrosine,
then any amino acid) that docks into the spaces between ⍺-ring
subunits, called 20S ⍺-pockets (Smith et al., 2007; Rabl et al., 2008;
Sadre-Bazzaz et al., 2010). In contrast to research on the HbYXmotif
in archaea models (Smith et al., 2007; Rabl et al., 2008; Yu et al.,
2010), recent research shows that human 20S proteasomes, which
are hetero-oligomers with seven distinct ⍺-subunits in the outer
⍺-ring rather than the homo-oligomers formed by archaea, may
have more heterologous signals, dubbed YΦmotifs by the Gestwicki
group in 2022 (Opoku-Nsiah et al., 2022). While HbYX motifs are
tripeptides, the YΦ motifs tested were hexapeptide sequences,
showing an effect on degradation for each of the last 6 residues
of the C-terminus. YΦ refers to Y-F/Y residues at the
antepenultimate and penultimate positions at the C-terminus. In
addition, as opposed to monovalent PAs like PA200 that require
adherence to HbYX/YΦ rules (Sadre-Bazzaz et al., 2010), hetero-
oligomeric PAs, which have increased valency due to interactions
with multiple ⍺-subunit pockets, allowed some flexibility in
C-terminal gating association outside of HbYX/YΦ rules (Opoku-
Nsiah et al., 2022). Further research must be performed to catalog
the full range of interaction sequences present in human 20S
proteasomes, and this may provide insight into regulation of
PAs, the importance of any post-translational modifications, and
their role in neurodegenerative diseases.

An important implication of these recognition sequences is that
they may be useful as drug targets. It has been demonstrated that
synthesized HbYX-like peptide mimetics can open the 20S pore and
stimulate degradation of unstructured protein substrates, posing a
possible therapeutic option for neurodegenerative disease (Chuah
et al., 2023). In addition to increasing degradation of tau by the 20S,
HbYX mimetics also completely block 20S inhibition by amyloid-β,
α-syn, and huntingtin oligomers, further demonstrating the
potential for small molecule treatments to restore 20S
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proteasome activity and increase degradation of disordered
substrates prone to aggregation (Chuah et al., 2023).

The most famous PA is the 19S regulatory cap (also called
PA700), which in addition to being the canonical activator complex
in the UPS has some capacity for facilitating ubiquitin-independent
degradation through the 26S proteasome, generating a different set
of peptides than 20S alone (Kisselev et al., 1999; Asher et al., 2005;
Baugh et al., 2009; Winkler et al., 2013; Ben-Nissan and Sharon,
2014; Tsvetkov et al., 2020). In addition, Tsvetkov et al. showed
in vitro that when the assembled 26S is stabilized by binding of
NADH, an important molecule in aging and metabolism that is

sensitive to cellular redox state, it can facilitate degradation of IDPs
even in the absence of ATP. However, 20S proteasome catalytic
activity was not affected by NADH or NAD+ in vitro (Tsvetkov
et al., 2020). Other PAs that can bind to the exterior of the 20S core
and enhance its activity by inducing central pore opening include
PA28 (also called 11S or PSME1) and PA200 (or Blm10 in yeast),
both of which use ubiquitin-independent mechanisms to facilitate
substrate entry and often target oxidized, unstructured/intrinsically-
disordered, or misfolded proteins in specific subcellular locations
(Dubiel et al., 1992; Ma et al., 1992; Ustrell et al., 2002; Ortega et al.,
2005; Cascio, 2021). In addition to PAs, other major proteasome

FIGURE 1
Ubiquitin-Independent Proteasome Complexes and Mechanisms. Illustrated above are the diverse complexes that can form in combination with the 20S
core particle (20S) (center illustration). The 20S has 28 subunits that form a barrel structure with 14 α-subunits (blue) and 14 β-subunits (red). Alternative
Proteasomes: The 20S can be found in various forms including the immunoproteasome, which has alternative β catalytic subunits (green) and can be induced as
part of the immune response, and the neuronal membrane proteasome (NMP), which is a neuron-specific proteasome complex localized to the plasma
membrane that is used for signaling. The 20S can also be found in the extracellular space and can exist in hybrid forms which have two distinct cap structures on
each sideof the20S (shownherewith 19S andPA28αβ).Regulators/Adaptors: The20S interactswith several important regulators/adaptors includingcatalytic core
regulators (CCRs),midnolin, PI31, and a broad category encompassing other interactors. Aside fromPI31, which interactswith 20S subunits from inside the barrel,
most of these regulators associate with the 20S exterior, and in some cases (midnolin and several other interactors) with the 19S-capped 20S. Proteasome
Activators (PAs): The 20S interacts with a variety of PAs that increase 20S activity by opening the gate formed by α-subunits and permitting substrate entry for
degradation. Those pictured include: the 19S cap, which combines with the 20S to form the 26S; PA200, which is monomeric and mainly found in the nucleus;
PA28αβ, which is typically cytoplasmic and plays an important role in the immune response; and PA28γ, which has high expression in the brain and serves an
important role in cell cycle regulation. Created in BioRender. Church, T. (2025) https://BioRender.com/o73i883.
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TABLE 1 Proteasome nomenclature and subunit-specific links to neurodegenerative disease.

Category Proteasome
complex TYPE

Subclassification Subunit Gene Function and
substrates

Neurodegenerative
disease associationsa

20S CP Constitutive α type α1 PSMA6 interaction with proteasome
activators (PAs) & regulatory

particles (RPs)

PD

α2 PSMA2 interaction with PAs and RPs PD

α3 PSMA4 interaction with PAs and RPs AD

α4 PSMA7 interaction with PAs and RPs PD

α5 PSMA5 interaction with PAs and RPs AD, PD

α6 PSMA1 interaction with PAs and RPs PD

α7 PSMA3 interaction with PAs and RPs PD

α8 PSMA8 interaction with PAs and RPs

β type β1 PSMB6 Caspase-like degradation;
cleaves after acidic/negatively-

charged residues

PD

β2 PSMB7 Trypsin-like degradation;
cleaves after basic/positively-

charged residues

AD, PD

β3 PSMB3

β4 PSMB2 PD

β5 PSMB5 Chymotrypsin-like
degradation; cleaves after
hydrophobic residues,

branched amino acids, small
neutral amino acids

AD, PD

β6 PSMB1

β7 PSMB4 Interaction site for CCRs

Immunoproteasome β1i PSMB9,
LMP2

Chymotrypsin-like; cleaves
after hydrophobic residues,
branched amino acids, small

neutral amino acids

AD, PDb

β2i PSMB10,
MECL1

Trypsin-like degradation;
cleaves after basic/positively-

charged residues

ADb

β5i PSMB8,
LMP7

Chymotrypsin-like
degradation; cleaves after large

hydrophobic residues,
branched amino acids, small

neutral amino acids

ADb

Proteasome
activators

PA700 (19S) AAA+ ATPase Rpt1 PSMC2 ATPase; base of 19S PA (base) AD

Rpt2 PSMC1 ATPase, Gate opening; base PD

Rpt3 PSMC4 ATPase, Gate opening; base PD

Rpt4 PSMC6 ATPase; base PD, HD

Rpt5 PSMC3 ATPase, Gate opening; base PD

Rpt6 PSMC5 ATPase; base AD, PD, HD

Proteasome
activators

PA700 (19S) non-ATPase Rpn1 PSMD2 PIP scaffold; Ubiquitin
receptor (Ub); base

Rpn2 PSMD1 PIP scaffold; base PD

Rpn3 PSMD3 lid of 19S PA (lid)

(Continued on following page)
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TABLE 1 (Continued) Proteasome nomenclature and subunit-specific links to neurodegenerative disease.

Category Proteasome
complex TYPE

Subclassification Subunit Gene Function and
substrates

Neurodegenerative
disease associationsa

Rpn5 PSMD12 lid PD

Rpn6 PSMD11 lid AD, PD

Rpn7 PSMD6 lid

Rpn8 PSMD7 lid PD

Rpn9 PSMD13 lid

Rpn10 PSMD4 Ub receptor; base

Rpn11 PSMD14 Deubiquitinase (DUB); lid

Rpn12 PSMD8 lid PD

Rpn13 ADRM1 Ub receptor, DUB activation;
base

Rpn15 SHFM1 lid

PA28 (11S) PA28α PSME1 Gate opening; Chaperone-like
function; increased

degradation of short peptides

HDb

PA28β PSME2 Gate opening; Chaperone-like
function; increased

degradation of short peptides

HDb

PA28γ PSME3 Gate opening; Allosteric
activator; increases trypsin-like

activity; targets nuclear
proteins

HDb

PA200 PA200 PSME4 Gate opening; increases
caspase-like activity

AD, HDb

Proteasome
regulators/
interactorsc

N/A Active site regulator PI31 PSMF1 Proteasome activity regulator;
proteasome transport adaptor;
interacts with dynein light
chain proteins & F-box

proteins

ADb

Substrate targeting
adaptor

Midnolin MIDN Substrate recognition and
transport to proteasome;

immediate early gene proteins
and transcription factors

PDb,e

Catalytic core regulatorsd DJ-1 PARK7 Allosteric Inhibitor; Nrf2
pathway activator

PDb

NQO1 NQO1 Allosteric inhibitor;
oxidoreductase; quinone

detoxification

ADb

Other adaptorsc ECM29/
ECPAS

ECPAS 20S-19S uncoupling; adaptor
and scaffold

aModified from a 2021 paper by Fernández-Cruz and Reynaud (2021).
bAdditional sources: β1i β2i β5i (Mishto et al., 2006; Aso et al., 2012; Orre et al., 2013; Orre et al., 2014; Yeo et al., 2019; Park et al., 2024); PA28γ (Seo et al., 2007; Jeon et al., 2016; Cascio, 2021);

PA28αβ (Geijtenbeek et al., 2022; Kriachkov et al., 2023); PA200 (Dange et al., 2011; Aladdin et al., 2020); PI31 (Sherva et al., 2011); midnolin (Obara et al., 2017; Obara and Ishii, 2018); DJ-1

(Moscovitz et al., 2015); NQO1 (Bian et al., 2008; Tsvetkov et al., 2011).
cThis table includes examples of proteasome interactors and regulators but is not an exhaustive list. Many other interactors exist in cells.
dCatalytic Core Regulators (CCRs) represent a family of proteasome interactors. Listed here are two CCRs, shown to have relevance in neurodegenerative disease.
eControversial result; evidence against (Billingsley et al., 2020).

The table outlines the nomenclature for mammalian proteasome complexes, grouping subtypes by color. Note the specific gene names for several of the β-subunits do not align intuitively with

the protein name. Also included are several subunit-specific roles within the proteasome complex. The final column is modified from a 2021 paper by Fernández-Cruz and Reynaud (2021),

referencing individual subunits linked specifically to the neurodegenerative diseases discussed in this review. PA200, PA28α, PA28β, PA28γ, midnolin, PI31, DJ-1, and NQO1 are referenced

from different sources, and additional sources are added for immunoproteasome subunits β1i, β2i, and β5i. PIP, proteasome interacting protein; CCR, catalytic core regulator. DUB,

deubiquitinating enzyme.
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interactors include PI31 (also called PSMF1), an adaptor protein for
proteasome transport in neurons (Liu et al., 2019); midnolin, a
regulator of immediate early gene protein and transcription factor
degradation (Gu et al., 2023); ECPAS (“Ecm29 proteasome adaptor
and scaffold”; also called PSMG1, or Ecm29), a modulator of 26S
assembly and disassembly participating in stress responses (Wang
et al., 2017; Lee et al., 2020), and catalytic core regulators (CCRs),
which allosterically modulate uncapped 20S activity (Deshmukh
et al., 2023). These will be explored in greater detail in the following
subsections. See Figure 1 and Table 1.

PA28

PA28 is a heptameric, ring-shaped, and ATP- and ubiquitin-
independent 20S PA that promotes rapid degradation of small,
unstructured protein fragments, short peptides, and oxidized or
misfolded proteins in the nucleus and cytoplasm by binding to the
ends of the 20S core and inducing conformational changes that
widen the 20S pore (Ma et al., 1992; Knowlton et al., 1997; Zhang
et al., 1999; Thomas and Smith, 2022). Importantly, there are
multiple isoforms of PA28, including PA28α (also called REGα
and PSME1), PA28β (also called REGβ and PSME2), and PA28γ
(also called REGγ and PSME3), which have distinct sets of functions
and substrates (Knowlton et al., 1997; Thomas and Smith, 2022).
PA28α and PA28β are mainly cytoplasmic and typically combine to
form heteroheptamers, but PA28α is expressed at higher levels in the
brain than PA28β and can form a homoheptamer (Knowlton et al.,
1997; Zhang et al., 1999; Noda et al., 2000). PA28γ also forms
homoheptamers and is primarily nuclear, ubiquitously expressed in
all organ systems, with particularly high expression in the brain
(Noda et al., 2000; Cascio, 2021; Frayssinhes et al., 2021). PA28γ is
an interferon-γ- (IFNγ) and ubiquitin-independent PA which serves
as a regulator of DNA replication, DNA repair, transcription, cell
cycle control, and p53 tumor suppressor stability (Zhang and
Zhang, 2008).

Because it is not an ATPase, PA28 cannot unfold proteins and
has a preference for disordered or partially unfolded proteins, which
can enter the 20S catalytic chamber without additional unfolding
(Frayssinhes et al., 2021). It can interact with both the typical 20S
core (constitutive 20S) and the immunoproteasome (a modified,
inducible complex described in the “Immunoproteasome” section of
this review), inducing different allosteric effects on each (Lesne et al.,
2020). Indeed, PA28 becomes increasingly important in aging and
neurodegenerative disease, when the UPS is compromised and
damaged proteins accumulate (Seo et al., 2007), through its
regulation of 20S activity, its ability to activate 26S as a hybrid
proteasome (19S-20S-11S/PA28) (Tanahashi et al., 2000), and as a
standalone chaperone-like molecule and chaperone regulator
(Minami et al., 2000; Adelöf et al., 2018; Adelöf et al., 2021).
PA28 expression is also upregulated under conditions of high
protein damage including oxidative stress, indicating an
important role in maintaining proteostasis by mitigating
oxidative damage, and it often accompanies upregulation of the
immunoproteasome (Pickering et al., 2010; Pickering et al., 2012).

While best characterized in other cell types, studies in neurons
have shown that PA28 promotes ubiquitin-independent
proteasomal degradation of oxidized and misfolded proteins and

protects against oxidative stress (Li et al., 2011; Pickering and
Davies, 2012), increasing evidence for its role as a 20S regulator
in oxidatively-burdened neurodegenerative disease states. In
addition, PA28⍺β overexpression showed sex-specific benefits for
female mice in preventing age-related protein aggregation,
hypothesized by the authors to be a novel, proteasome-
independent, chaperone-like function (Adelöf et al., 2018).
Moreover, PA28⍺β, plays major roles in the immune system
through regulation of the immunoproteasome, described in the
“Immunoproteasome” section below. In neurons and microglia,
exposure to cytokine IFNγ or other pro-inflammatory factors
during an immune or inflammatory response increases PA28αβ
expression and its association with the immunoproteasome (Rivett
et al., 2001; Pickering et al., 2010; Pintado et al., 2012). Because
neuroinflammation is increasingly recognized as a contributor to the
development of neurodegenerative diseases, dysregulation of
PA28αβ - and therefore the immunoproteasome - can contribute
to neuroinflammatory processes through neurons and glia (Leng
and Edison, 2021; Malek et al., 2024). Notably, studies have also
reported altered PA28 expression in Alzheimer’s disease brains
(Krzyzanowska et al., 2015) and PA28γ may play a complex role
in the etiology of HD, which will be described in the “Huntington’s
Disease” section below (Cascio, 2021). Expansion on the significance
of PA28 in specific neurodegenerative disease will be included in
sections below.

PA200

PA200 is a large, monomeric, and ATP- and ubiquitin-
independent 20S proteasome activator found predominantly in
the nucleus which associates with the 20S core and regulates
DNA repair mechanisms, transcription, and the cell cycle
through targeted, acetylation-dependent degradation of histones
and other protein targets (Ustrell et al., 2002). Its structure has
two apertures for substrate entry and forms a dome-like cap on the
20S to open it (Guan et al., 2020). Some evidence suggests
PA200 alters the relative activity of the 20S β catalytic subunits,
increasing β1 (Ustrell et al., 2002) or β2 (Toste Rêgo and Da Fonseca,
2019) activity compared to the uncapped 20S.

Because PA200 does not have ATPase activity, it primarily acts on
peptides and disordered and partially unfolded proteins, although there
is a possibility it has some intrinsic unfolding ability through
recruitment of other factors or conformational changes of substrates.
In addition to possible regulatory roles in proteasome stability or
maturation (VerPlank et al., 2024), PA200 is upregulated in response
to DNA damage and induces opening of the α-ring substrate entry
channel of the 20S, allowing for rapid clearance of oxidized, aggregated,
and misfolded substrates (Ortega et al., 2005). These substrates include
tau (Dange et al., 2011) and N-terminal huntingtin protein fragments
(Aladdin et al., 2020), the proteins responsible for the pathogenic
aggregates in AD and HD, respectively. Because research on
PA200 function in the nervous system is still limited, its role in
neurodegenerative diseases, its regulation and interactions with other
PAs, and its cell type-specific characteristics in neurons remain mostly
unknown. In fact, depending on the disease state, PA200may ameliorate
or worsen neurodegeneration in in vivo disease models (Aladdin et al.,
2020; VerPlank et al., 2024).
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Additional cap conformations and hybrid
proteasomes

Further research is being performed to investigate the existence
and roles of additional alternative caps, including hybrid
proteasomes with different caps (e.g., one 19S and one alternative
cap associated with a 20S core) (Hendil et al., 1998; Tanahashi et al.,
2000; Cascio et al., 2002). While initially thought to be absent from
the brain (Noda et al., 2000), along with PA28β, more recent data
have demonstrated the presence of hybrid proteasomes and PA28β
(Adelöf et al., 2018; Kriachkov et al., 2023). The significance of
hybrid proteasomes in neurons is not yet well understood, but they
may provide finely calibrated regulation of substrates or alter
proteasome catalytic activity to generate a different set of
peptides, as has been seen in the immune system to modify
peptide products for antigen presentation (Hendil et al., 1998;
Cascio et al., 2002). Hybrid proteasomes have also been proposed
to use the 19S for protein unfolding and entry into the 20S chamber
and PA28 for the rapid release of digestion products (Pratt and
Rechsteiner, 2008; Kriachkov et al., 2023). It is unknown if PI31 or
other adaptors are involved in hybrid proteasomes.

In addition, there may be tissue-specific, ubiquitin-independent
alternative caps, as has been noted for ubiquitin-dependent PAs
(Goldberg et al., 2021), or transient caps that do not assemble into
stable structures like PA28 or PA200 but which interact briefly with
the 20S core to modulate its activity or substrate channel access
(Clemen et al., 2015; Esaki et al., 2018; Goldberg et al., 2021). These
phenomena may be especially likely in neurons, which have
specialized proteasomes, unique activators, and additional
proteasomal physiological functions (Bingol and Schuman, 2005;
Ramachandran and Margolis, 2017; Goldberg et al., 2021). An
example of this is the characterization of neurodegenerative
disease associated protein valosin-containing protein (also called
Cdc48, TER94, and p97), a HbYX motif-containing PA which plays
a role in ubiquitin-dependent degradation (Johnson et al., 2010;
Esaki et al., 2018). In addition, some evidence suggests that 19S caps
may not require ubiquitin for degradation of some substrates
(Kisselev et al., 1999; Winkler et al., 2013; Tsvetkov et al., 2020).
The full range of endogenous proteasome interactors and alternative
caps are still being explored, and more molecules are likely
to emerge.

Proteasome regulators

In addition to PAs, other proteasome adaptor and interactor
proteins can regulate proteasome assembly and disassembly, link the
proteasome to signaling pathways, regulate substrate specificity, and
direct intracellular trafficking of proteasomes. The functions of these
adaptors vary by cellular conditions, cell type, and activation of
intersecting regulatory pathways (Arkinson et al., 2024). See Figure 1
and Table 1.

PI31

While not a PA, PI31 has been proposed as an endogenous 20S
proteasome regulator and is targeted to the 20S via a HbYXmotif. In

vitro, it interacts with both 20S and 26S constitutive proteasomes
and has been found to inhibit the 20S and to prevent binding of the
19S cap and PA28 (McCutchen-Maloney et al., 2000; Li et al., 2014;
Liu et al., 2019; Wang et al., 2024). In contrast to the constitutive 20S
and 26S, immunoproteasomes are capable of cleaving the
PI31 C-terminus, preventing its binding and its inhibition of the
core catalytic subunits (Wang et al., 2024). Separately, another study
suggests PI31 affects immunoproteasome assembly (Zaiss et al.,
2002). Although much of the research regarding PI31 has been
performed in vitro (Li et al., 2014; Wang et al., 2024), in vivo
experiments have contributed to a complex picture of PI31-
mediated proteasome regulation. In a more physiological context,
PI31 may in fact activate proteasome degradation through the 26S,
and in addition, both knockout and overexpression of PI31 are
lethal, indicating that cells are sensitive to PI31 amount (Bader et al.,
2011). In vivo experiments in mouse motor neurons have
demonstrated that PI31 acts as a proteasome regulator and
adaptor protein that connects the proteasome to transport
machinery for translocation down neuronal projections including
axons, an essential function for maintaining a healthy proteasome
supply to diverse cellular locations for their various functions (Bader
et al., 2011; Liu et al., 2019). Loss of PI31 contributes to
neurodegeneration, as its regulatory activity is required for
normal proteasome function, maintenance of synapses, and
neuronal survival (Bader et al., 2011; Liu et al., 2019; Minis et al.,
2019). Genome-wide association studies have linked PI31 to AD risk
(Sherva et al., 2011), and a direct antagonist of PI31, called valosin-
containing protein (VCP), causes a familial type of the
neurodegenerative disorder amyotrophic lateral sclerosis (Johnson
et al., 2010; Clemen et al., 2015).

Catalytic core regulators (CCRs)

As the importance of non-UPS proteasome activity is becoming
more apparent, it is increasingly critical to study regulators of these
mechanisms. A newly discovered family of multi-functional
regulatory proteins that directly interact with the 20S core to
closely modulate its cap-independent degradation of IDPs and
damaged, partially-unfolded proteins are the Catalytic Core
Regulators (CCRs) (Olshina et al., 2020; Deshmukh et al., 2023).
These CCRs are allosteric regulators with shared structural features
including a common N-terminal sequence motif and a Rossman
fold, providing further evidence that HbYX motifs represent only a
portion of the structural features characterizing proteasome
regulators. CCRs bind to the external surface of the 20S β7
(PSMB4) subunit and induce a conformational change that
inhibits all three catalytic mechanisms of degradation without
plugging the substrate entry gate and can protect substrates from
degradation, including ⍺-syn, which forms toxic oligomers in PD
and other synucleinopathies (Deshmukh et al., 2023). CCRs are
critical for coordinating the oxidative stress response through
interaction with transcription factor Nrf2 and activation of a
range of response factors including upregulation of 20S subunits
(Olshina et al., 2020; Deshmukh et al., 2023). The identification of
the structural features underlying allosteric regulation of
degradation by the 20S also provides insight relevant to the
development of selective, synthesized inhibitors of 20S
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proteasomes and possible therapeutic options for neurodegenerative
diseases like PD, which is directly affected by a CCR called DJ-1 and
is discussed later in this review (Moscovitz et al., 2015).

Midnolin

Midnolin is an inducible, chaperone-like protein that associates
with the 26S proteasome to promote selective, ubiquitin-
independent degradation of transcription factors and other
nuclear proteins (Gu et al., 2023). Recent studies indicate its
targeting mechanism uses an internally symmetrical “catch”
domain that induces a conformational change in unstructured
regions of protein substrates to capture them for destruction by
the proteasome. Midnolin associates with the proteasome using a
C-terminal ⍺ helix, which does not contain a HbYX motif or YΦ
motif, through an unknown mechanism, and it facilitates
degradation of targets bound to the catch domain using an
N-terminal ubiquitin-like domain. While the reasons for its
preference for the 26S over the 20S are not well understood,
midnolin co-immunoprecipitates with both 19S and 20S subunits
(Gu et al., 2023).

Substrates of midnolin include transcriptional regulators and
immediate early gene products, which are rapidly induced upon
stimulation by a variety of stimuli and regulate transcription of
longer-term sets of proteins in response to a particular stimulus
(Chiba et al., 2024; Gu et al., 2023). Notably, midnolin and some of
its substrates have been identified as PD risk genes, with deletion of
midnolin resulting in loss of parkin expression, increased expression
of ⍺-syn, and induction of PD phenotypes including loss of neurite
outgrowth (Obara et al., 2017; Obara and Ishii, 2018). Obara et al.
used microarray analysis to show that 10.5% of sporadic PD patients
and 0% of healthy controls lack one copy of midnolin, positing a role
for midnolin loss in development of PD (Obara et al., 2017). These
data were supported by another large cohort study by the same
research team in 2019, which showed a significant odds ratio of
4.35 with midnolin copy number loss for development of PD, with
the odds ratio increasing to 22.3 when copy number loss is defined
by large deletions (Obara et al., 2019). However, using whole
genome sequencing and analysis of a public database of
structural variants, Billingsley et al. and the International
Parkinson’s Genomics Consortium did not identify PD-associated
midnolin deletions and disputed the determination of midnolin as a
PD risk gene, indicating that further study with orthogonal methods
is required to investigate midnolin association with PD and resolve
controversy (Billingsley et al., 2020).

Additional regulators/adaptors

Beyond the above regulators, there are other critical 20S
interactors and adaptors that affect 20S activity and assembly
briefly described here. Chaperones PAC1-PAC4 and POMP are
crucial for the proper formation and maturation of the proteasome
from its constituent monomeric subunits (Hirano et al., 2005;
Hirano et al., 2006; Fricke et al., 2007; Le Tallec et al., 2007), and
adaptors including ECPAS contribute to 26S assembly and
disassembly in vivo (Wang et al., 2017; Choi et al., 2023). The

ECPAS-20S interaction regulates the 20S:26S ratio and modulates
the balance between ubiquitin-dependent and -independent
mechanisms for adaptation to conditions like glucose deprivation
or oxidative stress, in which it facilitates disassembly of 26S to 20S to
support degradation of oxidized and misfolded substrates (Leggett
et al., 2002; Wang et al., 2017; Choi et al., 2023). Interactions among
the proteasome, ECPAS, and ankyrin G also regulate critical
remodeling of the axon initial segment of neurons, found to have
significant structural abnormalities in AD-affected neurons (Lee
et al., 2020).

In addition to proteins directly bound to the 20S, there are also
substrate-bound proteins critical to its regulation, deemed “nanny”
proteins, that protect newly synthesized intrinsically disordered 20S
substrates from degradation and allow new intrinsically disordered
proteins (IDPs) to mature (Tsvetkov et al., 2009). Potential nanny
proteins suggested by Tsvetkov et al., have been linked to a variety of
nervous system disorders (Enokido et al., 2010; Kamińska et al.,
2024; Yuhan et al., 2024). Conversely, chaperones like Hsp70 and
Hsp110, dysfunction of which has been linked to neurodegenerative
diseases, facilitate the targeting of substrates to the proteasome for
ubiquitin-dependent and ubiquitin-independent degradation
(Eroglu et al., 2010; Turturici et al., 2011; Hjerpe et al., 2016;
Kandasamy and Andréasson, 2018; Taguchi et al., 2019;
Vinokurov et al., 2024). Hsp70 has further been demonstrated to
interact with ubiquilin2, a shuttling factor that brings substrates to
the proteasome and plays a role in neurodegeneration (Wang et al.,
2006; Zhang et al., 2014; Hjerpe et al., 2016; Ma et al., 2023). While
members of the ubiquilin family typically require ubiquitin for
trafficking proteasome degradative targets (Zhang et al., 2014;
Itakura et al., 2016), Makaros et al. demonstrated that ubiquilins
may also mediate ubiquitin-independent proteasome substrate
identification (Makaros et al., 2023).

There are likely many additional yet-uncharacterized proteins
that regulate 20S proteasome activity in neurons. In addition, post-
translational modifications like phosphorylation, oxidation, or
acetylation can also alter proteasome activity and 20S interaction
with regulators in various cell types, especially as cells age (Bulteau
et al., 2000; Bulteau et al., 2001; Ishii et al., 2005; Kors et al., 2019).

Specialized proteasomes

See Figure 1 and Table 1.

Immunoproteasome

When stimulated by interferon-γ (IFNγ) or oxidative stress,
immune cells and some other cell types (e.g., microglia in the
nervous system (Orre et al., 2013; Malek et al., 2024)) can
produce a modified proteasome, the immunoproteasome, which
can act through ubiquitin independent or ubiquitin dependent
mechanisms and replaces the three catalytic β-subunits (β1, β2,
β5) in the constitutive proteasome core with three unique catalytic
subunits (β1i, β2i, β5i, also called PSMB9/LMP2, PSMB10/MECL-1,
PSMB8/LMP7) (Noda et al., 2000; Basler et al., 2013; Freudenburg
et al., 2013; Rock et al., 2014; Johnston-Carey et al., 2015; Ettari et al.,
2017; Winter et al., 2017; Abi Habib et al., 2022). This subunit
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replacement allows for the generation of longer peptides which can
be further processed and presented as antigens that allow cells to
determine self vs. non-self, an important component of immune
responses, although an increasing number of roles for the
immunoproteasome are being recognized (Pickering et al., 2010;
Abi Habib et al., 2020; Tundo et al., 2023). It appears to be
particularly important for the clearance of oxidized and
misfolded proteins in response to oxidative stress (Pickering
et al., 2010; Pickering and Davies, 2012). Immunoproteasomes
are upregulated in reactive glia in AD mouse models (Orre et al.,
2013; Orre et al., 2014), which may be critical for elimination of
misfolded or damaged proteins that could spread between cells and
cause disease progression. Studies using immunoproteasome-
specific inhibitors demonstrate improvements in cognitive decline
in ADmice, showing that the immunoproteasomemay contribute to
pathology in association with neurodegeneration (Yeo et al., 2019;
Park et al., 2024). The ability to generate highly selective inhibitors
for modified immunoproteasome subunits provides a pathway to
evaluate the effects of these complexes without affecting constitutive
proteasome activity, a therapy that could have benefits in
neurodegenerative diseases impacted by neuroinflammation
(Johnston-Carey et al., 2015; Malek et al., 2024).

While the expression of immunoproteasome in the young and
healthy brain is very low or negligible, and for a long time it was
believed that the immunoproteasome was not expressed in the brain
at all (Noda et al., 2000), immunoproteasome has been detected in
both neurons and glia in aged healthy brains and brains with
neurodegeneration (Diaz-Hernandez et al., 2003; Mishto et al.,
2006; Aso et al., 2012; Ugras et al., 2018), suggesting that the
induction of immunoproteasome in the brain may be a result of
aging, neurodegeneration, or neuroinflammation.
Neuroinflammation can exacerbate neurodegeneration but
requires additional impaired proteasomal degradation to induce
disease phenotypes (Pintado et al., 2012; Malek et al., 2024). Indeed,
proteasome research in AD brains has demonstrated a notable
induction of immunoproteasome subunits and changes in
proteasome activity and composition, although the specific
changes observed have varied substantially across studies (e.g., a
decrease of only trypsin-like activity vs decreases in both
chymotrypsin-like and caspase-like activity; a decrease in β1
expression and a proportional increase in β1i/LMP2 expression
vs little change in expression levels) (Mishto et al., 2006; Aso
et al., 2012; Keller et al., 2000a; Davidson and Pickering, 2023).
In contrast to findings showing decreased activity, a recent study
using advanced activity-based probes to detect global proteasome
activity in human AD brain tissue detected elevated activity (Türker
et al., 2023).

An induction of immunoproteasome has also been detected in
HD brains and PD brains (Diaz-Hernandez et al., 2003; Ugras et al.,
2018). Concurrent with an increase in LMP2 and LMP7 expression,
an increase in trypsin- and chymotrypsin-like activity was observed
in HD brains in the areas most affected (Diaz-Hernandez et al.,
2003), and in PD brains, an increase in expression of
immunoproteasome subunit LMP7 (β5i) was observed (Ugras
et al., 2018). A recent study in mice found that knocking out
immunoproteasome in brain can also cause seizures, tau
hyperphosphorylation, increased polyubiquitination, and
neurodegeneration, and the authors suggest that

immunoproteasome has a role in healthy brain aging (Leister
et al., 2024). In-depth descriptions of the immunoproteasome in
neurodegeneration can be found in other recent reviews (Zerfas
et al., 2020; Tundo et al., 2023).

Neuronal membrane proteasome

A specialized proteasome found in the plasma membrane of
neurons, called the neuronal membrane proteasome (NMP), is
another form of 20S proteasome that functions through
ubiquitin-independent mechanisms (Ramachandran and
Margolis, 2017). The NMP degrades nascent polypeptide chains
from ribosomes closely associated with the membrane to form its
signaling molecules (Ramachandran et al., 2018), but it is not yet
known how substrate selection or recognition motifs to the NMP
may differ from other 20S proteasomes in neurons. Unlike
proteasomes whose primary role is in protein turnover, the NMP
degrades intracellular proteins into peptides expelled into the
extracellular space, creating small, specific peptide signaling
molecules that serve additional functions in neurons that are
important in synaptic regulation, including NMDA receptor
activity modulation, and in pain sensation modulation
(Ramachandran and Margolis, 2017; Ramachandran et al., 2018;
Türker et al., 2024; Villalón Landeros et al., 2024). Because the NMP
regulates neuronal circuits and is essential in learning-induced
behavioral plasticity (He et al., 2023), it is possible that
dysfunction of the 20S proteasome induced by aging and
proteotoxic aggregates in neurodegeneration may also disrupt
NMP function, further contributing to declining cognition in
neurodegenerative diseases. Supporting this hypothesis, a preprint
in bioRxiv by Paradise et al. showed an association between NMP
and ApoE, a critical AD risk gene (Paradise et al., 2023). In their
experiments, NMP co-purified with ApoE, suggesting a physical
interaction, and inhibition of the NMP was sufficient to cause
aggregation of newly-synthesized tau. Future studies will reveal
the full details of this novel proteasome complex and its function
in brain health and disease.

Extracellular proteasome

While proteasomes are typically thought of as intracellular,
increasing evidence has shown 20S proteasomes in extracellular
vesicles (EVs) and free-floating in a variety of body fluids, including
the interstitial fluid and the cerebrospinal fluid of the brain (Mueller
et al., 2012; Ben-Nissan et al., 2022). It has been reported that
extracellular proteasomes rarely contain 19S or PA200 PAs
(Kulichkova et al., 2017; Tsimokha et al., 2020), although this is
debated and may be body fluid/tissue specific (Ben-Nissan et al.,
2022). However, they are often free floating as 20S or accompanied
by PA28αβ or PI31, and they have significant levels of post-
translational modifications, including several unique from other
proteasome complexes (Tsimokha et al., 2020; Ben-Nissan et al.,
2022), which may affect their function or localization to the
extracellular space. The mechanisms of extracellular release and
the source of these proteasomes are not yet fully understood, but
data have shown release of 20S core particles and PA28 molecules by

Frontiers in Cell and Developmental Biology frontiersin.org10

Church and Margolis 10.3389/fcell.2024.1531797

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1531797


FIGURE 2
Proteasome Complexes in Health and Neurodegenerative Disease: The illustration shows healthy neurons and neurons affected by
neurodegenerative disease. Note, the neurons undergoing neurodegeneration show fragmentation to illustrate decreased survival, which contributes to
the decline in memory, cognition, and motor control seen in age-associated neurodegenerative illnesses such as Alzheimer’s Disease, Huntington’s
Disease, and Parkinson’s Disease. At themolecular level, this inevitable cell death occurs in part due to proteasome dysregulation and is triggered by
oxidative stress and toxic forms of aggregate-forming proteins such as α-synuclein, tau, amyloid-β, and huntingtin. In healthy neurons, there are a variety
of proteasome complexes that exist under physiological conditions. In the nucleus, proteasomes with different proteasome activators (PAs; PA200,
PA28γ, etc.) or uncapped 20S core particles (20S) have been demonstrated to regulate gene transcription. Cytosolic 20S proteasomes can also be
activator-associated (e.g., 26S, PA28αβ) or uncapped. 26S proteasomes can mediate degradation of ubiquitinated proteins and produce small peptide
fragments and free ubiquitin (Ub). In the extracellular space, there can be free as well as PA-capped 20S proteasomes, and in neurons, the 20S can be
localized to the plasmamembrane, where it serves a signaling function. In neurodegenerative diseases, proteasomes shift from predominantly ubiquitin-
dependent degradation through the 26S to ubiquitin-independent degradation through alternatively-capped or uncapped 20S complexes. In addition,
expression of immunoproteasome subunits is induced, particularly in the setting of chronic neuroinflammation. Proteasome complexes are regulated by
adaptors like Ecm29, which mediates assembly and disassembly of the 26S proteasome from the 19S and 20S); PI31, a regulatory molecule that
modulates proteasome activity from inside the 20S core; and catalytic core regulators (CCRs), which allosterically regulate the 20S to protect vital

(Continued )
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immune cells in microparticles subject to later dissolution
(Bochmann et al., 2014; Bonhoure et al., 2022). It is possible that
neurons or glia could release proteasomes as part of normal
physiology or as part of a stress response (Ben-Nissan et al.,
2022), or that cell damage or cell death causes intracellular
proteasomes to leak into the extracellular space. As extracellular
proteasomes have been shown to participate in a variety of cellular
functions across cell types and disease states (Ben-Nissan et al.,
2022), they could serve important roles in regulating protein
clearance, especially of IDPs and damaged or oxidized proteins
(Bonhoure et al., 2022), or in reducing neuroinflammation
(Dianzani et al., 2019) by degrading pro-inflammatory cytokines
in the extracellular milieu in the nervous system. Indeed, Dianzani
et al. demonstrated that extracellular proteasomes can generate
functional peptides and play a role in regulating cell migration
and inflammation through cleavage of extracellular osteopontin, a
cytokine implicated in diseases like multiple sclerosis (Dianzani
et al., 2017; Dianzani et al., 2019).

Notably, early data has suggested differential regulation and
expression of extracellular proteasomes and proteasome regulators
found in EVs in neurodegenerative diseases including PD, raising
the possibility of using proteasomal changes in EVs as a biomarker
(Wang et al., 2019; Thompson et al., 2020). These results are
encouraging for development of screening tools for
neurogenerative disease and require more follow-up study.
Critical questions about their functions remain, from regulation
of their release to their role in healthy versus diseased brains
(Dwivedi et al., 2021). While still in early stages, study of
extracellular proteasomes in neurodegeneration has significant
promise for understanding disease etiology and identifying novel
therapies, including possibly for degradation of extracellular
aggregates like amyloid-β plaques. The development of
standardized, reliable tools for measuring their activity in the
brain or spinal cord are needed. This recent review by Ben-
Nissan et al. (2022) discusses the current understanding of the
extracellular proteasome in depth, as well as experimental strategies
to study this increasingly-recognized molecule.

Aging, oxidative stress, and protein
aggregation

See Figure 2 and Table 1.

Aging

As neurons age, damage to the proteome increases and overall
neuronal proteasome activity decreases (Davidson and Pickering,
2023). Both the UPS and ubiquitin-independent proteasome

function decline, further contributing to the aggregation of
neurodegeneration-associated proteins such as tau, amyloid-β
(Aβ), and α-syn (Bulteau et al., 2000; Keller et al., 2000b; Ding
et al., 2006; Kelmer Sacramento et al., 2020; Cuanalo-Contreras
et al., 2023; Davidson and Pickering, 2023). In addition, while glia
normally secrete chaperones that assist neurons in maintaining
proper protein folding, age-related 20S dysfunction could disrupt
this process and further contribute to a decline in neuronal
proteostasis (Chaplot et al., 2020; Leng and Edison, 2021).

With age, there is a shift from 26S to 20S proteasome activity
concurrent with the decline in proteasome function, causing a
relative increase in 20S activity (Keller et al., 2000b; Ding et al.,
2006; Tonoki et al., 2009; Choi et al., 2023; Davidson and Pickering,
2023; Türker et al., 2023). Factors that contribute to this change
include: oxidative stress, calpain activation, impaired assembly and
recycling, and increased demand for IDP degradation (Huang et al.,
2013; Coskuner-Weber et al., 2022; Davidson and Pickering, 2023).
As aging is associated with increased oxidative stress and a decline in
mitochondrial function, oxidation and damage to proteasome
subunits can occur, especially subunits of the 19S cap
(Reinheckel et al., 1998; Huang et al., 2013). Because 26S activity,
assembly, and recycling are ATP-dependent, dysfunction of
mitochondria also limits energy availability, further impairing
26S function and turnover. Furthermore, as oxidative damage
accumulates, NADH, which stabilizes the 26S, oxidizes to its
NAD+ form, compounding 19S dissociation from the 20S
(Tsvetkov et al., 2014). As 26S activity declines, the 20S, which is
more resilient to oxidative damage (Reinheckel et al., 1998),
becomes more active in neurons by comparison, and its relative
levels increase as association with the 19S cap decreases (Huang
et al., 2013). Calpains, which are calcium-dependent proteases
activated in aging and neurodegenerative diseases, cleave and
inactive Rpn10, a 19S subunit, further decreasing 26S activity
(Huang et al., 2013). Because aggregation-prone IDPs and
damaged proteins with intrinsically disordered regions (IDRs) are
preferentially degraded by the 20S rather than 26S, this shift to 20S
activity may help to counteract the buildup of toxic protein
aggregates over time in aging neurons (Opoku-Nsiah and
Gestwicki, 2018; Davidson and Pickering, 2023).

Oxidative stress

In aging and neurodegenerative disease, a snowball effect of
increasing oxidative stress, production of damaged and oxidized
proteins, and inhibited proteasome activity can contribute to a
progressively worsening cycle leading to neuronal dysfunction
and cytotoxicity (Davies, 2001; Raynes et al., 2016). Sulfhydryl
groups of the 19S PA are especially vulnerable to oxidation,
causing 19S caps to lose their capacity to facilitate proteolysis

FIGURE 2 (Continued)

intrinsically-disordered proteins from degradation and serve critical roles in the oxidative stress response. Proteasomes are complex and
heterogeneousmolecules, and targeting different forms of the proteasomemay prove useful for the development of preventative and disease-modifying
therapies in neurodegeneration, an active area of research. Created in BioRender. Church, T. (2025) https://BioRender.com/k79b247.
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and resulting in 26S disassembly by Ecm29/ECPAS as an adaptive
response to oxidative stress (Shringarpure et al., 2001; Choi et al.,
2023; Arkinson et al., 2024). 19S caps are sequestered by
Hsp70 during the oxidative insult (Grune et al., 2011), and 20S
subunits, immunoproteasome, and PA28αβ are upregulated
(Pickering et al., 2010; Moscovitz et al., 2015; Davidson and
Pickering, 2023). Because of the shift to favor 20S-mediated
protein degradation during oxidative stress, 20S proteasomes are
responsible for the majority of proteasome-mediated degradation in
these conditions and do not require ubiquitin (Shringarpure et al.,
2001; Ding et al., 2006; Raynes et al., 2016). Additionally, while
transient mild oxidative stress increases ubiquitin activating/
conjugating activity, this activity decreases during sustained
oxidative stress (Shang and Taylor, 2011). Because the 20S
proteasome does not require a ubiquitin tag to identify
substrates, its degradation of substrates must be regulated to
destroy harmful proteins while protecting IDPs and IDRs
important for the oxidative stress response and normal cellular
functions like cell cycle regulators, tumor suppressors, and signaling
proteins. There are diverse posttranslational modifications that can
regulate the relative activities of different proteasome species,
including under oxidative stress conditions, but additional robust
protective pathways are required. Several of these regulatory
mechanisms (Bi et al., 2021), including catalytic core regulators
(CCRs; see “Catalytic Core Regulators” section above) and PI31-
mediated activity modulation, have only recently been uncovered,
and investigation continues (Liu et al., 2019; Minis et al., 2019;
Olshina et al., 2020; Deshmukh et al., 2023).

A necessary antioxidant pathway that emphasizes the role of
ubiquitin-independent proteasome degradation involves the 20S
proteasome, CCRs DJ-1 and NQO1, and transcription factor
Nrf2 (nuclear factor E2-related factor 2) (Pickering and Davies,
2012). DJ-1 (also called PARK7) is a critical regulatory protein that
stabilizes Nrf2 under oxidative stress conditions. Nrf2 translocates
to the nucleus, where it upregulates a variety of proteins important
in antioxidant defense, including subunits of the 20S proteasome
and PA28⍺β, but not the immunoproteasome (which is induced by a
different mechanism) or 19S subunit (Clements et al., 2006;
Pickering and Davies, 2012). Nrf2 also induces the expression of
NQO1 (NAD(P)H quinone oxidoreductase 1), an enzyme which
prevents reactive oxygen species formation and acts as a sensor for
cellular redox state, avoiding degradation during oxidative stress but
being rapidly degraded as cellular conditions normalize (Moscovitz
et al., 2012; Yuhan et al., 2024). In addition, both DJ-1 and
NQO1 are CCRs and act allosterically to inhibit the 20S, thus
rescuing partially unfolded proteins from degradation, an
important protective mechanism as the 20S proteasome becomes
the predominant proteasomal pathway in oxidative stress (Olshina
et al., 2020; Deshmukh et al., 2023). This allows for a rapid, fine-
tuned response in which damaged proteins are degraded but critical
proteins are preserved as the redox-sensing mechanism facilitates
fast termination of the oxidative stress response. Induction of this
Nrf2 pathway in Drosophila increases proteasome subunit
expression and decreases age-associated phenotypes (Tsakiri
et al., 2013), while in human fibroblasts, this activation increases
proteasome activity and delays cellular senescence (Kapeta et al.,
2010). As cellular redox state normalizes to basal conditions,
Nrf2 can be degraded by the 26S proteasome, terminating the

oxidative stress response. This pathway is important in aging and
neurodegenerative disease, and mutations in DJ-1 and NQO1 are
associated with increased risk of developing PD and AD, respectively
(Bian et al., 2008; Tsvetkov et al., 2011; Moscovitz et al., 2015).

Protein aggregate formation in
neurodegenerative diseases

Protein aggregates, a hallmark of neurodegenerative diseases,
form through a complex interplay of factors that disrupt proteostasis
including aging, chronic oxidative stress, mutations, breakdown of
degradative pathways and chaperones, and errors during protein
synthesis. Aggregation-prone proteins undergo structural changes
in response to stress that increase disorder, form incorrect
intramolecular bonds, and expose hydrophobic residues, making
them targets for ubiquitin-independent degradation by the 20S
proteasome (Kisselev et al., 2002; Saez and Vilchez, 2014; Nago
et al., 2024). As aggregates form, they may sequester and deplete
functional proteins, trigger inflammatory responses, and disrupt
cellular membranes and signaling pathways, leading to a toxic
cascade of neurodegenerative damage, cell death, and disease
progression (Nago et al., 2024).

Aggregates are characteristic of neurodegenerative diseases, but
they are not the most cytotoxic species of their constituent
neurodegeneration-associated proteins, which include amyloid-β
(Aβ) and tau in AD, mutant huntingtin (mHTT) in HD, and α-
synuclein (α-syn) in PD. Instead, decades of data have indicated that
the most damage is caused by misfolded soluble oligomers that
interrupt cellular functions including proteasome degradation
pathways (Takahashi et al., 2008; Tai et al., 2012; Usenovic et al.,
2015; Fiolek T. et al., 2021). While early studies posited that
oligomers inhibit proteasome activity by directly blocking the 20S
pore or by acting as competitive substrates (Gregori et al., 1997;
Zhao and Yang, 2010), more recent data show that at least three of
these disease-associated oligomers (Aβ, α-syn, and HTT) act as
allosteric inhibitors, forming a common three-dimensional
conformation that allows them to bind and disrupt the 20S
proteasome via stabilization of its closed state, thus preventing
opening of its substrate entry gate and blocking access to HbYX
motif-containing PAs and regulators like the 19S cap, PA200, and
PI31 (Thibaudeau et al., 2018). This interaction further reduces the
proteasome’s ability to degrade misfolded and aggregated proteins.
As these oligomers accumulate and interact, formation of the large,
insoluble aggregates may actually be a protective mechanism
mitigating the effects of the toxic oligomers (Arrasate et al., 2004;
Carrell et al., 2008; Boulos et al., 2024), although this is debated.
Finally, the oligomers may interact with other regulators of the
proteasome, impairing their activity (Olshina et al., 2020; Deshmukh
et al., 2023).

Therapeutic strategies to target ubiquitin-
independent proteasome activity

Development of therapies for neurodegenerative disease have
focused on enhancing clearance mechanisms, reducing and
preventing misfolding, and eliminating toxic oligomers and
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aggregates. Most studies targeting the 20S proteasome for the
treatment of neurodegenerative diseases have demonstrated that
increasing 20S activation can reduce toxic protein aggregate levels
in vitro, in cell culture, and in animal models of neurodegeneration
(Pickhardt et al., 2005; Zhou et al., 2019; Cekala et al., 2022; Staerz
et al., 2022; Sadahiro et al., 2024; Staerz et al., 2024), although at least
one study has demonstrated that increases in certain PAs can
increase neurodegenerative pathology (VerPlank et al., 2024).
Activators that have been tested include activated endogenous
PAs (as described in prior sections), peptidomimetics of PAs
(Cekala et al., 2022; Cekala et al., 2024), as well as small
molecule activators of 20S, such as fluspirilene analogs and
dihydroquinazolines, which have been shown to rescue impaired
proteasome activity and prevent pathological IDP aggregation of Aβ
and α-syn (Fiolek T. et al., 2021; Fiolek T. J. et al., 2021). Drawbacks
to using small molecule activators or activated endogenous PAs
include a lack of specificity and the possibility of off-target effects in
other essential cellular functions. Previously, there were no methods
for targeting specific proteins to ubiquitin-independent proteasome
pathways as there are for the UPS - called Proteolysis Target
Chimeras (PROTAC) and molecular glues (Hyun and Shin,
2021) – meaning many activators could have off-target effects on
essential proteins and cause more neuronal damage (Gao et al.,
2020). However, several labs have recently published techniques,
including chemical inducers of degradation (CIDEs) and direct-to-
proteasome degraders (DPDs), to bypass the requirement for
substrate polyubiquitination using chimera molecules or chemical
dimerizers that directly target the desired substrate to the
proteasome (Wilmington and Matouschek, 2016; Bashore et al.,
2023; Balzarini et al., 2024). It is important to note that the value of
20S activators as disease-modifying therapies might also vary among
different neurodegenerative diseases or at different stages of disease
progression. Further research, especially in vivo, is necessary.
Comprehensive reviews of recent therapeutic research on
ubiquitin-independent proteasome mechanisms in age-related
neurodegenerative disease can be found elsewhere (Harding and
Tong, 2018; Opoku-Nsiah and Gestwicki, 2018; Hyun and Shin,
2021; Schmidt et al., 2021; Rawat et al., 2022; Tundo et al., 2023).

Neurodegenerative disease-specific
changes in ubiquitin-independent
proteasome degradation

See Figure 2 and Table 1.

Alzheimer’s disease

Alzheimer’s Disease (AD) is a progressive neurodegenerative
disorder characterized by cognitive decline, memory loss, and
neuropathological changes including aggregation of extracellular
amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles.
While there is still debate about the mechanism by which each of
these proteins contributes to neuronal deterioration, recent research
has emphasized the role of synergistic crosstalk between the two
proteins in producing AD pathology (Busche et al., 2019; Rawat
et al., 2022; Roda et al., 2022). As in other age-related

neurodegenerative diseases, oxidative stress, neuroinflammation,
and disrupted proteostasis play important roles in the etiology of
AD. Misfolding and posttranslational modifications induced by
oxidation and inflammation interrupt the physiological functions
of Aβ and tau in cytoskeletal support, recovery from injury,
stabilization of microtubules, and synaptic plasticity (Haass and
Selkoe, 2007; Orre et al., 2013; Bonet-Costa et al., 2016; Brothers
et al., 2018), and this misfolding can cause toxic gain-of-function
effects including disruption of normal protein degradation (Poppek
et al., 2006; Opoku-Nsiah and Gestwicki, 2018; Davidson and
Pickering, 2023), leading to cytotoxicity and cell death.

In AD, proteasome dysfunction is more severe than the decline
associated with normal aging (Bonet-Costa et al., 2016). This
compromised clearance pathway contributes to the formation of
toxic protein oligomers that accumulate as aggregates. According to
several studies, both tau and Aβ are IDPs that can be degraded by the
proteasome through ubiquitin-independent mechanisms during
physiological conditions, although alternative complementary
degradative pathways may participate in degradation depending
on cellular context or if the proteasome is inhibited (Grune et al.,
2010; Zhao and Yang, 2010; Watanabe et al., 2020). In fact, based on
mouse model data, impaired proteasome activity may induce AD
pathology in individuals with an underlying diathesis. Prior to the
development of pathology in AD model mice (3xTg-AD), impaired
or inhibited proteasome activity can increase tau and Aβ
accumulation, a process which can be rescued with Aβ
immunotherapy against Aβ oligomers, reducing protein
accumulation and restoring proteasome activity (Oddo et al.,
2004; Oh et al., 2005; Tseng et al., 2008). Notably, proteasome
activity can be inhibited during oxidative stress and
neuroinflammation by CCRs, and mutations of CCRs that
regulate cellular defense against oxidative stress, including
NQO1, are associated with increased risk of developing AD (Bian
et al., 2008; Tsvetkov et al., 2011; Moscovitz et al., 2015).

A study by Poppek et al. showed that tau is more resistant to
oxidative stress than many other proteins, and oxidized tau is
degraded equally as well as native, non-oxidized tau through the
20S proteasome in vitro. However, tau degradation in cells showed a
different pattern. It was enhanced in cellular models (Poppek et al.,
2006) of acute oxidative stress in which tau was oxidized and not
phosphorylated but was strongly inhibited in models of chronic
inflammation-induced oxidative stress, which caused hyper
phosphorylation of tau, making it resistant to 20S proteasomal
degradation. These data suggest an indirect mechanism affecting
ubiquitin-independent proteasomal degradation wherein oxidized
tau is rapidly degraded, but as the cell activates response pathways in
chronic inflammation, tau is phosphorylated and the resulting
hyperphosphorylated forms resist proteasomal degradation. Both
ubiquitin-independent mechanisms and the UPS are impaired in
AD, and hyperphosphorylated tau forms paired helical filaments
that can directly bind to 20S proteasome complexes, affecting both
26S and 20S degradation mechanisms, and can associate into large
neurofibrillary tangles (Keck et al., 2003; Poppek et al., 2006; Rankin
et al., 2007; Min et al., 2010; Rawat et al., 2022).

Tau contributes to UPS dysfunction (Poppek et al., 2006; Tai
et al., 2012; Thibaudeau et al., 2018), with higher levels of oligomeric
and aggregated tau associated with a decrease in 26S activity without
a decrease in subunit expression (Myeku et al., 2016). As discussed
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in the “Protein Aggregation” and “Oxidative Stress” sections of this
review, soluble oligomers are the most toxic species of both tau and
Aβ (Usenovic et al., 2015; Thibaudeau et al., 2018). Mouse models of
AD show a physical association between tau and the 26S molecule
that impairs degradation of ubiquitinated substrates and small
peptides by the 26S and results in an increase in ubiquitinated
protein burden. Treatment of healthy mice with tau oligomers also
show decreasing degradative capacity, supporting the hypothesis
that tau is proteotoxic, and this effect was rescued with activation of
cAMP-protein kinase A (Myeku et al., 2016). It is worth noting,
however, that the authors did not detect 20S activity, which has been
shown in other studies to be active in AD brains (Gillardon et al.,
2007; Türker et al., 2023) and to be directly inhibited by paired
helical filament binding (Keck et al., 2003), so there may be
underlying differences in experimental approaches that are
important to revisit.

The other protein capable of forming aggregates characteristic of
AD is Aβ, which has a direct inhibitory effect on proteasomal
proteolytic pathways through allosteric stabilization of the 20S
core particle in its closed state (Thibaudeau et al., 2018). Aged
mouse models of AD overexpressing Aβ show a decrease in
proteasome function that correlates with Aβ level, an effect
which was reproduced in cultured neurons through extracellular
Aβ application on cells (Favit et al., 2000; Oh et al., 2005) and in vitro
(Gregori et al., 1995). Extracellular application of Aβ was specifically
shown to affect chymotrypsin-like activity without affecting
ubiquitination or deubiquitination levels, implying that the
changes occurring in proteasomal pathways are due to direct
effects on the proteasome rather than other UPS components
(Gregori et al., 1995). Proteasome impairment correlates with Aβ
oligomer levels but not aggregate levels (Tseng et al., 2008). Notably,
although these and many other studies on Aβ and proteasomes are
meant to describe the UPS, many do not distinguish between
ubiquitin-dependent and ubiquitin-independent proteasome
activity, so it is likely that at least some of the effects on
proteasome activity are attributable to ubiquitin-independent
mechanisms, especially as cellular stress increases (Zheng et al.,
2016; Davidson and Pickering, 2023) and induces proteinmisfolding
and the formation of toxic protein species.

In a comparative study of the inhibitory effects of Aβmonomers,
oligomers, or fibrils on 20S activity, it was demonstrated that
oligomers inhibit proteasomal degradation more than monomers
or fibrils, supporting evidence that it is toxic oligomers rather than
macroscopic aggregates that induce proteasome dysfunction (Tseng
et al., 2008; Zhao and Yang, 2010). However, in another study, the
opposite was found, with oligomeric and fibrillar Aβ increasing
proteasome activity, and fibrillar species showing a much greater
effect. This difference is likely due to a difference in experimental
methods, with many groups using AMC peptide hydrolysis assays to
measure activity and others using orthogonal approaches like
activity ELISAs and activity-based probes (Orre et al., 2013;
Türker et al., 2023).

Increasing data have shown that tau and Aβ each amplify the
pathology of the other, driving an accelerated cycle of cellular
dysfunction, resistance to and inhibition of proteasomal
degradation, and neuronal deterioration. Aβ can trigger
neuroinflammation and induce hyperphosphorylation of tau
(Amadoro et al., 2011; Ising et al., 2019; Roda et al., 2022),

paired helical filament formation, and tau aggregation.
Conversely, excess misfolded tau causes Aβ aggregation,
abnormal trafficking of the precursor protein for Aβ (APP), and
increased prion-like propagation of both Aβ and tau pathology to
other cells via exosomes and extracellular secretion of excess protein
(Frost et al., 2009; Amadoro et al., 2011; Guo and Lee, 2011). As AD
progresses, propelled by the damaging bidirectional pathway
between tau and Aβ, changes occur to the composition of the
proteasome, including significant upregulation of
immunoproteasome subunits (Orre et al., 2013), and normal
proteasomal degradation pathways are altered.

Huntington’s disease

Huntington’s Disease (HD) is a progressive, autosomal dominant
neurodegenerative disorder that causes motor dysfunction, mental
health symptoms, cognitive decline, and eventually death. It is
caused by a mutation in the N-terminus of the huntingtin (HTT)
gene that leads to a large chain (>35–40) of glutamine amino acids,
called a polyglutamine (polyQ) expansion, which is prone tomisfolding,
aggregation, and the formation of toxic peptide fragments and interferes
with normal HTT roles in cellular trafficking, endocytosis, and
transcription regulation, among others (Miller et al., 2011; El-Daher
et al., 2015; Saudou and Humbert, 2016; Guo et al., 2018). Misfolded
aggregates of mutant huntingtin (mHTT) form inclusion bodies, which
are proposed to have both protective effects in reducing toxic peptide
fragments and oligomers (Arrasate et al., 2004; Takahashi et al., 2008) as
well as harmful effects through pathophysiological interactions and
disruption of cellular processes, based on disease progression and
cellular context (Waelter et al., 2001; Arrasate et al., 2004; Takahashi
et al., 2008; Saudou and Humbert, 2016; Riguet et al., 2021).

The degradation pathways used for HTT breakdown likely vary
by the species of HTT protein present (e.g., fragments, monomers,
oligomers, aggregates). There is clear involvement of both
autophagy and the UPS in HD, the roles of which are reviewed
elsewhere (Martin et al., 2015; Sap et al., 2023), and the third
degradative mechanism relevant to HD is ubiquitin-independent
proteasomal degradation. mHTT has significant IDRs, especially in
its polyQ region, which could make it a good substrate for the 20S
proteasome and non-ATPase PAs (Juenemann et al., 2013). One
in vitro study found that mammalian 20S proteasomes do not
completely degrade polyQ repeats (Venkatraman et al., 2004),
but many others have found the opposite, showing that the 20S
can degrade wildtype HTT and mHTT (Rousseau et al., 2009;
Juenemann et al., 2013) and that this effect is modulated with
the addition of PA28αβ (Geijtenbeek et al., 2022). The 20S and
ubiquitin-independent PAs may be especially critical in breaking
down toxic mHTT fragments (Juenemann et al., 2013; Geijtenbeek
et al., 2022), particularly as HD advances and the UPS is
overwhelmed or compromised (Geijtenbeek et al., 2022).
Indirectly, the 20S proteasome may also play a role in HD by
maintaining overall proteostasis and mitigating the damage
caused by oxidative and proteotoxic stress in neurons (Pickering
et al., 2010; Höhn et al., 2020). More research is needed to directly
show the extent to which ubiquitin-independent 20S proteasome
activity drives degradation of mHTT and what regulatory and
targeting mechanisms may exist.
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While it was previously thought that HTT aggregates impair the
UPS and proteasomal degradation by sequestering complexes within
mHTT inclusion bodies (Holmberg et al., 2004), it is more likely that
the co-localization of proteasome complexes and inclusion bodies
reflects dynamic, targeted recruitment of ubiquitin and catalytically-
active proteasomes that can facilitate both ubiquitin-dependent and
ubiquitin-independent degradation (Schipper-Krom et al., 2014;
Juenemann et al., 2018). In fact, 20S, 26S, PA28, PA200, and 19S
all colocalize with perinuclear inclusions (Waelter et al., 2001;
Aladdin et al., 2020), supporting evidence that multiple
proteasomal pathways are involved in HTT clearance mechanisms.

Another component of the interaction between HD and
ubiquitin-independent proteasomal degradation is the disruption
of proteostasis pathways including the UPS. This could either
increase ubiquitin-independent activity through the 20S or
accompany disruption in ubiquitin-independent degradation
depending on which proteasome molecules or regulators are
most affected by the pathology of HD. Some studies do show an
increase in proteasome activity in HD in early disease and in
postmortem brains, likely providing a compensatory mechanism
to account for proteostatic deficits elsewhere (Diaz-Hernandez et al.,
2003; Thompson et al., 2009). Other studies demonstrate no deficits
in 20S activity in proportion to protein aggregation, suggesting that
aggregates do not directly impair proteasome activity (Diaz-
Hernandez et al., 2003). Compatible with this research, data has
suggested indirect mechanisms through which oligomers and
aggregates impair proteasome activity, including mitochondrial
dysfunction and disruption of overall proteostasis (Jana et al.,
2001; Hipp et al., 2012). Another study using mHTT species
derived from cells suggests that instead of aggregates, it is mHTT
filaments, modified by posttranslational modifications, that impair
proteasome function, and that these disruptions are especially
harmful to 26S proteasomes rather than 20S, favoring a shift to
20S activity (Diaz-Hernandez et al., 2006). It is important to note
that many in vitro studies use synthesized polyQ tracts, which do not
have physiological posttranslational modifications and could
diverge from native conditions. There is significant heterogeneity
in results and conclusions drawn from the available literature
regarding the effects of mHTT in its various forms on
proteasome activity, and differences in experimental design are
likely to explain some of the discrepancies.

Investigating interactions between mHTT and proteasomes can
grant additional mechanistic insight. Some HTT found in HD cells is
ubiquitinated, and data shows that ubiquitinated mHTT does not
directly clog the 20S catalytic chamber in aggregate or soluble form
(Hipp et al., 2012). However, when the concentration of mutant
fragments reaches a certain threshold, cytoplasmic inclusions
accumulate and deficits are observed in both the UPS and
ubiquitin-independent mechanisms, likely demonstrating that it
is an overall deficit in proteostasis rather than a dose-dependent
effect of impaired ubiquitin conjugation mediating dysfunction
(Hipp et al., 2012). Importantly, the authors note that in cells,
most mHTT they found was not ubiquitin-conjugated, and that
degradation of these fragments was not fully captured in their study.

There are various forms of ubiquitin-independent proteasomal
degradation mechanisms which could have relevance in HD. One
mechanism which has emerged is through alternative proteasome
activator, PA28. In vitro studies have shown that a PA28γ mutant

increases 20S catalytic activity and can promote complete
degradation of polyQ peptides, suggesting that PAs may promote
significant degradation of polyQ tracts synergistically with the 20S
(Pratt and Rechsteiner, 2008). Wildtype PA28γ overexpression
improved cell survival in excitotoxic and proteasome-inhibited
states in a neuronal model of HD (Seo et al., 2007), and
lentiviral-delivered gene therapy increasing PA28γ expression
improved motor coordination in mouse models of HD and
reduced ubiquitin-positive inclusion body expression, although
the decrease in mHTT in inclusion bodies was not significant
(Jeon et al., 2016). However, in a separate HD mouse model, it
was noted that knockdown of PA28γ did not worsen polyQ-related
pathology (Bett et al., 2006), so the exact effects of this PA in HD are
not yet fully understood. In many cases, it is unclear what
proportion of these effects is due to PA28γ interaction with the
proteasome through ubiquitin-independent mechanisms versus its
chaperone-like function or crosstalk with the UPS, and this will be
an important area of future mechanistic study (Yersak et al., 2017).
For example, in another polyQ-expansion disease, spinal and bulbar
muscular atrophy, PA28γ had two opposing effects, increasing cell
viability in association with its proteasome binding activity and
conversely increasing aggregate formation and oligomer toxicity
independently of its proteasome binding activity (Yersak et al.,
2017). The effect of PA28γ is likely dependent on its cellular context.

In a study by Geijtenbeek et al., reduction in PAαβ activation in
HD-model mice (R6/2) increased mHTT aggregation in the brain,
and as the disease progressed, PA28αβ increasingly dissociated from
the 20S proteasomes. This disassembly was specific to brain areas
particularly affected by HD. This study also noted that in vitro,
PA28αβ can enhance polyQ degradation through 20S proteasomes,
but decreases overall mHTT degradation, implying that the
regulatory effect of PA28αβ may be indirect (Geijtenbeek et al.,
2022). Another recent study also found that PA28αβ can increase
polyQ breakdown and suggested hybrid proteasomes may have a
role (Kriachkov et al., 2023).

Another proteasome regulator and PA with relevance to HD is
PA200, which is mainly found in the nucleus and recognizes short
peptides and unstructured protein regions. Aladdin et al. (2020)
recently demonstrated that human PA200 can bind to mHTT
fragments and that the loss of PA200 in human cells contributed
to aggregate formation and increased cytotoxicity. Additionally, the
yeast ortholog of PA200 increased 20S degradation of soluble mHTT
fragments in vitro, identifying that PA200-bound proteasomes may
contribute to mHTT degradation, particularly in the nucleus
(Aladdin et al., 2020). PA200 may also form hybrid proteasomes
(Schmidt et al., 2005; Blickwedehl et al., 2008) and function in
parallel to UPS-mediated degradation of ubiquitinated HTT to
enhance digestion of disordered proteins, including aberrant
species of HTT like soluble non-ubiquitinated polyQ sequences
and oligomers.

In addition to the effects of PAs on proteasome activity, it is
possible that HD pathology can induce an effect on proteasome
composition. Diaz-Hernandez et al. found that the catalytic activity
of the 20S core was preserved in HD mouse model brain extracts,
and there was induction of immunoproteasome subunits LMP2 and
LMP7 in the cortex and striatum of human brains and mouse
models, with immunohistochemistry showing the highest
expression in neurons. This induction only occurred after the
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development of significant HD pathology, and it was accompanied
by reactive gliosis, with LMP2 and LMP7 also induced in nearby glia
(Diaz-Hernandez et al., 2003). A follow-up study showed that
expression of mHTT alone was insufficient to induce the
observed changes in 20S activity but that mHTT works
synergistically with IFNγ, causing an increase in
immunoproteasome proportional to the severity of
neuroinflammation-associated neurodegeneration (Diaz-
Hernandez et al., 2004). Because immunoproteasomes can be
beneficial in oxidative stress responses (Pickering et al., 2010),
they likely serve a protective effect against damage from
disrupted proteolysis and mitochondrial dysfunction.

There are many debates surrounding HD etiology, progression,
and proteostasis. One possible contributor to these questions is that
many studies in the literature presumed to describe the UPS ignore
or do not control for ubiquitin-independent activity, and so it is
possible that some of the complexity and contradictions in the
literature about proteasomal pathways in HD are due to these
diverging mechanisms. Further complicating the study of many
neurodegenerative diseases, including HD, are the variations and
limitations of model systems in reproducing critical aspects of the
diseases (Bett et al., 2006; Seo et al., 2007; Ortega and Lucas, 2014).
Additionally, some mechanisms may behave differently between
in vitro experiments and cellular models, even within the same study
(Geijtenbeek et al., 2022). The development of additional tools to
study HD in physiological models will grant a better understanding
of the biology of HD and inform the design of future studies and
possible treatment avenues. Because the UPS becomes dysfunctional
in late-stage HD (Jana et al., 2001), increasing degradation of mHTT
by ubiquitin-independent 20S mechanisms could have therapeutic
benefit. A recent review discusses therapeutic strategies in targeting
different proteostasis pathways in HD (Harding and Tong, 2018).

Parkinson’s disease

Parkinson’s Disease (PD) is a progressive, age-associated
movement disorder caused by neurodegenerative changes
primarily in dopaminergic neurons of the substantia nigra region
of the brain. It is characterized by protein inclusions predominantly
composed of aggregated α-synuclein (α-syn), called Lewy bodies, as
well as failures of proteostasis, neuroinflammation, and oxidative
and mitochondrial damage. In its physiological role, neuronal α-syn
regulates neurotransmitter release through interaction with pre-
synaptic membranes and synaptic vesicle release machinery
(Calabresi et al., 2023). Different forms of α-syn are degraded
through multiple proteasomal and lysosomal pathways, and
impairment of one or more of these pathways can contribute to
development of PD pathology and affect the proteolytic activity of
other pathways (Ancolio et al., 2000; Webb et al., 2003; Arawaka
et al., 2017; Stefanis et al., 2019).

In studying which pathways are used to degrade α-syn in normal
and pathophysiological states, evidence has been mixed, and results
conflict across experimental models and conditions, creating a
complicated picture of intersecting proteolytic pathways,
substrate degradation regulation through posttranslational
modifications, and brain area-specific variations and
vulnerabilities to neurodegenerative damage (Vogiatzi et al., 2008;

Stefanis et al., 2019). For these reasons, data must be carefully
compared across in vitro, cellular, and in vivo models when
considering the broader PD proteostasis field. However, evidence
in normal and PD-affected brains has consistently supported a role
for ubiquitin-independent 20S proteasome degradation of α-syn, an
intrinsically disordered protein (IDP) and known target of the 20S,
especially in the context of oxidative stress (Tofaris et al., 2001;
Machiya et al., 2010; Höhn et al., 2020; Coskuner-Weber et al.,
2022). Like in other neurodegenerative diseases, mitochondrial
dysfunction and oxidative stress are significant features of PD
(Calabresi et al., 2023), and ubiquitin-independent proteasomal
degradation is critical to clear accumulated damaged and
oxidized proteins (Tofaris et al., 2001; Opoku-Nsiah and
Gestwicki, 2018).

In PD, oxidative stress induces posttranslational modifications
of α-syn including oxidation of methionines, which affect its
degradation by the proteasome. Because cleavage of α-syn by the
20S requires first that the α-syn N-terminus binds to the 20S
α7 subunit C-terminus, oxidation of α-syn N-terminal
methionines during oxidative stress directly inhibits this
degradation, slowing down clearance of α-syn and allowing
accumulation within the cell (Alvarez-Castelao et al., 2014).
Oxidized α-syn then continues to aggregate (forming non-fibrillar
oligomers, then protofibrils, and finally fibrillar aggregates),
becoming insoluble, and its degradation is significantly impaired
relative to non-oxidized α-syn (Alvarez-Castelao et al., 2014).
Certain modifications to α-syn that occur during oxidative stress
are irreversible through normal pathways (Binolfi et al., 2016), and
some of these modifications both inhibit protective modifications
and facilitate harmful ones like phosphorylation of α-syn Serine-129
(pS129) (Anderson et al., 2006; Schildknecht et al., 2013). pS129 is
an especially pathological modification present in over 90% of the α-
syn in Lewy bodies, but under 4% of α-syn found in normal brains
(Fujiwara et al., 2002; Anderson et al., 2006). Data in rat primary
cortical cultures and SH-SY5Y neuroblastoma cells demonstrate that
ubiquitin-independent proteasomal degradation is the primary
mechanism through which pS129 α-syn in soluble monomeric
form is degraded (Machiya et al., 2010), emphasizing the
mechanism’s importance in mitigating pathology in PD. In
insoluble form, pS129 α-syn is degraded both by ubiquitin-
independent proteasome mechanisms and by the lysosome.
However, after extensive aggregation, pS129 α-syn can no longer
be degraded by the proteasome and collects within Lewy bodies
(Arawaka et al., 2017). To relieve intracellular protein overload, α-
syn can be exported into the extracellular space through exosomes,
which can transfer α-syn between cells and may contribute to the
spread of toxic α-syn species from cell-to-cell, nucleating
pathological aggregation in those cells (Danzer et al., 2012; Lee
et al., 2014; Stefanis et al., 2019). Extracellular α-syn can also induce
neuroinflammation through activation of microglia, further
compounding neurodegenerative changes in cellular stress (Lee
et al., 2014; Calabresi et al., 2023).

As described in the “Catalytic Core Regulators” (CCRs) and
“Oxidative Stress” sections, allosteric regulation of the 20S by CCRs
is especially important during oxidative stress, and failure of the
pathways regulating the oxidative stress response is central to PD
pathology. Mutations in PARK7, the gene encoding PD-associated
protein deglycase DJ-1 (also called Parkinson disease protein 7)
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increase vulnerability of cells to oxidative damage due in part to
defects in regulation of ubiquitin-independent 20S proteasome
degradation by DJ-1, which is upregulated in response to
oxidative stress, coordinates the critically important
Nrf2 antioxidant response pathway (see “Oxidative Stress”
section), and allosterically inhibits ubiquitin-independent
degradation by the 20S, protecting important physiological IDPs
from degradation while allowing rapid destruction of damaged and
oxidized proteins (Clements et al., 2006; Moscovitz et al., 2015;
Deshmukh et al., 2023). The oxidation state of DJ-1 also affects the
propensity of α-syn to form fibrils and affects its chaperone-like
activity (Zhou et al., 2006).

Beyond changes to α-syn, as PD progresses, there are also
alterations to proteasome expression and composition. These
changes are most pronounced in areas most affected by PD
pathology, like the substantia nigra pars compacta. McNaught
et al. showed that in brains affected by sporadic PD, there are
deficits in proteostasis associated with selective loss of 20S
⍺-subunits in dopaminergic neurons of the substantia nigra pars
compacta but not in other areas (McNaught et al., 2002). A-subunits,
specifically α4, interact directly with parkin, an E3 ligase and one of
the most important components of Parkinson’s disease.

The loss of these subunits causes structural instability of the
proteasome and can prevent its coordinated assembly, contributing
to the breakdown in proteostasis observed in PD and possibly the
accumulation of Lewy bodies and dopaminergic cell death (McNaught
et al., 2002). In addition, all three types of proteolytic activity in the 20S
(chymotrypsin-like, trypsin-like, and caspase-like) are impaired in the
substantia nigra of brains from patients who died of sporadic PD by up
to 42% (McNaught and Jenner, 2001). Other studies have found that in
neuronal cell models, the substantia nigra pars compacta may have
lower baseline expression of PAs including 19S and PA28 and that
dopaminergic neurons may not effectively upregulate PAs in response
to stress as well as other cell types, making them increasingly vulnerable
to damage by defective proteostasis (McNaught et al., 2010).

Mutations in parkin, an E3 ligase, can induce proteasome
dysfunction. Parkin activates 26S in a ubiquitin-ligase-
independent manner and enhances interactions between 19S
subunits, playing a role in proteasome assembly that is disrupted
by parkin mutations (Um et al., 2010). It also interacts directly with
the α4 subunit of the 20S (Dachsel et al., 2005) and is proposed to
have some function in substrate identification by the 20S/ubiquitin-
independent pathways (Sanchez-Lanzas and Castano, 2014). A
review by Sanchez-Lanzas and Castano (2014) describes several
other 20S proteasome interactors and their relationships to
ubiquitin-independent pathways.

Conclusion

The proteasome is a cylindrical degradation complex composed of
four stacked heptameric rings of α/β subunits (α7β7β7α7) around a central
proteolytic chamber. Proteasomes catalyze the majority of protein
degradation in mammalian cells through multiple mechanisms, the
best characterized of which is the ubiquitin-proteasome system
(UPS), a pathway employing ubiquitin protein tags, a 19S cap, and
ATP hydrolysis to recognize, unfold, and degrade protein targets (Coux
et al., 1996; Ciechanover, 1998; Ciechanover and Schwartz, 1998; Ben-

Nissan and Sharon, 2014). Ubiquitin-independent proteasomal
degradation is more recently studied and can be mediated by the 20S
proteasome core or by a variety of proteasome activator complexes (e.g.,
PA28, PA200, and 19S) which facilitate degradation of unfolded and
intrinsically disordered proteins without ATP (Opoku-Nsiah and
Gestwicki, 2018). Increasing evidence supports a central role for
ubiquitin-independent proteasome degradation in the oxidative stress
response and clearance of protein aggregates in age-related
neurodegenerative diseases (Kazee and Han, 1995; Lopez Salon et al.,
2000; Bence et al., 2001; Iwata et al., 2005; Bennett et al., 2007; Wilson
et al., 2011; Hipp et al., 2012; Ben Yehuda et al., 2017).

Literature on aging, neurodegenerative disease, and ubiquitin-
independent 20S proteasome activity in different cellular contexts is
ongoing and has had some conflicting results. Conflicts in the literature
around the ubiquitin-independent proteasome are highly dependent on
model system (species, in vitro vs. cultures vs. in vivo, etc.) and
experimental design differences, and orthogonal approaches are
necessary to definitively determine the behavior of the physiological
system (Oh et al., 2005; Türker et al., 2023). In fact, it is possible some
research describing the UPS in neurodegenerative disease reflects effects
of both the UPS and ubiquitin-independent degradation because many
studies rely on measures of global proteasome activity and pan-
proteasome inhibitors, without isolating the ubiquitin-independent
proteasome activity for assessment separately from the UPS. An
additional barrier is the multifactorial changes associated with aging
that complicate mechanistic investigations in vivo. As tools
differentiating between proteasomal mechanisms are developed, the
respective contributions of each mechanism to neurodegenerative
disease may be better clarified.

Looking forward, many questions remain about how alternative
mechanisms of protein degradation impact and are impacted by
neurodegenerative processes. These include identifying how
degradative pathways cooperate, determining how changes in
proteasome activity and composition vary by cell type and cell
compartment specificity in different diseases, further investigating
the roles of alternative proteasome activator and regulators,
investigating regulation of ubiquitin-independent proteasomal
mechanisms by posttranslational modifications and interaction with
binding partners, and confirming how these changes occur in vivo.
Additionally, there have been recent developments in diverse
neurodegenerative disease and proteasome research topics including
liquid-liquid phase separation (Myers et al., 2018; Cohen-Kaplan et al.,
2020; Yasuda et al., 2020; Zbinden et al., 2020; Hayashi et al., 2021; Mee
Hayes et al., 2022; Hurtle et al., 2023), diagnostic and molecular tools
(Devitt et al., 2018; Barthel et al., 2022), posttranslational 20S
proteasomal processing of substrates for unique functions (Moorthy
et al., 2006; Solomon et al., 2017), endoproteolytic proteasomal cleavage
of disordered residues (Liu et al., 2003), proteasome-catalyzed peptide
splicing (Liepe et al., 2016; Soh et al., 2024), ATP-independent 26S
proteasomal degradation (Tsvetkov et al., 2020), which may further
propel and nuance the understanding of proteasomal roles in
neurodegenerative disease. Several of these topics are controversial
and need more validation, but they reflect an appreciation of
proteasome roles and regulation beyond the canonical UPS. Overall,
this review examines the regulators, 20S-associated proteasome
activators, and complexes involved in ubiquitin-independent
proteasomal degradation, focusing on their bidirectional impact on
age-associated neurodegenerative diseases.
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