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The generation of myogenic progenitors from iPSCs (iMPs) with therapeutic
potential for in vivo tissue regeneration has long been a goal in the skeletalmuscle
community. Today, protocols enable the production of potent, albeit immature,
iMPs that resemble Pax7+ adult muscle stem cells. While muscular dystrophies
are often the primary therapeutic target for these cells, an underexplored
application is their use in treating traumatic muscle injuries. Notably absent
from recent reviews on iMPs is the concept of engineering these cells to
perform functions post-transplantation that non-transgenic cells cannot.
Here, we highlight protocols to enhance the generation, purification, and
maturation of iMPs, and introduce the idea of engineering these cells to
perform functions beyond their normal capacities, envisioning novel
therapeutic applications.
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1 Introduction

Life-long maintenance of skeletal muscle integrity is maintained by a population of
tissue resident adult muscle stem cells (MuSCs), or “satellite cells”, embedded between the
extracellular matrix (ECM) and individual myofibers (Mauro, 1961). The indispensable role
of MuSCs, distinguished by their tissue-specific expression of the transcription factor Pax7,
has been repeatedly demonstrated (Lepper et al., 2011; Murphy et al., 2011; Relaix and
Zammit, 2012; VonMaltzahn et al., 2013). Despite protocols that afford efficient isolation of
primary MuSCs from both human and murine tissues, therapeutic application of these cells
is severely limited by donor availability and an inability to expand these cells in vitro
(Montarras et al., 2005; Yi and Rossi, 2011; Liu et al., 2015; Jensen et al., 2021). Pluripotent
stem cells (PSCs) have emerged as a promising, scalable, source of myogenic progenitors
(MPs). Studies into the developmental origins ofMuSCs have led to a deep understanding of
the biological processes underlying the emergence of these cells within skeletal muscle tissue
(Chal and Pourquié, 2017). These efforts, along with those affording the generation of PSCs
via reprogramming of adult somatic tissue (iPSCs), have been foundational to the concept of
using autologousMPs therapeutically (Takahashi and Yamanaka, 2006; Barberi et al., 2007).

In this perspective, we present the state-of-the-art in generating and purifying
therapeutically relevant iPSC-derived MPs (iMPs), focusing on workflows that enhance
their similarity to MuSCs and improve engraftment for de novo muscle formation and
MuSC niche repopulation (Table 1). We then explore an emerging area of cellular
engineering which, despite rapid adoption in fields like immunology, remains relatively
undeveloped in skeletal muscle therapeutics. Synthetic biology and the engineering of cells
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to perform functions beyond their natural roles presents a
transformative opportunity to reshape the current paradigm of
iMP-based therapies.

2 Making muscle: differentiation and
purification of iMPs

Today, a number of well-established protocols for the production of
iMPs exist, each falling into one of two categories (Iberite et al., 2022).
Direct reprogramming relies on the overexpression of myogenic
transgenes to force myogenic potential, while directed differentiation
generates iMPs throughmeticulous recapitulation of the conditions that
lead to developmental emergence of MuSCs in vivo (Hicks et al., 2018;
Xi et al., 2020; Nalbandian et al., 2021). While these two methods for
generating iMPs differ, both aim to produce cells that can be used
directly or, preferably, cryopreserved in viable cell banks for
downstream application (Figure 1).

2.1 Direct reprogramming

Overexpression of themyogenic transcription factors MyoD and
Pax7 both reliably induce iPSCs toward a myogenic fate. The first

examples of iMP direct reprogramming demonstrated that
activation of these inducible transgenes generated cells that
reliably engraft into muscle tissue, and are capable of restoring
tissue specific expression of dystrophin and a-sarcoglycan in their
respective murine disease models (Darabi et al., 2012; Tedesco et al.,
2012). Since these initial demonstrations, direct reprogramming
protocols have been used to reliably produce iMPs with similar
regenerative capacity (Tanaka et al., 2013; Quattrocelli et al., 2015;
Uezumi et al., 2016; Azzag et al., 2022). Despite these successes, a
number of caveats specific to direct reprogramming warrant
consideration. First, many direct reprogramming strategies adopt
the use of small molecules and growth factors to prime iPSCs
towards a mesodermal lineage prior to myogenic transgene
induction, raising the question of whether introducing transgenes
for the final step of myogenic specification is truly necessary (Magli
et al., 2017; Rao et al., 2018; Selvaraj et al., 2019). Correspondingly,
direct reprogramming inherently skips critical developmental
maturation steps and little has been done to assess the relative
developmental maturity of iMPs generated using this method. We
will elaborate on the importance of iMP maturity in later sections;
however, the lack of evidence for maturation in these cells represents
one of the most critical shortcomings of direct reprogramming.
Concerns over the risks associated with random transgene
integration in direct reprogramming have also drawn scrutiny.

FIGURE 1
(Top panel) Standardized workflow for the generation and validation of iPSC-derived myogenic progenitors (iMPs) utilizing either directed
differentiation or direct reprogramming approaches. Following differentiation, FACS isolation using ERBB3+/NGFR+/CD57− result in iMPs that are more
mature, potent, and phenotypically comparable to MuSCs. Verification of myogenicity immediately after cell sorting include immunofluorescent staining
for markers like Pax7 and MyoG and MYH and Dystrophin after secondary differentiation into myotubes. In parallel, cells should be further validated
for their capacity to engraft and form de novomyofibers in vivo. Further histological assessment should confirm the capacity for some iMPs to retain Pax7
expression and populate the MuSC niche. (Bottom panel) An example of iMPs engineering to target volumetric muscle loss (VML) pathophysiology.
Untreated VML is underscored by dysregulated fibrosis in the damaged muscle leading to poor regenerative potential. Engineering iMPs that express IL-
10, a cytokine demonstrated to have potent pro-regenerative effects in VML, could be further enhanced by the spatio-temporal delivery afforded by this
system. The improved regenerative environment should act synergistically to alleviate fibrosis and improve myogenic potential in the transplanted cells.
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Targeting transgenes to genetic safe-harbor loci and transient
overexpression systems have been developed to reduce the
perceived risks associated with transgene integration but are
likely precautionary and immaterial to therapeutic application

(Sadelain et al., 2012; Ordovás et al., 2015; Kim et al., 2017; Kim
et al., 2021; Shin et al., 2020).

Despite the drawbacks associated with direct reprogramming
the FDA has recently given clinical trial approval for a

TABLE 1 Key findings published that have progressed the field of iMP generation to its current state. The stability and flexibility afforded by directed
differentiation are highlighted along with the maturation characteristics that we believe to be critical to improving iMP therapeutic application.

Reference Differentiation
technique/key
advancement

in vitro iMP
validation

in vivo iMP
engraftment

Purification
strategy

Maturity
assessment?

Awaya et al. (2012) First example of directed
differentiation of human
iPSCs into iMPs

iMP Pax7 expression (RT-
PCR, IF)
iMP-derived myoblasts/
myofibers express of
MyoG, MYH, and
Dystrophin (IF)

Yes – CTX injury to TA
transplanted with 1.0 × 105 -
5.0 × 105 iMPs. Pax7+ cells
and hLaminin myofibers
observed 24 w.p.i

Crude replating of
embryoid body outgrowths
at low density

No direct assessment of
iMP maturation state but
reinjury following in vivo
iMP transplantation show
Pax7+ cells capable of
activation and self-renewal

Darabi et al. (2012) First example of direct
reprogramming of iPSCs into
iMPs via inducible
Pax7 overexpression; rescue of
dystrophin expression

iMP Pax7 expression
(qPCR, IF)
iMP-derived myoblasts/
myofibers express MyoG,
MYH (IF)

Yes – CTX injury to TA
transplanted with 3.0 × 105

iMPs. Pax7+ cells and
hDystrophin+ myofibers
observed 8 w.p.i

Cell sorting of Pax7-GFP+
reporter cells

Improvements to absolute
and specific force
production capacity in
treated legs observed but
no assessment of Pax7+
cell maturity post-
engraftment

Tedesco et al.
(2012)

First example of direct
reprogramming of iMPs using
MyoD; iMPs engineered to
express SGCA and rescue
LGMD2D phenotype

iMP MyoD expression
(IF, RT-PCR)
iMP-derived myoblasts/
myofiber express MyoG,
MYH (IF, RT-PCR) and
SGCA (IF)

Yes - Intramuscular SGCA
expression following
transplantation with
continued tamoxifen
administration

Cell sorting of SSEA1- cells n/a

Chal et al. (2015),
(2016)

Standardization of a defined
directed differentiation
protocol using serum free
conditions

MyoG-driven reporter to
track myogenic
differentiation
Expression of Pax3, Pax7,
MyoG, MyoD, and MYH
corresponding to
developmental stage
during differentiation (IF)

Yes – 1.0 × 105 cells
transplanted into uninjured
mdx mice restored
dystrophin expression

Cell sorting of Pax7-GFP+
reporter cells

No direct assessment of
iMP maturation state but
histological analysis post-
transplantation show
mature hDystrophin +
fibers with hPax7 + cells
within the MuSC niche

Hicks et al. (2018) Directed differentiation
followed by Erbb3+/NGFR+/
CD57- FACS-purification
improves engraftment of
CRiSPR–Cas9 edited cells

Sorted iMPs express
Pax7 and MyoD (IF,
qPCR); MYF5, MyoG
(qPCR)
Improved iMP-derived
myofiber maturity
MYH (IF)

Yes - 1.0–2.0 × 106

CRiSPR–Cas9 cells, edited to
retore dystrophin
expression, transplanted into
mdx mice restored
dystrophin expression with
significant number of iMP-
derived myofibers observed

Cell sorting on ERBB3+,
NGFR+, CD57- iMPs

Engrafted iMPs performed
better in vivo compared to
cultured fetal MPs but
were less potent than
transplants using freshly
isolated fetal MPs

Xi et al. (2020) Generation of human skeletal
muscle atlas dataset and
maturation state comparison
to iMPs generated by directed
differentiation

scRNA-seq comparing
myogenic potential of
3 commonly referenced
directed differentiation
protocols to in vivo
human developmental
data

n/a Cell sorting on ERBB3+,
NGFR+, CD57- iMPs

In-depth transcriptomic
analysis (scRNA-seq) of
iMPs demonstrate that
these cells do not mature
beyond the embryonic-to-
fetal stage observed in
human development

Mashinchian et al.
(2022)

Directed differentiation of
iMPs in 3D co-culture system
alongside embryonic
endothelial cells and
fibroblasts

Sorted iMPs express Pax7
(IF)
Sorted iMP-derived
myoblasts/myofibers
express MyoG, MyoD,
and MYH (IF)

Yes – CTX injury to TA of
MDX mouse transplanted
with 2.5 × 104 sorted iMPs
restored dystrophin
expression, improved
eccentric force production,
and displayed capacity to
activate following reinjury

Cell Sorting on CD56 +,
ITGA9+ cells correspond
with Pax7-GFP reporter

Freshly isolated embryonic
skeletal muscle progenitors
and iMPs were
transplanted and
engraftment efficiency
compared, demonstrating
improved iMP-derive
myofiber maturation

Mavrommatis et al.
(2023)

Directed differentiation of
iMP organoids

In-depth characterization
of iMP development and
maturation state within
organoids (IF,
scRNA-seq)

Yes - CTX injury to TA
transplanted with 1.0 × 105

sorted iMPs. Engraftment
claimed but not quantified
or characterized

Cell sorting on CD82 +
cells

In-depth transcriptomic
analysis (scRNA-seq) of
iMPs within organoids a
correlate with those
present at human
developmental week 17–18
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first-of-its-kind muscular dystrophy treatment in which
allogeneic cell banks, induced to a myogenic lineage using
Pax7 overexpression, will be assessed for safety, tolerability, and
engraftment capacity in DMDpatients (Myogenica, 2024). Successes
in these early trials have the potential to transform the landscape of
myopathy-targeting therapeutics and open the door to more
advanced therapeutic modalities, as we discuss below.

2.2 Directed differentiation

Unlike direct reprogramming, directed differentiations use
transgene-free methods of generating iMPs, relying on a holistic
consideration of the developmental conditions that give rise to adult
MuSCs. The first directed differentiation protocols were adapted from
human embryonic stem cell (hESC) systems, and relied on undefined
medias to differentiate embryoid body outgrowths into iMPs (Barberi
et al., 2007; Chang et al., 2009; Mizuno et al., 2010; Awaya et al., 2012).
While heterogeneity in the resulting populations was duly noted, these
early studies provided evidence of myogenic potential in human iPSCs,
paving way for more sophisticated protocols.

In 2016, two seminal papers established the culture conditions for
generating Pax7+myogenic progenitors fromhuman iPSCs, optimizing
an approach that induces presomitic mesoderm (PSM) specification
prior to myogenic progenitor differentiation (Chal et al., 2015; Chal
et al., 2016; Shelton et al., 2016). The resulting iMPs demonstrated
robust myogenic capacity, but the rationale for the timing and
concentration of certain growth factors remains dubious, even today.
As these remain two of the most cited protocols for the generation of
iMPs, amore granular screening aimed at optimizing these conditions is
warranted and overdue. Data on the transition from early fetal to adult
skeletal muscle in human tissue isolates are publicly available and may
provide insights that would resolve this ambiguity (Xi et al., 2020).

Today, generation of iMPs using PSM to myogenic precursor
differentiation has become the gold-standard in directed
differentiations. However, the resulting cells are heterogeneous
and there remains potential for further optimization and
refinement (Bou Akar et al., 2024). Directed differentiations can
generate iMPs that stably express Pax7 and are a more
developmentally accurate recapitulation of MuSC-like cells than
those generated via direct reprogramming. Standardization of
directed differentiation protocols will be crucial to delivering
therapeutic-grade iMPs. Towards this end STEMCELL
technologies has released a product (STEMdiff™ Myogenic
Progenitor Supplement Kit), that reliably produces a robust
population of iMPs. cGMP qualification of products like this
would represent a major step towards therapeutic application.

2.3 Purification strategies to isolate iMPs

Regardless of the method used to generate iMPs, their therapeutic
potential remains constrained by population heterogeneity. Direct
reprogramming protocols utilize Pax7-driven fluorescent reporters to
facilitate iMP purification, but neural crest progenitors, which also
express Pax7, commonly contaminate these cultures (Basch et al., 2006).
Non-transgenic directed differentiation strategies lack fluorescent
reporters, necessitating the identification of surface markers that

correlate with myogenic Pax7 expression. Cell surface markers for
the purification of adultMuSCs have been identified, but are not reliably
expressed in human iMPs (Wosczyna and Rando, 2018; Mierzejewski
et al., 2020). Characterization of Pax7+ iMPs has led to the identification
of several combinations of cell surface markers that aid in their
purification. While CD54, CD10, CD82, CD56, and CDH13, and
FGFR-4 all correlate with Pax7+ expression in human iMPs, the
epidermal growth factor receptor ERBB3 has thus far been
demonstrated the most reliable (Choi et al., 2016; Uezumi et al.,
2016; Hicks et al., 2018; Sakai-Takemura et al., 2018; Wu et al.,
2018; Nalbandian et al., 2021). In combination with positive
selection for CD271 and negative selection of
CD57 neuroectodermal contaminates, ERBB3 allows robust
purification of iMPs that are phenotypically similar to the MuSCs
observed developmentally during secondary myogenesis (Hicks et al.,
2018; Tey et al., 2019). To validate myogenicity after cell sorting, iMPs
should be plated and immediately stained for Pax7 and MyoG.
Additional confirmation of myogenic potential should be confirmed
by staining for myosin heavy chain (MYH) and dystrophin following
subsequent differentiation into myotubes.

3 Maturation of iPSC derived myogenic
progenitors beyond the
fetal phenotype

Despite improvements in the generation and purification of
iMPs over the last decade, these cells invariably retain a late-
embryonic/early-fetal phenotype, which like fetal MuSCs, show
reduced engraftment capacity compared to adult MuSCs
(Castiglioni et al., 2014; Xi et al., 2020). Strategies to address this
lack of maturity include culturing iMPs in a 3D macroenvironment,
external stimulation, and in vivo maturation (Khodabukus et al.,
2019; Selvaraj et al., 2019; Kim et al., 2020; Sun et al., 2022; van der
Wal et al., 2023; Crist et al., 2024). As maturation state remains the
most significant identifiable cause of poor iMP engraftment, a
collective effort must be made to address this problem.

3.1 3-dimensional and co-culture systems

3D directed differentiation of iMPs attempts to integrate the culture
conditions established in 2D protocols with the spatial/environmental
cues afforded by 3D organization. In one study, fully humanized
multilineage embryoids containing iPSCs, growth-arrested
embryonic fibroblasts and embryonic endothelial cells were grown
together using a directed differentiation protocol, resulting in robust
myogenic induction of the iPSCs; after only 13 days 40%–50%of cells in
these embryoids were Pax7+ (Mashinchian et al., 2022). Unfortunately,
the method used in this study to quantify Pax7 via RNA-FISH
misrepresents the true myogenic Pax7 population, and staining with
surface markers for Pax7-associated proteins significantly reduced the
number of truly myogenic cells. In addition, despite acceptable
engraftment and improvements to functional force production, these
cells exhibited an embryonic (week 9) phenotype, indicating that they
are no more mature than those produced in 2D systems.

In a more recent publication, human skeletal muscle organoids
formed a largely myogenic population of cells (~90%). Interestingly,
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a significant number of mesenchymal (~4%) and neural (~5%) cells
also populated these 3D structures. While not explicitly studied, the
heterogenous 3D structure was likely partially responsible for the
maturation of the resulting Pax7+ iMPs, which closely resembled a
fetal week 17 phenotype (Mavrommatis et al., 2023). Cell-cell
communication analysis of the scRNA sequencing data generated
in this work identified a number of upregulated ECM components
(COL1A2, COL5A2, COL5A3, FN1) and transcription factors
(FBN1, CHODL, SPRY1) that could be targeted in 2D or 3D
systems to further mature iMPs.

While inducing differentiation of iMPs using 3D culture systems
is relatively new, the application of differentiated iMPs within 3D
systems has been widely reported (Rao et al., 2018; Selvaraj et al.,
2019; van der Wal et al., 2023). It is established that 3D co-cultures
can mimic the MuSC niche, enhance myofiber maturation, boost in
vivo engraftment potential, and act as effective disease models
(Quarta et al., 2016; Quarta et al., 20017; Bersini et al., 2018;
Maffioletti et al., 2018; Rao et al., 2018; Bakooshli et al., 2019;
Kim et al., 2020; Urciuolo et al., 2020; Massih et al., 2023). While
recovery of mature iMPs from 3D systems may limit certain
therapeutic applications (e.g., those requiring single cell
suspensions), it may enhance their utility in others (e.g.,
traumatic skeletal muscle injury). 3D systems should be
considered valuable tools for assessing iMP maturation and could
help to further identify culture conditions that enhance this process.

3.2 Stimulation of iMPs to improve maturity

Stimulation of myogenic cells can be achieved through either
mechanical, chemical, electrical, or static tension. Early studies of
C2C12-derived myofibers seeded within 3D collagen scaffolds
demonstrated that electrical stimulation of these cells improved
sarcomere organization and myofiber maturity (Park et al., 2008). In
2018, Rao et al. demonstrated that myofibers grown within their 3D
scaffolds supported a population of self-sustaining Pax7+ iMPs (Rao
et al., 2018). Despite thorough characterization of this stimulatory effect
on myofiber maturity and force production, the Pax7+ iMP population
was not further characterized. In a more recent study, van derWal et al.
directly compared directly differentiated iMP-derived myofibers to
those of primary human myoblasts, showing that electrical
stimulation of the 3D scaffolds produced comparable force
production measurements (van der Wal et al., 2023). While this
study provided a detailed physical and proteomic analysis of the
resulting myofibers, the presence and maturity of Pax7+ cells within
the constructs were not reported. In vivo, maturation of the MuSC
compartment coincides with myofiber maturation following secondary
myogenesis. Future studies should make use of systems like those
described above to assess the effects of stimulation on the capacity of
iMP-derived myofibers to support maturation of the associated iMPs.

3.3 The body is the best bioreactor

Human MuSC development is a spatiotemporally coordinated
process guided by concurrent maturation of the surrounding tissue
(Chal and Pourquié, 2017). Differentiation of iPSCs to fully mature
iMPs may therefore be limited by constraints inherent to culture

systems. Comparing MuSCs with iMPs matured in vivo or in vitro
has demonstrated that in vivo-matured iMPs more closely
resembled adult MuSCs, whereas in vitro-matured iMPs retained
a more fetal-like transcriptomic profile (Incitti et al., 2019).
Important myogenic regulators (Stat3, Jun, Itga7, Tgfb2, Notch1,
Notch3, and Jag1) and genes involved in ECM regulation were
upregulated in the in vivomatured iMPs compared to those matured
in vitro. Future studies aimed at targeted activation or inhibition of
signaling pathways in which these factors are involved may improve
maturation of iMPs in vitro. Likewise, incorporating the identified
ECM modalities within engineered scaffolds may expedite the
maturation of these cells when applied within certain therapeutic
contexts. The key takeaway from these data is that iMP maturity
in vitro may be less significant to successful therapeutic application
than previously thought; instead, we may be able to rely on in vivo
maturation to carry these cells towards a more MuSC-
like phenotype.

4 Engineering iMPs to improve
therapeutic potential

Advancements in the generation, purification, and maturation
of iMPs justify consideration of how to proceed with their
therapeutic application. Recent reviews have highlighted the need
for pre-clinical testing of the safety and efficacy of iMPs but
emphasis is often placed on those capable of addressing muscular
dystrophies (Iberite et al., 2022; Sun et al., 2024). In this section we
will instead discuss tissue engineering strategies focused on the
treatment of volumetric muscle loss (VML). We will then
consider how we might employ iMPs as a therapeutic platform,
focusing potential application of these cells as treatments for
systemic diseases.

4.1 Current therapeutic applications of iMPs
in VML

VML is characterized by a loss of tissue architecture that leads to
chronic fibrosis and an associated loss of function (Corona et al.,
2015). Current clinical treatments rely on crude muscle flap
surgeries, which are limited by donor-site availability (Greising
et al., 2017). Experimental therapeutics targeting VML aim to
restore tissue integrity and function through the use of 3D
scaffolds seeded with myoblasts or MuSCs (Corona et al., 2013;
Quarta et al., 2017; Goldman et al., 2018). Despite the obvious
application of iMPs as a substitute for patient-derived MuSCs, few
studies have reported successful therapeutic application of these cells
(Wu et al., 2021; Pinton et al., 2023). iMP maturity likely dictates
survival within the scaffold and the capacity to successfully generate
functional de novo muscle.

4.2 Augmenting scaffold design to improve
iMP efficacy

Scaffold design is critical to targeting VML pathophysiology
(Wolf et al., 2015). In previous sections we have alluded to different
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ECM components that might help to mature iMPs in vitro. Current
scaffolds can include either synthetic or natural material
compositions, with natural hydrogels generally favored due to
their intrinsic biocompatibility (Fischer et al., 2020; Luo et al.,
2022). Hydrogels are frequently generated using proteins like
collagen or fibrinogen, or polysaccharides such as hyaluronic acid
or alginate. Those composed of proteins - specifically collagen -
rarely consider particular isoforms, which have diverse functional
characteristics (Goldman et al., 2018; Matthias et al., 2018; Pollot
et al., 2018). Future studies should aim to incorporate specific
collagen isotypes, like those already identified as important for
iMP maturation, into scaffolds seeded with iMPs to improve
maturation and survivability (Incitti et al., 2019). Additional
considerations, such as the addition of growth factors and
materials that promote revascularization and reinnervation must
also be considered but are outside the scope of this perspective (Wu
et al., 2021).

4.3 iMPs as in vivo biologics factories

Skeletal muscle is a highly vascularized, metabolically active
tissue, making it an excellent vehicle for the delivery of biological
therapeutics. The engraftment of iMPs, while imperfect, is likely
sufficient to deliver effective cell-based synthetic gene products in
situ. A key advantage of iMPs is their capacity to be extensively
engineered prior to differentiation and/or transplantation, affording
flexibility in tailoring treatments. Utilizing iMPs as a delivery
platform for therapeutics like growth factors, cytokines, and
biologics represents a highly promising, yet largely untapped,
application. This approach could revolutionize the delivery of
therapeutics by directly targeting affected tissues, enhancing
treatment precision and efficacy.

Following VML, a dysregulated immune response results in
persistent inflammation, elevated TGFβ expression within the
damaged tissue, and resulting in fibrosis (Larouche et al., 2021).
Experimental treatments have successfully alleviated fibrosis
through systemic administration of anti-fibrotic agents that target
TGFβ, but these treatments have dangerous off-target effects (Garg
et al., 2014; Greising et al., 2019; Larouche et al., 2022). More
recently, work has demonstrated that local administration of the
pro-regenerative cytokine IL-10 can improve the regeneration in
skeletal muscle following VML (Huynh et al., 2023). Engineering
iMPs to target inflammation and fibrosis - either by locally secreting
anti-TGFβ antibodies or by counteracting inflammation using pro-
regenerative cytokines such as IL-10 - could enhance regeneration
after VML while mitigating the risks of systemic anti-TGFβ
therapies (Borok et al., 2020; Narasimhulu and Singla, 2023). The
capacity to generate inducible transgenes, controlled either
temporally or spatially, would further improve the precision of
these treatments (Figure 1).

In another example, we imagine a system in which iMPs
engineered to constitutively express and secrete hormones
responsible for blood glucose-homeostasis, might alleviate
hyperglycemia in diabetic patients (Xie and Fussenegger, 2018).
Synthetic circuits enabling glucose-mediated insulin secretion have
been developed, bypassing the need for islet cells, which remain
targeted by the immune system in type 1 diabetics receiving islet

transplants (Xie et al., 2016). Type 2 diabetes might also be targeted
using iMP-delivered synthetic gene circuits that secrete adiponectin
to improve insulin sensitivity (Ye et al., 2017). Hypothetically, these
synthetic gene circuits, applied to iMPs transplanted in otherwise
healthy diabetic patients, could counteract hyperglycemia without
the documented shortcomings of iPSC-based pancreatic beta cell
therapies (Maxwell and Millman, 2021).

Thoughtful design of inducible synthetic transgenes should
allow for iMPs to deliver therapeutics either locally or
systemically. While the immediate application of these systems to
target VML pathology are evident, the application of iMPs as a
therapeutic delivery platform targeting systemic disease has yet to be
discussed in the literature. The capacity for iMPs to persist long term
as engrafted myofibers makes them an attractive alternative to other
cell-based therapies that are often limited by poor engraftment
efficiency and survivability (Levy et al., 2020; Zhou et al., 2021).
We propose that future studies aiming to address disease using cell
therapeutics consider the use of iMPs as a reliable delivery platform.

4.4 iMPs as biosensors to study
cellular dynamics

Temporal regulation of synthetic gene circuits is easily
achieved through the use of inducible promoters, but the
spatial organization of regenerating skeletal muscle may
provide additional, therapeutically relevant, cues. Spatial
transgene regulation has been achieved through the
engineering of synthetic receptors capable of recognizing
specific ligands, resulting in customizable sense/response
behaviors (Roybal et al., 2016; Scheller et al., 2018). Synthetic
notch (synNotch) receptors have proven a particularly powerful
tool, capable of inducing the expression of myogenic transgenes
in a spatially-regulated context (Morsut et al., 2016). Application
of the synNotch system in vivo has demonstrated broad utility,
from serving as an intercellular contact sensor capable of fate-
mapping endothelial cells during development to enhancing CAR
cell therapeutic efficacy (Hyrenius-Wittsten et al., 2021; Zhang
et al., 2022). iMPs engineered to express customized synNotch
constructs could provide spatial, context-dependent, regulation
of transgene activation/deactivation. For example, pro-fibrotic
collagens 3, 4 and 6 are significantly upregulated in the fibrotic
lesion following VML (Hoffman et al., 2022). A self-regulating,
cell-based synNotch system that uses antiCol3-tTa to control
expression of anti-TGFβ antibody expression could enable
targeted delivery, limiting expression to areas only where pro-
fibrotic collagens are present (Figure 1).

4.5 Engineering iMPs to exogenously
stimulate myofibers

When skeletal muscle is insufficiently innervated exogenous
electrical stimulation can improve both the maturation and force
production of the myofibers, aiding in the rehabilitation of muscle
strength (Gordon and Mao, 1994; Crist et al., 2024). Optogenetic
switches, which allow for transdermal stimulation of skeletal muscle
using visible light, represents an attractive alternative to invasive

Frontiers in Cell and Developmental Biology frontiersin.org06

Hamer and Rossi 10.3389/fcell.2024.1526635

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1526635


patch clamps. Optogenetic switches have already proven capable of
driving skeletal muscle contraction both in vitro and in vivo
(Bruegmann et al., 2015; Ganji et al., 2021). Their therapeutic
application as part of an iMP-based treatment should be
investigated as it may allow for partial restoration of muscle
function in spinal cord injury patients; or, at the very least, assist
in the rehabilitation process.

5 Discussion/conclusion

The finding that myogenic differentiation is enhanced by prior
PSM specification, whether it be in directed differentiation or direct
reprograming protocols, has been fundamental to the generation of
therapeutically relevant iMPs. Likewise, the ability to accurately
purify the ERBB3+/NGFR+/CD57- myogenic Pax7+ population
using cell sorting has considerably improved the purity of the
resulting iMPs. Although imperfect, the current maturation
capacity of these protocols allows for efficient engraftment of
these cells and the generation of iMP-derived myofibers in vivo.
While improvements within each of these categories are sure to
further enhance the capacity for these cells to behave like adult
MuSCs, using current iMPs as a therapeutic delivery platform opens
the door to a wonderfully diverse and novel way of treating
myopathies and systemic diseases alike. We encourage those
working on cell-based therapies to consider new ways in which
these cells can be employed and toward a future in which long-term
iMP-based therapeutics can become a platform for
therapeutics delivery.
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