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Ischemia-reperfusion injury is a serious clinical pathology involving multiple
organs such as the heart and brain. The injury results from oxidative stress,
inflammatory response and cell death triggered by restoring tissue blood flow
after ischemia, leading to severe cell and tissue damage. In recent years, the
volume-regulated anion channel (VRAC) has gained attention as an important
membrane protein complex. VRAC plays a dual role in ischemia-reperfusion
injury: on the one hand, activated VRAC promotes the release of intracellular
chloride and glutamate, exacerbating cellular swelling and excitotoxicity, and on
the other hand, the regulatory effect of VRAC may also provide protection to
cardiomyocytes. This article reviews the pathophysiological mechanisms of
ischemia-reperfusion injury, existing therapeutic strategies and their
limitations, focuses on the molecular structure of VRAC, its activation
mechanism, and its role in ischemia-reperfusion injury, and concludes with a
discussion of the potential of targeted inhibition of VRAC as an emerging
therapeutic strategy and the challenges it faces. A deeper understanding of
the role of VRAC in ischemia-reperfusion injury is expected to provide new
therapeutic ideas to improve patient prognosis.

KEYWORDS

ischemia-reperfusion injury, volume-regulated anion channel (VRAC), LRRC8A,
Neuroprotection, therapeutic strategy

1 Introduction

Ischemia-reperfusion injury (IRI) is an important clinical problem that occurs in
multiple organs including the heart, brain, liver, kidneys, and intestines, and is a common
consequence of acute events such as stroke and myocardial infarction, affecting millions of
people worldwide (Roth et al., 2020). Ischemia-reperfusion injury is caused by the
restoration of tissue blood flow after an ischemic event, and this restoration triggers
oxidative stress, inflammation, and cell death, leading to a cascading series of cellular and
molecular events that exacerbate the initial damage caused by ischemia (Pickell et al., 2020).
Studies have shown that in myocardial infarction, almost 50% of the final infarct size is
attributed to reperfusion injury (Yellon and Hausenloy, 2007), therefore, finding effective
therapeutic strategies to mitigate reperfusion injury is important to improve prognosis.

In ischemia-reperfusion injury, multiple ion channels are involved and play important
roles. These include a widely expressed ion channel, the volume-regulated anion channel
(VRAC) (Nilius et al., 1997). In recent years, with breakthroughs in the study of its
structure, VRAC has begun to receive more andmore attention (Hou et al., 2022), and it has
been suggested that VRAC may play an important role in promoting the damage caused by
ischemia-reperfusion to cells and tissues (Okada et al., 2009), and thus inhibition of VRAC
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channels is being investigated as a novel therapeutic strategy for
ischemia-reperfusion injury. This promising therapeutic strategy is
described in this review.

2 Pathophysiological mechanisms of
ischemia-reperfusion injury

Ischemia-reperfusion injury involves a complex series of
biological processes (Figure 1), including an initial ischemic
phase and a subsequent reperfusion phase, which lead to cell and
tissue damage.

2.1 Ischemic phase

This initial phase is characterized by oxygen and nutrient
deprivation, leading to reduced ATP production and metabolic
dysfunction. Mitochondrial dysfunction triggers excessive reactive
oxygen species (ROS) generation (Chen et al., 2021; Grass et al.,
2022). The accumulation of ROS leads to oxidative stress, damaging
cellular structures and initiating cell death pathways. The
mitochondrial membrane potential becomes hyperpolarized,

further enhancing ROS generation and leading to mitochondrial
dysfunction (Grass et al., 2022).

2.2 Reperfusion phase

The reperfusion phase is a critical period of ischemia-
reperfusion injury, and its negative effects (and also the main
characteristics of ischemia-reperfusion injury) are mainly
reflected in the following aspects: oxidative stress, inflammatory
response, and cell death. Oxygen and nutrients accumulated during
ischemia are rapidly depleted during reperfusion, leading to
mitochondrial electron transport chain dysfunction and ROS
burst (Wang et al., 2011), activating apoptotic and necrotic
programs (Zhou et al., 2018). Meanwhile, ROS oxidizes
polyunsaturated fatty acids in the cell membrane to produce lipid
peroxides, leading to cell membrane damage and loss of function
(George et al., 2024). Inflammatory response during the reperfusion
phase is also an important cause of increased damage. Prolonged
ischemia is associated with increased production of damage-
associated molecular patterns (DAMP) released into the
surrounding tissues upon cell death. These molecular patterns
can increase pro-inflammatory signaling cascades in peripheral

FIGURE 1
Molecular mechanisms of ischemia-reperfusion injury. During the ischemic phase, cellular ATP production is reduced, mitochondria are
dysfunctional and generate excess reactive oxygen species (ROS), leading to oxidative stress that damages cellular structures and initiates the cell death
pathway. During the subsequent reperfusion phase, rapid depletion of oxygen and nutrients exacerbates mitochondrial dysfunction and causes a further
burst of ROS, activating the cell death program. ROS oxidizes polyunsaturated fatty acids in the cell membrane to produce lipid peroxides, leading to
cell membrane damage and loss of function. The inflammatory response exacerbates the damage during the reperfusion phase with the release of
damage-associatedmolecular patterns (DAMPs) and activation of the complement system, causing recruitment and activation of immune cells. Activated
inflammatory cells release large amounts of inflammatorymediators that further promote the inflammatory response. Ultimately, these events lead to cell
death through multiple mechanisms, including apoptosis, necrosis, and autophagy, causing severe damage to the organism.
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cells and activate the complement system, which in turn causes
recruitment and activation of immune cells (Kaltenmeier et al.,
2022), and activated inflammatory cells release a large number of
inflammatory mediators, such as tumor necrosis factor-alpha
(TNF-α) and interleukin 6 (IL-6), which further contribute to
inflammatory responses (Zhou et al., 2018). In addition,
increased vascular permeability, excessive platelet aggregation
and release of derived mediators during ischemia-reperfusion
injury are alterations that lead to abnormalities in the coagulation
process and exacerbate the inflammatory response (Eltzschig and
Eckle, 2011). The inflammatory response also leads to a cytokine
cascade, the consequences of which include further generation of
reactive oxygen species (ROS), tissue hypoxia, and cell death
(George et al., 2024). In conclusion, ischemia-reperfusion injury
causes cell death through multiple mechanisms involving
apoptosis, necrosis, and autophagy (Hotchkiss et al., 2009),
resulting in severe damage to the organism, and an
understanding of these mechanisms is essential for the
development of therapeutic strategies to mitigate ischemia-
reperfusion injury-induced tissue damage.

3 Treatment and limitations of
ischemia-reperfusion injury

Because of its complex pathophysiological mechanisms, current
treatments for ischemia-reperfusion injury are limited in
effectiveness and scope, highlighting the urgent need for
new therapies.

There are no specific treatments for ischemia-reperfusion injury,
but several strategies have been widely used to manage the disease
and mitigate its effects. These strategies focus primarily on restoring
blood flow and preventing further tissue damage; however, these
approaches do not adequately address the underlying
pathophysiological mechanisms of IRI, which involve
inflammatory and immune responses that exacerbate tissue
damage (Sánchez-Hernández et al., 2020). For example, in the
treatment of acute myocardial infarction (MI), the primary goal
is to restore coronary blood flow, which is achieved as quickly as
possible with thrombolytic therapy and/or angioplasty (Eltzschig
and Eckle, 2011). Although reperfusion is beneficial in reducing the
morbidity and mortality associated with MI, the process may also
trigger an inflammatory response that further extends the damage
caused by the initial ischemia (Eltzschig and Eckle, 2011). Therefore,
more therapeutic strategies are being explored.

One such strategy is the use of drugs that target specific
pathways involved in ischemia-reperfusion injury. For example,
antioxidants can scavenge ROS, reduce oxidative stress and
protect ischemic organs (Rodrigo et al., 2022). Moreover,
inhibition of the complement system, which attenuates the
immune-inflammatory response triggered by reperfusion, is
currently being investigated as a means of reducing IRI (Granger
et al., 2003). However, in animal experiments using this approach,
some studies have reported improved survival but no reduction in
infarct size (de Zwaan et al., 2002; Verrier et al., 2004). This suggests
that although complement inhibition may modulate some aspects of
ischemia-reperfusion injury, it may not be able to completely
eliminate the injury process.

Ischemic preconditioning (IPC) and postconditioning (IPostC)
are also two strategies for treating ischemia-reperfusion injury. They
protect organs and reduce infarct size by a short ischemia/
reperfusion cycle before or after reperfusion of the ischemic area,
respectively (Kumar et al., 2021). Ischemic preconditioning removes
accumulated catabolic metabolites and reduces ATP depletion,
protecting organs from damage caused by subsequent prolonged
ischemia (Murry et al., 1991), but needs to be performed before the
ischemic event, which is difficult to predict in clinical practice (Lim
and Hausenloy, 2012). For postconditioning, which is theoretically
more feasible in the clinic, more in-depth studies are still needed
(Kumar et al., 2021).

Mesenchymal stem cells (MSCs) can be used to treat ischemia-
reperfusion injury by secreting multiple trophic factors to inhibit
inflammatory signals and oxidative stress, and clinical trials
applying MSCs to treat ischemia-reperfusion injury are currently
underway (Arakawa et al., 2023). However, the safety of MSC
therapy needs to be emphasized. IPSC-derived MSCs (iMSCs)
have an unlimited self-renewal capacity and therefore have
tumorigenic potential (Liu et al., 2013). In addition, MSCs
expressing tissue factor (TF/CD142) have the risk of causing
thromboembolism and thus have limitations in clinical
application (Arakawa et al., 2023).

The role of neutrophils in IRI has also become a focus of
therapeutic intervention in IRI. The use of CD11/CD18 integrin-
blocking antibodies inhibits neutrophil aggregation in the infarcted
area. Although animal studies have shown promise, clinical trials
have not demonstrated a significant reduction in infarct size or
improvement in clinical outcomes (Faxon et al., 2002).

Statins such as Rosuvastatin inhibit the inflammatory response
during ischemia-reperfusion by mediating the accumulation of
immunosuppressive regulatory T cells (Tregs) (Burne-Taney
et al., 2006; Arias-Diaz et al., 2009) in a mouse model, which in
turn limits IRI (Ke et al., 2013). This suggests that statins may have a
role that can be used in IRI therapy.

In conclusion, IRI therapeutic strategies need to have a
multifaceted role, and exploring new therapeutic strategies
requires a nuanced understanding of the complex interactions
between inflammatory mediators, immune cells, and tissue repair
mechanisms. Current therapeutic strategies, while showing promise
in preclinical and some clinical settings, have yet to yield clear and
universally effective approaches to IRI management. Recently, it has
been found that the volume-regulated anion channel (VRAC) also
plays an important role in ischemia-reperfusion injury, and that
inhibition of VRAC can attenuate the damage caused by ischemia-
reperfusion, and research on VRAC and its inhibitors is expected to
drive new advances in the treatment of ischemia-reperfusion injury.
The following section describes this in detail.

4 VRAC channels and their molecular
components

4.1 Composition and structure of VRAC

The volume-regulated anion channel (VRAC) is a key
membrane protein complex that plays an important role in cell
volume regulation and various physiological processes. Its molecular
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identity remained an enigma for nearly 3 decades until its essential
subunit leucine-rich repeat-containing protein 8A (LRRC8A, also
known as SWELL1) was discovered (Qiu et al., 2014). VRAC
channels are formed by the assembly of LRRC8 family,
specifically LRRC8A and its four homologous proteins LRRC8B,
LRRC8C, LRRC8D and LRRC8E (Voss et al., 2014). These proteins
form heterotrimeric multimeric channels (Syeda et al., 2016), and
the composition of the subunits determines the properties and
substrate selectivity of the channels, giving the constituent
VRACs different characteristics, including their ionic selectivity
and permeability to organic osmotic pressure regulators (Osei-
Owusu et al., 2018).

The LRRC8 protein consists of two parts: four
transmembrane helices (TM) at the N-terminal end and
seventeen leucine-rich repeat sequences (LRR) at the
C-terminal end (Abascal and Zardoya, 2012). The LRR
structural domain is intracytoplasmic and is thought to be
involved in protein-protein interactions. The TM region
displays weak, but significant, sequence similarity to gap
junction proteins pannexins, suggesting a possible evolutionary
relationship (Osei-Owusu et al., 2018). Functional studies and
mutational analyses have established that the N-terminal TM
region plays an important role in the structure and function of
VRAC, such as the threonine (T44) at position 44 in SWELL1,
where mutation of this residue significantly alters the anion
permeability ratio (Qiu et al., 2014; Syeda et al., 2016).

4.2 Physiological mechanism

VRAC can be activated by a variety of stimuli, and its main
activation mechanism is cell swelling, extracellular hypo-
osmotic state or intracellular hyperosmotic state leading to an
osmotic pressure gradient that triggers the opening of VRAC
channels, mediating the transmembrane transport of a variety of
anions and the formation of a kind of anionic currents to restore
cell volume (Hoffmann et al., 2009; Jentsch, 2016). VRAC is
therefore thought to play an important role in the cellular
regulated volume reduction (RVD) role (Formaggio et al.,
2019), and it has been shown that when LRRC8 gene
expression is inhibited, the intensity of the VRAC current
decreases and the ability to regulate cell volume is
significantly reduced (Formaggio et al., 2019). VRAC can also
be activated by a decrease in intracellular ionic strength, and it
has been suggested that this is the initial trigger for VRAC
activation (Osei-Owusu et al., 2018), rather than an increase
in cell volume per se. In addition, the mechanism of VRAC
activation may also involve a variety of intra- and extracellular
signaling molecules. For example, the inflammatory mediator
sphingosine-1-phosphate (S1P) can activate VRAC in microglia,
and S1P-induced VRAC activation can lead to the release of
ATP, which may further affect microglial and neuronal activity
and cause neuropathic pain (Chu et al., 2023). Other activation
mechanisms such as apoptosis inducers like staurosporine and
cisplatin (Maeno et al., 2000; Shimizu et al., 2004), and G
protein-coupled receptor (GPCR) (Liu et al., 2009; Takano
et al., 2005) activation have also been reported.

4.3 Physiological effects

The physiological mechanisms of VRAC are mainly involved in
cell volume regulation and regulation of multiple physiological
processes. Its most prominent role is mediating anion release and
regulating cell volume as mentioned above, in addition to several
other aspects, such as involvement in cell proliferation (Shen et al.,
2000), apoptosis (Konishi et al., 2019), necrosis (Liu and Stauber,
2019), and migration (Liu and Stauber, 2019); In terms of
metabolism, VRAC has been shown to be critical for glucose-
stimulated insulin secretion in pancreatic islet β-cells. The
channel contributes to membrane depolarization, causing calcium
inward flow and subsequent insulin release (Best et al., 2010);
Immunologically, it plays a role in the activation of the
NLRP3 inflammasome, which is a key component of the innate
immune response (Compan et al., 2012), in addition, VRAC
contributes to T-cell activation and B-cell development, as
evidenced by the phenotype of Swell1 knockout mice, which
show deficits in T-cell development and B-cell function (Kumar
et al., 2014); VRAC also exerts an effect on the nervous system, it is
involved in the release of excitatory neurotransmitters such as
glutamate (Mongin, 2016). This process may have a greater
impact in conditions such as ischemic stroke, where glutamate
release mediated by VRAC activated by cerebral ischemia causes
damage to neurons through excitotoxicity (Zhou et al., 2020).

As the understanding of the physiological role of VRAC
deepens, some emerging areas are gradually gaining attention
from researchers. Since VRAC is permeable to certain apoptosis
inducers such as cisplatin, it contributes to the cellular uptake of
anticancer drugs (Osei-Owusu et al., 2018). Studies have shown that
downregulation of the SWELL1 subunit correlates with cancer cell
resistance to cisplatin (Sørensen et al., 2016), suggesting that VRAC
may be a promising target for overcoming cancer cell resistance in
cancer therapy. Improving cancer therapeutic efficacy by
modulating VRAC activity may become a promising study in
the future.

Another area that is still unclear but holds great promise is the
modulation of neuropathic pain by VRAC. Given that VRAC
involves the release of ATP and glutamate (Chu et al., 2023), a
key neurotransmitter involved in pain signaling (Fundytus, 2001),
the role played by VRAC in pain perception and transmission
warrants further study to identify potential therapeutic
opportunities.

In conclusion, the physiological role of VRAC encompasses
many aspects of the organism’s vital activities such as cell volume
regulation, immune responses, metabolic processes, and
neurological functions, and an understanding of the biophysical
properties and regulatory mechanisms of VRAC is essential for the
development of effective therapeutic approaches.

5 VRAC’s role in the pathophysiology of
ischemia-reperfusion

In the context of ischemia-reperfusion injury, cells are altered by
ischemic osmolarity and undergo swelling, activating volume-
regulated anion channels (VRAC), which play an important role.
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In the CNS, it has been shown that VRAC activity is
upregulated in neurons and astrocytes in the brain of stroke
mice (Chen et al., 2024), leading to an increase in intracellular
chloride ion efflux thereby inducing cytotoxic neuronal swelling
and glutamate excitotoxicity effects, which aggravate the brain
damage of ischemic stroke through a dual effect (Chen et al.,
2024). Reduced neuronal swelling was observed in neuron-
specific Swell1 knockout (NEX-cKO) mice, it can therefore be
hypothesized that this swelling is dependent on
SWELL1 channels (Chen et al., 2024), suggesting that
SWELL1 plays an important role in cerebral ischemia-
reperfusion injury. Activation of VRAC in astrocytes is
thought to release glutamate (Yang et al., 2019), and large
amounts of glutamate cause overactivation of NMDA
receptors, exacerbating excitotoxicity and neuronal death
(Belov Kirdajova et al., 2020).

VRAC also plays a similar double-edged role in myocardial
ischemia-reperfusion injury (Okada et al., 2019). During myocardial
ischemia-reperfusion, the heart undergoes deprivation of oxygen
and nutrients during ischemia and reperfusion, leading to cellular
swelling and activation of VRAC. The protection of cardiomyocytes
by VRAC may be related to the cardiac cystic fibrosis
transmembrane conductance regulator (cCFTR), a ventricular
splice variant of CFTR (Okada et al., 2019). CFTR is a cyclic
adenosine monophosphate (cAMP)-dependent chloride channel
expressed in the myocardium, whose function involves
participation in the transport of chloride ions (Levesque et al.,
1992). At the onset of myocardial ischemia-reperfusion injury,
catecholamines are released in large quantities (Karwatowska-
Kryńska and Beresewicz, 1983), and cCFTR is subjected to β-
adrenergic stimulation (Bahinski et al., 1989; Harvey and Hume,
1989; Ehara and Ishihara, 1990; Matsuoka et al., 1990), which
participates in the RVD mechanism (Wang et al., 1997;

Yamamoto et al., 2001), and acts in conjunction with VRAC,
which helps to restore cell volume homeostasis by facilitating the
efflux of chloride ions. Although there seems to be no study showing
a direct correlation between the roles played by VRAC and CFTR in
the RVD process of cardiomyocytes when ischemia-reperfusion
injury occurs, during the phase of myocardial ischemia,
intracellular ATP depletion prevents the activation of VRAC
(Okada et al., 2019), and CFTR may provide myocardial
protection in the event that VRAC activity is impaired,
complementing the function of VRAC in regulating
cardiomyocyte RVD. However, large amounts of ROS (Wang
et al., 2005) and ATP (Clemens and Forrester, 1981) are usually
produced intracellularly during reperfusion, which may promote the
release of ATP and glutamate from VRAC (Okada et al., 2020),
further exacerbating the injury and leading to cell death (Figure 2).

In conclusion, VRAC plays an important role in ischemia-
reperfusion injury in both the brain and the heart, and its
activation leads to cell swelling, dysfunction, and even death,
which in turn affects the overall function of the nervous system
and the heart. Therefore, specific targeted inhibition of VRAC may
be a novel therapeutic approach to attenuate ischemic cardio-
cerebral injury and improve the prognosis of patients with
ischemic diseases.

6 Therapeutic potential of VRAC
inhibition

Inhibition of VRAC may help to reduce the damage caused by
ischemia-reperfusion, and inhibition of VRAC by genetic and
pharmacological methods has emerged as a promising strategy
for the treatment of ischemia-reperfusion injury. The following
section describes commonly used methods of VRAC inhibition

FIGURE 2
Physiological mechanisms of volume-regulated anion channel (VRAC) and its role in ischemia-reperfusion injury. VRAC channels are activated by a
variety of physiological and pathological stimuli including hyposmolality, sphingosine-1-phosphate (S1P), and cellular swelling. They are involved in the
regulation of cellular volume (RVD) and a wide range of cellular activities by mediating the transport of a variety of anions across membranes. In addition,
VRAC channels are involved in the regulation of metabolism, the immune system, and the nervous system. In ischemia-reperfusion injury, VRAC is
activated by hyposmolality, ROS/ATP, and then pathologically releases glutamate and ATP, causing neuronal swelling, glutamatergic excitotoxic effects,
and pain. In ischemia-reperfusion injury of cardiomyocytes, VRAC regulates cell volume and function in conjunction with cystic fibrosis transmembrane
conductance regulator (CFTR). VRAC activity can be inhibited by drugs such as DCPIB and dicumarol.
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and their effectiveness in animal models and explores the current
limitations of these methods.

6.1 Methods of VRAC inhibition

Suppression of VRAC by genetic methods is mainly through
conditional knockout of the gene encoding LRRC8A, an essential
subunit of VRAC. Yang et al.’s experiments resulted in the deletion
of the LRRC8A subunit of VRAC by conditional knockout of the
GFAP gene in mouse astrocytes and the GFAP - cKOmice exhibited
reduced infarct size and significant improvement in neurological
prognosis after middle cerebral artery occlusion (MCAO) (Yang
et al., 2019). Subsequently, Zhou et al. showed that ischemia
increases LRRC8A-dependent VRAC activity in hippocampal
neurons, which enhances glutamate release and contributes to
ischemic brain injury (Zhou et al., 2020), and that mice with
conditional knockout of the LRRC8A gene had significantly
lower infarct volume and neurological severity scores than wild-
type mice after middle cerebral artery occlusion cerebral infarction
(Zhou et al., 2020). Furthermore, these findings emphasize the
importance of astrocyte VRAC in the pathogenesis of ischemic
stroke and suggest that targeting this pathway may provide
neuroprotection.

A variety of drugs have been shown to inhibit VRAC. 4-(2-
butyl-6,7-dichloro-2-cyclopentyl-1-on-5-yl) oxalylbutyric acid
(DCPIB) is a potent and specific blocker of VRAC, acting on
the swell1 subunit (Decher et al., 2001), and in a reversible middle
cerebral artery occlusion (rMCAO) model, in-chamber
administration of DCPIB resulted in a reduction in mean
infarct volume by approximately 75% compared to controls
(Zhou et al., 2020); in Qiu et al. DCPIB attenuated
excitotoxicity during ischemic events by decreasing glutamate
release, thereby reducing neuronal damage (Qiu et al., 2014); Han
et al. demonstrated that DCPIB significantly inhibited hypoxia-
glucose deprivation (OGD)-induced activation of microglia, with
possible mechanisms including direct inhibition of VRAC in
microglia and inhibition of the MAPK pathway, a key pathway
mediating microglial activation (Han et al., 2014). Activation of
microglia plays an important role in the inflammatory response
of ischemia-reperfusion injury (Wang et al., 2023). In a recent
study, Cao et al. found that DCPIB could promote the conversion
of pro-inflammatory M1 microglia into anti-inflammatory
M2 microglia through the MAPK signaling pathway, thereby
reducing inflammatory responses and oxidative stress at the
ischemic site (Cao et al., 2024). All these studies suggest that
DCPIB protects neuronal cells from ischemic injury. In a model
of ischemia-reperfusion injury in cardiomyocytes, DCPIB was
shown to inhibit chloride efflux mediated by VRAC to attenuate
autophagy and oxidative stress in cardiomyocytes (Shen et al.,
2014; Xia et al., 2016). These findings suggest that inhibition of
VRAC activity using DCPIB may be a promising therapeutic
strategy to attenuate ischemia-reperfusion injury.

Dicumarol, another VRAC inhibitor, administered
intracerebrally effectively blocked VRAC-mediated anionic
currents activated by ischemic stroke in mice (Formaggio et al.,
2019), and also inhibited cellular release of ATP (Formaggio et al.,
2019) as well as pathologic release of glutamate (Chen et al., 2024),

attenuated neuronal swelling and cell death, and provided
neuroprotection after ischemic stroke, which is a promising
therapeutic strategy for attenuating potential therapeutic agent
for ischemic stroke-induced brain damage. In addition,
Dicumarol is an FDA-approved drug (Chu et al., 2023). It has
been used as an effective anticoagulant in clinical practice for the
treatment of deep vein thrombosis and atrial fibrillation and is also
recommended by current guidelines for the prevention of ischemic
stroke in patients with high-risk atrial fibrillation (Kleindorfer
et al., 2021).

In addition to DCPIB and dicumarol, several other VRAC
inhibitors have shown potential in the treatment of ischemia-
reperfusion injury.

Tamoxifen, a non-selective VRAC inhibitor, has been shown to
inhibit injury after cerebral ischemia (Kimelberg et al., 2000), as well
as inhibit nNOS (Osuka et al., 2001), scavenge oxygen free radicals
(Zhang et al., 2007), and have some neuroprotective ability.

IAA-94 is also a VRAC blocker, and whole-cell membrane slice
technology has demonstrated that it can inhibit VRAC currents and
reduce glutamate-induced neuronal necrosis (Inoue et al., 2005).

4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid disodium salt
hydrate (DIDS), a stilbene derivative chloride channel blocker,
effectively eliminates chloride inward flow and neuronal swelling
induced by intracellular sodium accumulation during ischemia-
reperfusion injury (Chen et al., 2024).

Other drugs such as the carboxylate analog (NPPB), and
phloretin have also been shown to inhibit VRAC (Inoue et al.,
2005), but their roles in ischemia-reperfusion injury need to be
further investigated.

When exploring the clinical potential of VRAC inhibitors, we
must consider their efficacy, safety, and pharmacokinetic properties
in the treatment of ischemia-reperfusion injury. VRAC inhibitors,
such as DCPIB and Dicumarol, have been shown to have a certain
ability to attenuate ischemia-reperfusion injury in animal models.
However, there are certain limitations in the clinical application of
these drugs, which should be addressed in order to fully utilize the
therapeutic potential of VRAC inhibitors.

6.2 Limitations of currently used VRAC
inhibitors

Currently, VRAC inhibitors are not yet used in the clinical
treatment of ischemia-reperfusion injury. Because of the limitations
of each of these approaches, it is important to optimize the
pharmacokinetic and pharmacodynamic properties of these
inhibitors and to explore their efficacy in preclinical and
clinical settings.

6.2.1 Poor selectivity
Most of the existing VRAC inhibitors have poor selectivity

(Figueroa and Denton, 2022). Although DCPIB is a potent
VRAC inhibitor, it is somewhat toxic and poorly selective to
cells, and can have excitatory or inhibitory effects on other ion
channels and transporter proteins (Bowens et al., 2013; Lv et al.,
2019; Deng et al., 2016; Ye et al., 2009), and thus may have potential
side effects. Exploring more selective VRAC blockers is essential to
minimize side effects and maximize therapeutic efficacy.
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6.2.2 Poor penetration of the blood-brain
barrier (BBB)

Many VRAC blockers do not effectively cross the blood-brain
barrier, limiting their clinical use in the treatment of cerebral
ischemia. The protective effect of DCPIB intracerebral injection
on neurons did not show the same therapeutic effect when
administered intravenously at the same dose, suggesting that
DCPIB does not effectively penetrate the blood-brain barrier
when administered systemically (Zhang et al., 2008). The same
problem exists with dicoumarol as a therapeutic agent for
ischemia-reperfusion injury this problem, and in animal
experiments, the experimenter generally delivers the drug directly
to the ischemic region in the brain. This might be a potential
solution that can be referred to for clinical application
(Nozohouri et al., 2020; Mehta et al., 2017). Further studies are
necessary to optimize its delivery through the blood-brain barrier in
order to achieve its full therapeutic potential.

6.2.3 Inhibits RVD
VRAC plays a double-edged role in myocardial ischemia-

reperfusion injury, i.e., it can both cause myocardial injury and
protect cardiomyocytes by regulating cell volume, and its protective
effects are inhibited by VRAC inhibitors. For example, it has been
shown that IAA-94 inhibits the protective effects of ischemic
preconditioning (Batthish et al., 2002; Diaz et al., 1999) and
inhibits VRAC-mediated RVD responses (Batthish et al., 2002).

VRAC inhibitors provide a new approach for the treatment of
ischemia-reperfusion injury, and it is a promising therapeutic
strategy. However, to realize this clinical potential, future
research needs to focus on optimizing the pharmacokinetics and
pharmacodynamic characteristics of these inhibitors, addressing the
challenges related to poor selectivity, poor permeability through the
blood-brain barrier, and difficulty in maintaining a balance between
protection and damage. Furthermore, it is necessary to explore the
efficacy of these inhibitors in preclinical studies to enable them to be
used more effectively.

7 Conclusion

Ischemia-reperfusion causes severe damage to the organism,
and due to the complexity of its pathophysiological mechanisms, it
has not been found to find a very effective treatment. VRAC are
membrane proteins that are widely expressed in mammalian cells,
are activated mainly by changes in cell volume and osmolarity, are
involved in a series of physiological processes in the body, and play
an important role in ischemia-reperfusion injury. VRAC is activated
in the context of ischemia-reperfusion injury and mediates an
increase in chloride inward flow and glutamate release in the
central nervous system, causing cytotoxic neuronal swelling and
glutamatergic excitotoxic effects that exacerbate brain damage in
ischemic stroke. In myocardial ischemia-reperfusion injury, VRAC
also plays a double-edged role, either causing myocardial injury or
exerting a protective effect on cardiomyocytes by regulating
cell volume.

Targeted inhibition of VRAC may be a novel therapeutic
approach to attenuate ischemia-reperfusion injury and improve
the prognosis of patients with ischemic disease. For example,

drugs such as DCPIB and dicumarol have been shown to inhibit
VRAC, attenuate cell swelling and death, and provide a protective
effect for ischemic tissue cells. However, these inhibitors still face
challenges in clinical application, including poor selectivity,
inadequate blood-brain barrier penetration, and possible
inhibition of the protective effects of VRAC in cardiomyocytes.

VRAC inhibitors offer a promising new avenue for the treatment
of ischemia-reperfusion injury. Future studies need to focus on
optimizing the pharmacokinetic and pharmacodynamic properties
of VRAC inhibitors, improving their selectivity and blood-brain
barrier penetration, and further exploring their efficacy in preclinical
and clinical settings. A deeper understanding of the mechanism of
action of VRAC in different organs should also be pursued, which
will help develop safer and more effective therapeutic strategies and
contribute to the research on the treatment of ischemia-
reperfusion injury.
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