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Sexual dimorphism involves distinct anatomical, physiological, behavioral, and
developmental differences between males and females of the same species,
influenced by factors prior to conception and during early development. These
sex-specific traits contribute to varied phenotypes and individual disease risks
within and across generations and understanding them is essential in mammalian
studies. Hormones, sex chromosomes, and imprinted genes drive this
dimorphism, with over half of quantitative traits in wildtype mice showing sex-
based variation. This review focuses on the impact of paternal non-genetic
factors on sexual dimorphism. We synthesize current research on how
paternal health before conception affects offspring phenotypes in a sex-
specific manner, examining mechanisms such as DNA methylation, paternally
imprinted genes, sperm RNA, and seminal plasma. Additionally, we explore how
paternal influences indirectly shape offspring through maternal behavior, uterine
environment, and placental changes, affecting males and females differently. We
propose mechanisms modulating sexual dimorphism during development,
underscoring the need for sex-specific documentation in animal studies.
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Introduction

Sexual dimorphism (SDM) refers to the phenotypic variations between males and
females within the same species. The global prevalence of SDM across sexually reproducing
species has been documented in a wide range of studies. Sex differences have significantly
been evident in phenotypic traits, gene expression, and diseases. A broad spectrum of
qualitative and quantitative phenotypic traits, ranging from behavioral to health-related,
have been observed to display significant sex differences in many mammalian species, most
notably in humans (Choleris et al., 2018; Karp et al., 2017; Weiss et al., 2006; Rawlik et al.,
2016). In terms of gene expression, advanced technologies such as qRT-PCR, microarray as
well as bulk and single-cell RNA-seq analyses, have identified a few hundred to several
thousands of sexually dimorphic genes in a variety of animal and human tissues such as
liver, muscles, adipose tissue, brain, etc. These genes are involved in a wide range of
biological processes, mainly related to metabolism, endocrine and immune response among
many other cell signaling pathways (Yang et al., 2006; Seo et al., 2016; Oliva et al., 2020;
Khodursky et al., 2022). In the context of diseases, the influence of SDM can be apparent in
various ways, including disease course, onset, expressivity, associated symptoms, prognosis,
and prevalence. Since identifying and understanding sex disparities in diseases is
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FIGURE 1
Graphical illustration of how epigenetics may impact sexual dimorphism and how paternal inheritancemechanisms can affect offspring phenotypes
in a sex-specific manner. (A) highlights the main epigenetic mechanisms that potentially affect sexual dimorphism (SDM), including X-chromosome
inactivation (XCI), genomic imprinting, and X-linkedmiRNAs. Male and female offspring can be potentially affected differently by fathers in both direct and
indirect ways as shown in (B). For instance, direct mechanisms involve sperm-borne factors such as DNA methylation and imprinting, chromatin
modifications, small non-coding RNAs, and other factors in the seminal plasma. Indirect ways include paternal influences on maternal behavior, the
uterine environment, and placental alterations. Although human figures (male, female, and infant) are used to illustrate sex-specific variance of paternal
epigenetic inheritance mechanisms, these mechanisms are primarily inferred from animal models, which still require confirmation in human studies.
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therapeutically relevant, many diseases have been investigated in a
sex-specific manner. Specifically, cardiovascular diseases (Miller,
2012), renal diseases (Neugarten and Golestaneh, 2019),
neurological diseases (Zalewska et al., 2022), autoimmune
diseases (McCombe et al., 2009), respiratory diseases (Reddy and
Oliver, 2023), infectious diseases (Gay et al., 2021), and several types
of cancers (Ma et al., 2016) in both human and animal models
exhibit clear sexual dimorphism.

Given the prevalence of SDM across diverse biological and
physiological aspects, a mechanistic understanding of its
ontogeny is crucial to dissecting and comprehending the sex
differences in complex traits and diseases. While still not entirely
understood, the main underlying mechanisms include sex
chromosomes and sex hormones, but also involve epigenetic
modifications and sex specificities during developmental
programming. Extensive studies have unequivocally shown that
gonadal sex hormones (estrogens, progestins, and androgens) are
primary mediators in a wide array of phenotypes displaying SDM.
The sexually dimorphic effects of sex hormones can be either
organizational (permanent) or activational (reversible). However,
the emergence of sex differences before the development of gonads
(Lowe et al., 2015; Werner et al., 2017) suggests that genetic and
epigenetic factors are involved in SDM. Sex chromosome effects
refer to the differential action of genes present on the sex
chromosomes in female (XX) and male (YX) cells. Sex
chromosome effects can be mainly attributed to the presence of
the Y chromosome and the role of X chromosome dosage (Snell and
Turner, 2018). Using sex-chromosome-modified mouse models
such as XY* and Four Core Genotypes (FCG) has effectively
dissected whether a phenotypic sex difference is influenced by
sex chromosomes, gonadal sex hormones, or interactions of the
two (Burgoyne and Arnold, 2016; Blencowe et al., 2022).

The role of epigenetics in SDM has been manifested in some key
processes such as X chromosome inactivation (XCI) and genomic
imprinting - Figure 1A. XCI refers to the process of silencing one of
the two X chromosomes through DNA methylation, histone
modifications and non-coding RNAs to achieve dosage
compensation and balanced gene expression (Avner and Heard,
2001). Nevertheless, some X-linked genes (both in humans and
mice) escape silencing by XCI which leads to different gene
expression levels between female and male cells due to the bi-
allelic expression. As a result, this provides a source of sex
differences in phenotypic traits and disease susceptibility. For
instance, DDX3X (Dead Box Helicase 3, X-Linked), KDM6A/
UTX (Lysine Demethylase 6A/UTX), MAGEC3 (Melanoma
Antigen Gene Family, Member C3), CNKSR2 (Connector
Enhancer of Kinase Suppressor of Ras 2), KDM5C (Lysine
Demethylase 5C), ATRX (Alpha Thalassemia/Intellectual
Disability Syndrome X-Linked) are tumor suppressor X-linked
genes located in the non-pseudoautosomal region (PAR) which

has been reported to escape silencing by XCI and thus contribute to
cancer sex bias (Dunford et al., 2017). Another example that shows
the implication of XCI in SDM is the abnormal expression of the
lncRNA Xist, an X-inactive specific transcript. In particular, the
inhibition of Xist gene expression can suppress cell proliferation,
indicating that high expression of the lncRNA Xist might account
for the sex differences in the proliferative potential of pulmonary
arterial endothelial cells in women and consequently boost their
susceptibility to pulmonary arterial hypertension (Qin et al., 2021).

Genomic imprinting is another potential key player in SDM. It
represents the process of suppressing a subset of genes in one parent
using DNA methylation, resulting in monoallelic parental-specific
expression. Since some of the imprinted genes (IGs) are involved in
growth, metabolism, and brain functions (Tucci et al., 2019), it is
plausible that these imprinted genes play a part in the sex differences
observed in these physiological processes. To provide evidence for
this speculation, the imprinted-X liability threshold model suggests
that a certain imprinted X-linked gene(s) (only active when
inherited paternally) is protective in nature against phenotypic
expression of many autism-related traits and therefore raises the
threshold for females to develop autism (Skuse, 2000). In 2010,
Gregg et al. revealed through their in-depth analysis that the
imprinted expression of interleukin-18, a cytokine that regulates
neuroinflammation, is expressed in female brains but not in male
brains (Gregg et al., 2010). Another study has also shown a link
between interleukin-18 gene expression and multiple sclerosis, a
highly sex-specific disease with a noticeable prevalence in females
(Herrera et al., 2008).

Another epigenetic mechanism that could account for sex
differences is the differential expression of X-linked microRNAs,
which are known to regulate the post-transcriptional expression of
numerous genes involved in immune response, cytokine production,
apoptosis regulation, and cell lineage determination (Pinheiro et al.,
2011; Hewagama, 2013). This notion is supported by the fact that the
X chromosome carries a higher number of miRNA-encoding genes
when compared to the autosomes and Y chromosome and several
miRNA-encoding genes on the X-chromosome have been found to
escape XCI (Migliore et al., 2021). In multiple studies, differential
expression of X-linked miRNAs between the sexes has been reported
as a possible mechanism behind sex differences in several diseases,
including multiple sclerosis, cerebral ischemia, autoimmune
diseases, and various malignancies (Migliore et al., 2021).

A growing body of evidence has shown that the epigenome can
be affected and reprogrammed by environmental factors, resulting
in changes to the expression of many phenotypic characteristics.
Emerging studies have also demonstrated that these
environmentally induced traits can be passed on from parents to
offspring in a sex-specific manner. Traditionally, parentally induced
epigenetic effects in offspring have been mainly attributed to
mothers because there were no established mechanisms for

FIGURE 1 (Continued)

Abbreviations: H3K27me3 – Histone H3 lysine 27 trimethylation, H3K9me3 – Histone H3 lysine 9 trimethylation, H3K9ac–Histone H3 lysine
9 acetylation, H2AK11pUb–Histone H2A lysine 11 polyubiquitination, Xist–X-inactive specific transcript, Tsix–Xist antisense transcript, Jpx–Jpx RNA,
RepA–Repeat-associated non-coding RNA, Firre–Functional Intergenic Repeat RNA, Igf2r–Insulin-like growth factor 2 receptor, H19 – H19 imprinted
maternally expressed transcript, Pw1 – Paternally Expressed Gene 3, Igf2 – Insulin-like growth factor 2 (Chen and Zhang, 2020; Fukuda et al., 2014;
Fang et al., 2019; Żylicz et al., 2019; Sharp et al., 2011; Tinker and Brown, 1998; Panning et al., 1997; Lee et al., 1999; Froberg et al., 2013; Yang et al., 2015).
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transferring epigenetic factors between fathers and offspring.
However, sperm- and ejaculate-mediated mechanisms of transfer
have revealed that epigenetic effects via the paternal line can be
highly significant (Lassi et al., 2021; Tomar et al., 2024; Comas-
Armangue et al., 2022). Since paternal contributions are pleiotropic
and have a sex-specific impact, understanding the mechanisms
underlying paternal epigenetic inheritance could provide a
beneficial strategy for understanding SDM in phenotypic traits
and diseases.

Of particular interest for the scope of this review, SDM can
emerge early in development due to epigenetically programmed
differences, often influenced by the parental health status at
conception. More recently, paternal health at conception has
gained substantial relevance for its impact on offspring health
and recent studies have highlighted that factors such as metabolic
and circadian states may affect gene expression profiles in male and
female embryos differently, contributing to observable sex-specific
phenotypic differences in offspring, including susceptibility to
metabolic and neuropsychiatric disorders (Comas-Armangue
et al., 2022; Billah et al., 2022; Costa et al., 2018; Cambiasso
et al., 2022; Solomon and Zerach, 2020; Sun et al., 2023) In this
review, we will specifically focus on paternal programming of
sexually dimorphic phenotypes and discuss molecular
mechanisms and physiological relevance.

Evidence of sexual dimorphism in
paternal inheritance

Various studies have documented that environmental
perturbations on parents result in sexually dimorphic impact on
offspring. These studies range over multiple species with most
documenting only maternal (Risal et al., 2021), whereas some
comparing the impact of maternal and paternal effects (Hedegger
et al., 2020). These comparisons also give a unique insight into a
possible additive nature of the perturbation. Paternal inheritance is
mediated directly via sperm borne factors like DNAmethylation and
imprinting, chromatin modifications as well as small non-coding
RNAs, along with its nutritious soup, the seminal plasma- Figure 1B.

Gasterosteus aculeatus, commonly known as the three-spine
stickleback offers a great model system to study evolutionary
adaptations and epigenetic mechanisms (Reid et al., 2021). A study
using the three-spine sticklebacks in freshwater has shown comparison
of maternal and paternal stress using predation risk with sexually
dimorphic impact on offspring brain gene expression (Hellmann
et al., 2020a). The same study further reported risk-prone male
offspring born from stressed fathers and anxious offspring (sex-
independent) from stressed mothers (Hellmann et al., 2020a), while
a second study expanded on the impact of paternal stress on F2 and
found sex specific differences in offspring based on maternal/paternal
lineage in F1 (Hellmann et al., 2020b).Drosophilamelanogaster, another
widely-used model to study epigenetics, has been used to show the sex-
specific intergenerational impact of paternal stress, using protein
restriction during larval development (Zeender et al., 2023). In
particular, daughters of affected fathers showed enhanced fecundity
when their diet aligned with that of the fathers compared to controls.
Whereas the sons showed the same abundance of offspring but faster
mating (Zeender et al., 2023).

Studies in rats show promising insight into understanding the
sex-dependent variance of behavioral phenotypes. A study showed
the impact of increasing doses of Morphine in male rats (during
adolescence) on its offspring, and observed a sexually dimorphic
impact on anxiety-like behavior in offspring (Azadi et al., 2021).
Paternal self-administration of morphine also induces sexually
dimorphic results in offspring, with object recognition memory
deficit present in females but not male offspring (Ellis et al.,
2020). A study with paternal preconception exposure to Cannabis
showed male and female offspring having inverse methylation-
expression relationship with their respective sex controls (Schrott
et al., 2022). The study also reported cardiomegaly in offspring along
with significant differences in both offspring sexes in response to
addition of a washout period, but only in female offspring in the
absence of a washout period (Schrott et al., 2022). Paternal
preconception exposure to Nicotine has also shown sexually
dimorphic outcomes, with male offspring exhibiting locomotor
hyperactivity, exclusively during adolescence, and female
offspring exhibiting reduced response latency (Hawkey et al., 2019).

Metabolic health of offspring is also affected by paternal impact
in Rats as shown with high-protein diet that induced increased
insulin sensitivity in male offspring (Gong et al., 2021). Beta cell
plasticity of these paternally exposedmale offspring was enhanced as
well in response to high fat diet metabolic challenge (Gong et al.,
2021). Studying offspring of obese fathers also showed higher
susceptibility to impairment in the male offspring compared to
the female offspring, when subjected to high fat diet (Sanchez-
Garrido et al., 2018).

A study with rats subjected to predatory stress showed that the
maternal and paternal effect was not additive, in agreement with
Hellmann et al.‘s findings in three-spined sticklebacks (Hellmann
et al., 2020a). The authors also made comparisons with onset of
acute stress of the offspring and observed that female non-acute
stressed offspring were more impacted with paternal stress in
comparison to combined, whereas acutely stressed pups were
more impacted with combined stress than maternal stress present
alone (Azizi et al., 2019). These phenotypes offer insight into the
complex nature of inheritance of SDM.

While studies with rats give more phenotypic insight into
behavior, studies with mice evidently give a deeper
understanding of mechanistic differences during development,
and aid in hypothesizing possible mechanisms of SDM. Studies
with fathers exposed to early life unexpected stress exposure with
maternal separation showed that only male offspring exhibit
behavior of social anxiety, although the phenotype was absent in
fathers (Franklin et al., 2011). Here, depressive-like behavior of
fathers was inherited to female, but not male offspring, and it could
be reversed with anti-depressants. Interestingly, the second effect
was inherited by grandsons through the male lineage, thus,
phenotype skipping a generation. Chronic stress exposure to
fathers in adulthood through social defeat has also been shown
to affect the offspring, with males showing a more robust phenotype
as well as exclusive increase in plasma corticosterone and decrease in
Vascular endothelial growth factor (VEGF) (Dietz et al., 2011). The
same study also reported that IVF did not mimic the phenotype,
indicating involvement of factors other than sperm, by itself (Dietz
et al., 2011). Paternal chronic stress with restraint stressor/forced
swim test also shows sex specific impact on offspring anxiety-like
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and depression-like behavior, with males exhibiting reduction and
females-an increase (Mashoodh et al., 2023). Interestingly, the
changes in males have been correlated to differences in maternal
investment in pregnancy. Despite these studies showing sex-specific
behavioral differences, chronic paternal stress with varied stressors
has been found to translate in reduced HPA axis responsiveness in
the offspring, in a non-sex-specific manner, further depicting the
complexities of the subject (Rodgers et al., 2013).

Exposure to various compounds has also been documented to be
paternally inherited in mice. Paternal valproic acid exposure has
been shown to affect behavior of both sexes similarly, but deficits in
the sensorimotor gating were only observed in females (Ibi et al.,
2019). Prenatal paternal exposure to alcohol has been reported to
cause greater intrauterine growth restriction in males than females
(Chang et al., 2019). The same study also reported metabolic
dysregulation in the offspring with males having decreased
glucose and insulin and females having increased insulin (Chang
et al., 2019). Paternal exposure to glucocorticoids is shown to affect
male offspring more than female, in the context of pro-anxiety
behaviors (Short et al., 2016), whereas the same evidently affected
memory retention in females, not males (Yeshurun et al., 2017). In
the context of glucocorticoids, our group has recently shown
disrupted levels of it in the seminal plasma as a result of
circadian disruption have affect metabolic health of male
offspring, and the impact on female offspring is minimal and
different (e.g., Lower weight) (Lassi et al., 2021). Differences in
metabolic phenotypes were also observed on paternal high fat diet
treatment leading to the F2 generation, with males showing obese
hyperglycemic phenotype with upregulated glycolysis and females
showing lean hyperglycemic phenotype with upregulated
gluconeogenesis and lipolysis (Park et al., 2018). It is likely from
these observations that a different set of response cascade in males
and females is in place and is dependent on the type of stress.

Finally, case studies in humans aid towards increasing the clinical
relevance of all animal models. Studies with paternal exposure to
organic pollutants have reported effects on sex ratio. In Michigan fish
eaters, exposure to polychlorinated biphenyls have been documented
to affect secondary sex ratio with increased male offspring (Karmaus
et al., 2002), whereas in a Faroe island males, they found the levels of
persistent organic compounds to negatively correlate with Y:X sex
ratio in sperm (Kvist et al., 2014). Paternal opioid use, starting after
childbirth, has been associated with significantly increased odds ratio
of obesity in sons but not in daughters (Jalali et al., 2021). Paternal
smoking exposure has been found to be associated with greater body
mass index (BMI) in 9 year old sons (Pembrey et al., 2006).
Furthermore, paternal smoking exposure is also significantly
associated with childhood overweight/obesity in sons, not
daughters, and the phenotype is evident with pre-conception and
post-conception exposure, but not post-natal exposure (You et al.,
2022). Smoking is also established to cause alterations in DNA
methylation (Jenkins et al., 2017) and sperm chromatin
condensation (Laqqan and Yassin, 2022), indicating an epigenetic
link. Well established cohorts have also demonstrated that
grandfather’s food supply is associated exclusively with grandson’s
increased mortality risk ratio (Pembrey et al., 2006; Vagero et al.,
2018). Various studies have also been documented for metabolic
phenotype and obesity (Comas-Armangue et al., 2022), but they
unfortunately don’t yet provide a clear mechanistic insight.

Mechanisms involved in paternally
transmitted signal for SDM

While numerous studies report sexual dimorphism (SDM) in
phenotypes, the mechanisms governing SDM remain poorly
understood. Key questions persist, such as: (a) which signals
communicate parental stress versus which are passive observations,
and (b) what the boundaries of programming are in terms of
developmental stages or offspring age. Additionally, it remains
uncertain whether these mechanisms respond uniformly to various
stress types. A central debate, often referred to as the “chicken and egg
problem,” questions whether SDM is developmentally programmed
due to parental influence alongside genomic and epigenomic
contributions, or if it emerges in adulthood through hormonal
pathways and gonadal activity. Understanding how inheritance
mechanisms may intersect with SDM pathways to drive significant
phenotypic differences remains an intriguing area of inquiry. Currently,
there are competing hypotheses suggesting both early developmental
programming and postnatal activation as potential drivers of SDM.

The mechanisms of paternal inheritance mediated by both germ
cell and non-germ cell components of the male reproductive tract and
including DNAmethylation, chromatin organization and the activity of
small non-coding RNAs have been extensively reviewed (Daxinger and
Whitelaw, 2012; Chen et al., 2016; Lempradl, 2020) and also
summarized here in Figure 1. Global studies have identified
differences such as sperm hypomethylation associated with low-
protein diets (Watkins et al., 2018) and gestational arsenic exposure
(Nohara et al., 2020) associated to SDM in offspring phenotypes.
However, due to current methodological limitations, single-sperm
chromatin and DNA methylation analyses are not yet feasible. This
makes it unclear whether these differences are already encoded within
sperm carrying either the X or Y chromosome. There is, however, much
more evidence in support of RNA mediated inheritance.

Long term restraint stress has been shown to cause differential
DNA methylation at regions, that are further inherited paternally
(Zheng et al., 2021) and this has been proposed to be mediated by
small non-coding RNA (sncRNA), which further highlights the
interactive nature of epigenetic mechanisms. Increased
abundance of several miRNAs in sperm has also been reported
in the case of paternal obesity, that interestingly resulted in more
pronounced transcriptomic changes in male blastocysts, compared
to female (Hedegger et al., 2020). Reduced levels of certain miRNA
family members in sperm from fathers with chronic social instability
have been associated with elevated anxiety and defective sociability
in female offspring (Champroux et al., 2024). Interestingly, restoring
the miRNA member in pre-implantation embryo has shown to
reduce the phenotype, which strengthens the case of RNA mediated
inheritance, or at least highlights its importance for early
development and late-onset phenotypes.

Spermatogenesis is a complex process and in recent years, there has
been more attention towards contribution from the epididymis, either
directly via epididymosomes (Chen et al., 2016), or through the
environment provided for maturation. We have recently shown that
the epidydimal spermatozoa are sensitive to environmental stimuli and
transfer the signal through mitochondrial tRNAs (mt-tRNA) and their
fragments (Tomar et al., 2024). Paternal high fat diet treatment caused a
spike in these mt-tRNAs, and they were inherited at fertilization.
Interestingly, despite being inherited and found in both male and
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female early 2-cell embryos, only male embryos were transcriptionally
reprogrammed and only male offspring showed impaired metabolic
homeostasis (Tomar et al., 2024). These findings support the idea that a
vast proportion of sexually dimorphic phenotypes are established early
in development before any possible hormonal contribution. In keeping
with this, the currently available data from two-cell to pre-implantation
stages has also been repurposed to study sex differences and uncovered
early differences forming in two waves, both long before hormonal
signaling, further supporting the theory of developmental programming
(Richardson et al., 2023). Finally, we cannot rule out maternal reaction
to paternal stress while defining pre-implantation programming. As
mentioned before, maternal investment in the pregnancy is

documented to be altered, specifically for male offspring in terms of
prenatal weight gain and nursing (Mashoodh et al., 2023). Apart from
behavioral reaction, mechanistic differences can also be programmed
during fetal development (Watkins et al., 2020). The seminal plasma
from paternal low protein diet has been shown to blunt maternal
immunological responses (Watkins et al., 2018), and it has also been
documented to have a sexually dimorphic impact on their vascular
function, with females displaying significantly greater acetylcholine-
mediated vasodilation responses to nitric oxide synthesis inhibitor, and
males displaying a significant reduction (Morgan et al., 2020).

Post-implantation, placenta plays a crucial role in providing the
necessary nourishment to the fetus. Fetal growth restriction has been

TABLE 1 Models and modes of paternal influence on sexual dimorphism The table summarizes documented models of paternal stimuli with their modes/
mechanisms of paternal influence. We also summarize in brief, the phenotypes and observed instances of sexual dimorphism. Abbreviations: Igf2- Insulin-
like Growth Factor 2, sncRNA-small non-coding RNA, tsRNA-tRNA-derived small RNAs, Pw1/Peg3- Paternally Expressed Gene 3.

Paternal stimulus Species Mechanism Phenotype reported Sexual
dimorphism
observed

Ref

Low protein diet Mus
musculus

Sperm global DNA hypomethylation
within gene body regions, blunted
uterine immunological response

Metabolic dysfunction, impaired
vascular function

Yes Watkins et al. (2018),
Morgan et al. (2020)

High fat diet Mus
musculus

Elevated mt-tRNA levels in epididymal
spermatozoa that are inherited

Impaired metabolic homeostasis Yes Tomar et al. (2024)

high-fat diet with exercise Mus
musculus

Altered sperm miRNAs (reduced miR-
193b, increased miR-204) impact on
placenta

Sex-specific placental response Yes Claycombe-Larson
et al. (2020)

Obesity Mus
musculus

Differential miRNA levels in sperm
causing direct impact pre-implantation
(9 upregulated, 2 downregulated)

Transcriptomic changes in
blastocysts

Yes Hedegger et al. (2020)

Obesity Rattus
norvegicus

Reduced luteinizing hormone (LH)
levels

Metabolic and reproductive
impact

Yes Sanchez-Garrido et al.
(2018)

Glucocorticoid exposure Mus
musculus

Upregulated microRNAs (miR-98,
miR-144 and miR-190b), differentially
expressed imprinted gene Igf2

Anxiety and depressive
phenotype

Yes Short et al. (2016)

Glucocorticoid exposure Rattus
norvegicus

differentially expressed imprinted gene
Igf2

Memory deficit related
phenotype

Yes Ordyan et al. (2022)

Circadian disruption Mus
musculus

Corticosterone in seminal plasma at
conception, via fetal growth restriction

Metabolic dysfunction and
altereted oscilatory transcription

Yes Lassi et al. (2021)

Gestational arsenic
exposure

Mus
musculus

Sperm DNA hypomethylation in CpGs
of retrotransposons

Increased hepatic tumor
incidence

* (only males reported) Nohara et al. (2020)

Exposure to inorganic
arsenic

Mus
musculus

Disrupted hepatic estrogen signalling Metabolic dysfunction Yes Xue et al. (2023)

Paternal preconception
stress (randomized seven
different stressors)

Mus
musculus

Divergent placental transcription
profiles at E12.5

Metabolic and immune
regulatory differences in
placentae, transcriptomic
differences in fetal brain

Yes Cisse et al. (2020)

Long term restraint stress Mus
musculus

Differentially methylated regions in
sperm, differential sncRNA in sperm
(upregulated tsRNAs, downregulated
miRNAs, rRNAs)

Behavioral and reproductive
disorders

* (only males reported) Zheng et al. (2021)

Chronic stress with
restraint or forced-swim

Mus
musculus

Mediated through maternal
investment

Altered anxiety and depressive
phenotype

Yes Mashoodh et al. (2023)

Maternal separation
stress

Mus
musculus

Differentially expressed imprinted
genes (Igf2, Pw1/Peg3)

Offspring risk taking behavior * (only males reported) Thivisol et al. (2023)

Chronic social instability Mus
musculus

Reduced levels of specific miRNA
families in sperm (miR-34–449)

Elevated anxiety and sociability
issues

Yes Reddy and Oliver
(2023)
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reported as a consequence of paternal stress (Lassi et al., 2021). It is
also well established that male and female placentas are different in
their gene expression, miRNA profiles, as well as histopathology
based on the requirement of the fetus (Gabory et al., 2013;
Christians, 2022) thus being a key player in conveying stress
signals in a sexually dimorphic manner. Paternal preconception
stress is shown to have a divergent effect on the transcriptional
profiles of placentae at E12.5, with female featuring increase in
carbohydrate, lipid and amino acid metabolism, whereas males show
reduction of immune-regulatory genes (Cisse et al., 2020). Another
study showed that paternal high fat diet caused low placental weights
for males but not females, whereas a combination with exercise
indicated decrease in expression of pro-inflammatory molecule
mRNAs, exclusively in female placentae (Claycombe-Larson
et al., 2020). In females, this is also exclusively linked to reduced
levels of sperm miRNA 193b, which indicates a sex-specific
communication between father-placenta-daughter.

Parentally imprinted gene Pw1 (Paternally Expressed Gene 1) has
been shown to be involved in SDM that arises postnatally, using Pw1
deficient mice that showed reduced masculinization of body
composition in males as well as reduced testosterone at puberty and
reduced growth hormones levels at early postnatal developmental
points (Tanaka et al., 2022). Interestingly, this was also one of the
imprinted genes found to be affected in male offspring of fathers with
early life stress (Thivisol et al., 2023). Igf2 (Insulin-likeGrowth Factor 2),
another imprinted genewas found to be increased in offspring of fathers
with glucocorticoid exposure (Short et al., 2016), as well as maternal
separation induced early life stress (Thivisol et al., 2023). On the other
hand, it has also been reportedly lowly expressed upon paternal stress, in
adult male rat offspring hippocampus and neocortex, but not in
neonatal offspring (Ordyan et al., 2022) IGF2 treatment (human
recombinant) in rats during late pregnancy showed male fetuses to
be more stimulated and affected, further documenting its role in SDM
(White et al., 2018). These cases support the theory that SDM
phenotypes are established postnatally.

Hormones also significantly influence SDM in various physiological
systems including metabolism (Santos-Marcos et al., 2023; Sandovici
et al., 2022) and immunity (Shepherd et al., 2020). Sex-dimorphic
differences appearing early post-natal are owed to growth and sex-
specific hormone related pathways and have been linked, for example,
to the pulsatile nature of growth hormone release in males and
continuous in females (Gabory et al., 2009). Paternal obesity is
reported to reduce luteinizing hormone (LH) levels in male
offspring, but not female (Sanchez-Garrido et al., 2018). It has also
been recently established using paternal exposure to inorganic
compounds that the metabolic phenotype in female offspring is
induced by estrogen which was further confirmed with absence of
phenotype using hepatic knockout of estrogen receptor α/ß (Xue et al.,
2023). This sheds light on possibilities of long-term programming of
stress signals in a sex-dependent manner, but doesn’t rule out an initial
trigger based on epigenetic developmental programming. The above
mechanisms are summarized in Table 1.

Discussion

In summary, we show evidence of the sexual dimorphic nature
of paternal inheritance in various species and the current

understanding of the mechanistic underpinnings behind it.
However, systematically compiling the sexually dimorphic
contributions of fathers towards various offspring phenotypes
and complex traits has a handful of limitations underlined in the
mechanistic complexities of paternal epigenetic inheritance,
research design constraints, and the persistent knowledge gaps.
For instance, several mechanistic routes and machineries by
which paternal signals are passed on to the offspring remain
enigmatic, especially throughout the early stages of development
when cell signaling pathways are dynamic as well as not yet clearly
defined. Moreover, male germ cell heterogeneity poses a
considerable challenge for our understanding of which sperm-
borne factors or signals are specifically implicated in paternal
inheritance and SDM. Furthermore, investigating and studying
both offspring sexes incredibly aids in unraveling the sexually
dimorphic effects and ensures a clear thorough understanding of
paternal impact across generations.

Our understanding of the mechanisms in humans is deeply
lacking, partly owing to the ethical complications. Animal models
help in driving the science in the right direction, but diseases often
tend to present differently in humans compared to other animal
models and it is very important to confirm these findings in humans
to ascertain clinical relevance. Finally, the necessity of performing
systemic phenotyping and sex-stratified analyses in upcoming
studies is highly pressing since paternal signals inherited by
offspring could impact a broad range of traits, other than those
intended to be examined or studied. A more extensive approach that
embraces various traits might uncover earlier neglected or subtle
effects, reinforcing a profound understanding of the sex-specific
variances of paternal epigenetic inheritance.
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