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Purpose: To investigate the changes in meibomian gland (MG) structure in
allergic conjunctivitis (AC) patients using an intelligent quantitative analysis
algorithm and to explore the relationship between these changes and clinical
parameters.

Methods: A total of 252 eyes from patients with AC and 200 eyes from normal
controls were examined. Infrared meibography was performed using the non-
contact mode of the Keratograph 5M. MG images were analyzed using a deep
learning-based a quantitative analysis algorithm to evaluate gland length, area,
dropout ratio, and deformation. Clinical parameters, including tear meniscus
height, tear break up time (TBUT), conjunctival hyperemia, and Ocular Surface
Disease Index (OSDI) scores, were assessed and correlated with changes in the
structure of MG.

Results: The average MG length in AC patients was 4.48 ± 1.04 mm, shorter
compared to the control group (4.72 ± 0.94 mm). The average length of the
central 5 glands in AC patients was 4.94 ± 1.67 mm, which was also shorter than
the control group’s central 5 glands (5.38 ± 1.42 mm). Furthermore, the central
5 glands’ area in AC patients (1.61 ± 0.64 mm2) was reduced compared to the
control group (1.79 ± 0.62 mm2). Tear meniscus height was lower in the allergy
group (0.26 ± 0.10 mm) compared to the control group (0.44 ± 0.08 mm) (P <
0.05). The non-invasive first tear film break-up time was shorter in the allergy
group (8.65 ± 6.31 s) than in the control group (10.48 ± 2.58 s) (P < 0.05).
Conjunctival congestion was higher in the allergy group (1.1 ± 0.52) compared to
the control group (0.97 ± 0.30) (P < 0.05). The OSDI score in the allergy group
(8.33 ± 7.6) was higher than that in the control group (4.00 ± 0.50) (P < 0.05).
Correlation analysis revealed that the gland dropout ratio was positively
associated with male gender and negatively associated with age and OSDI
scores. Additionally, despite an increased number of MG, tear film stability was
not improved.
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Conclusion: Through the intelligent quantitative algorithm, we found that AC leads
to significant changes in MG structure, particularly affecting gland length and
central area.
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artificial intelligence

1 Introduction

Over recent decades, the incidence of allergic conjunctivitis
(AC) has steadily increased, with prevalence estimates ranging
from 6% to 30% in the general population (Leonardi et al.,
2015). AC is characterized by symptoms such as itching, redness,
a whitish conjunctiva, and sometimes thick mucous discharge,
severe cases may present with papillary hypertrophy of the
palpebral conjunctiva (Friedlaender, 1993). Notably, AC is
recognized as a key risk factor for inducing dry eye disease
(DED) (Villani et al., 2018), significantly impacting patients’
quality of life. The meibomian glands (MGs), located within the
eyelids, play a crucial role in maintaining the stability of the tear film
by secreting its lipid layer, thereby reducing tear evaporation
(Dietrich et al., 2021). Recent studies have shown that AC can
contribute to meibomian gland dysfunction (MGD) (Mizoguchi
et al., 2017a), leading to tear film instability and exacerbation of
ocular surface discomfort.

Previous research has highlighted the potential impact of allergic
conjunctivitis on MG morphology. Arita et al. (2012) suggested that
allergic reactions might be the reason for increased MG deformation
in patients with contact lens-associated allergic conjunctivitis.
Similarly, Liu et al. (2022) proposed that morphological and
cytological changes in the MGs were more pronounced in
patients with seasonal allergic conjunctivitis. Moreover, Wu et al.
found that these relationships differed between adults and children
(Wu et al., 2022a). Additionally, A 1-unit increase in PM2.5 levels is
associated with a 0.06 increase in ocular inflammation and a
0.07 increase in gland dropout (Huang et al., 2020). This suggests
that PM2.5 may damage the glands by inducing inflammation.
However, most existing studies rely heavily on subjective
assessment methods, such as manual analysis and qualitative
classification, which compromise the reliability and
reproducibility of their findings. These studies often fail to
comprehensively capture the patterns of MG morphological
changes across different populations.

With the advent of intelligent algorithms, the automated
quantitative analysis of MG images has garnered increasing
attention from researchers (Yeh et al., 2021; Xiao et al., 2021; Li
et al., 2024; Yang et al., 2023; Dai et al., 2021). Deep learning-based
segmentation methods for MG have been developed (Saha et al.,
2022; Lin et al., 2024; Wu et al., 2024), allowing automated
quantitative analysis of various MG parameters, such as length,
width, and tortuosity, the latter referring to the twisting or winding
nature of the glands, by learning features from large, unlabeled
meibography datasets (Setu et al., 2021). AI-based quantitative
analysis algorithms offer more objective and precise assessments
of MG parameters, providing new tools and perspectives for
studying changes in MGs associated with AC.

This study aims to utilize an intelligent quantitative analysis
algorithm to systematically evaluate the microstructural changes of
MGs in patients with AC, exploring the relationships between these
changes and clinical relevant indicators, such as OSDI scores and
TBUT. This study incorporates intelligent analysis technology to
provide a more objective and accurate assessment of MGs than
traditional methods to offer deeper insights into the diagnosis and
management of AC.

2 Materials and methods

2.1 Study subjects and grouping

This study collected data from patients who visited the
Department of Ophthalmology at Fujian Provincial Hospital
between January 2024 and October 2024, and the research was
conducted following a defined protocol (Figure 1). We performed a
power analysis to determine the required sample size. Based on an
expected effect size (Cohen’s d = 0.5) and a significance level (α =
0.05), the power analysis indicated that a minimum of 64 eyes per
group is needed to achieve 80% power. The inclusion criteria
consisted of patients clinically diagnosed with AC through a
comprehensive examination. According to the diagnosis, AC
patients exhibited typical symptoms such as ocular itching,
conjunctival hyperemia, and tearing. A total of 252 eyes were
included in the AC group, while 200 eyes without AC were
assigned to the control group. The allergic group had an average
age of 11.78 ± 6.77 years, with 153 males and 99 females, whereas the
control group had an average age of 11.65 ± 9 years, including
121 males and 79 females. The exclusion criteria were as follows: a)
patients unable to cooperate with the examination; b) patients with
other organic eye diseases; c) patients with a history of ocular
surgery; d) patients with ocular or systemic conditions that could
interfere with tear film production or function.

This study was approved by the Ethics Committee of Fujian
Provincial Hospital (K202410006), and all procedures strictly
adhered to the ethical principles of the Declaration of Helsinki.
Prior to the study, all participants signed informed consent forms,
and all clinical examinations were performed by experienced
ophthalmologists.

2.2 Clinical examinations and data collection

Clinical examinations were conducted with careful adjustments
to the height of the patient’s chair and examination table, ensuring
optimal comfort for the patient. During the examination, the
patient’s chin was positioned on the chin rest, and the forehead
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was secured against the forehead support, allowing them to focus on
the center of the examination instrument.

2.2.1 Data collection involved several key metrics
2.2.1.1 Tear meniscus height

Measured using the non-contact infrared imaging system of the
Keratograph 5M, this metric assesses the volume of tear film present
in the conjunctival sac.

2.2.1.2 Non-invasive first TBUT
After the patient blinked twice and maintained a wide-eyed

position, the initial TBUT was automatically calculated by the
software. This parameter reflects the stability of the tear film.

2.2.1.3 Non-invasive average TBUT
This metric provides an average of multiple TBUT

measurements, offering a more comprehensive evaluation of tear
film stability.

2.2.1.4 Conjunctival congestion
This was assessed qualitatively during the examination to

determine the extent of vascular engorgement in the conjunctiva.

2.2.1.5 OSDI
The OSDI questionnaire was employed to evaluate ocular

surface symptoms and the severity of dry eye disease. Scores
range from 0 to 100, with higher scores indicating greater
severity of symptoms.

2.3 Intelligent quantitative analysis of
blepharoplasty images

The intelligent quantitative analysis algorithm for MGs
introduces the U-Net++ network architecture to build an
automatic MG segmentation model (Lin et al., 2021), enabling
deeper exploration of MG morphology in patients with AC.

FIGURE 1
Study flowchart: MG analysis workflow based on AI algorithm.
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We imported a total of 452 previously collected infrared
blepharoplasty images into the Intelligent Quantitative Analysis
System to segment the MG images. The MG segmentation
process consists of two stages: training and segmentation,
including modules such as data augmentation and gland
segmentation (Li et al., 2023). The data augmentation module
randomly selects N types from various augmentation methods,
including cropping, flipping, shearing, translating, rotating,
equalizing, contrast variation, and brightness variation, with
random amplitude M for each type. Based on experiments, this
study set N to 2 and M to a range of 1–10. This data augmentation
module provides more data samples, enhancing the generalizability
of the model. The gland segmentation module utilizes the U-Net
model, first proposed in 2015, specifically for medical image
segmentation. It uses skip connections to fuse shallow and deep
semantic feature maps, overcoming information loss during down-
sampling and improving segmentation accuracy. U-Net++ is an
improvement on U-Net, redesigning the skip connections to
improve inference speed (Zhou et al., 2020).

The intelligent MG analysis algorithm involves three steps
(Leonardi et al., 2015): dividing the meibography image into
different regions (Friedlaender, 1993); segmenting and identifying
glands within the regions (Villani et al., 2018); performing multi-
parameter quantitative analysis, calculating deformation and
tortuosity (Xiao et al., 2021). The deformation coefficient was
calculated as follows:

pa × pb

length central( )2 ×

�������������∑n
i�1

wi − wavg( )2√
n

+ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The formula for calculating the deformation coefficient of the
gland was developed and refined based on the arc-string ratio model.
Here, pa represents the length of the left side of the gland, pb refers to
the length of the right side, wi denotes the diameter of the gland
measured at each step, and wavg is the average diameter of the gland.
The term “length (central)” indicates the length of the central line,
while n represents the number of diameters measured. The
formula’s minimum value is 1, and the deformation coefficients
are dimensionless.

The average gland length, average gland width, average gland
area, gland dropout ratio, average gland deformation coefficient and
gland count were collected for each image by quantitative analysis of
MG images. We also collected the central MG length, central MG
width, central MG area, central MG deformation coefficient, and
calculated the mean values of each parameter for the 5 MG of the
central Region. For each patient, we determined the central 5 MGs
based on the total number of glands. If there are n glands in total:
When n is an odd number, (n-5)/2 glands are excluded from both
the nasal and temporal sides to ensure that the remaining five glands
are in the central region. When n is an even number, (n-6)/2 glands
are excluded from the nasal side and (n-4)/2 glands from the
temporal side to ensure that the remaining five glands are in the
central region.

In clinical work, the patient’s glandular condition is assessed
predominantly in the central 5–8 glands, and the glands in the
central region of the MGs are the clearest, with the average length of

the central glands and the percentage of glands being representative
of the patient’s major glandular function, diameter may partially
reflect the degree of glandular obstruction.

2.4 Statistical analysis methods

Statistical analysis was conducted using GraphPad Prism 9.0.
Normality tests were performed on continuous variables. Normally
distributed data are presented as mean ± standard deviation
(Mean ± SD), with group comparisons via independent sample
t-tests. Non-normally distributed data are reported as medians
(interquartile range), using the Mann-Whitney U test for
comparisons. Categorical variables are expressed as frequencies
and percentages, analyzed using the Chi-square test or Fisher’s
exact test. Two-sided tests assessed differences in clinical
examination results (tear meniscus height, non-invasive first
TBUT, non-invasive average TBUT, conjunctival hyperemia, and
OSDI scores) between the AC and control groups, with significance
set at p < 0.05.

3 Result

3.1 Demographic characteristics and clinical
data on two groups

Table 1 shows that the demographic characteristics of the
patients in the allergic and control groups. The allergic group
had an average age of 11.78 ± 6.77 years ranging from 5 to
77 years, with 153 males and 99 females, whereas the control
group had an average age of 11.65 ± 9 years with a range of
7–58, including 121 males and 79 females. Tear meniscus height
was lower in the allergy group (0.26 ± 0.10 mm) compared to the
control group (0.44 ± 0.08 mm). The non-invasive first tear film
break-up time was shorter in the allergy group (8.65 ± 6.31 s) than in
the control group (10.48 ± 2.58 s). Conjunctival congestion was
higher in the allergy group (1.1 ± 0.52) compared to the control
group (0.97 ± 0.30). Additionally, the OSDI score in the allergy
group (8.33 ± 7.6) was higher than that in the control
group (4.00 ± 0.50).

3.2 Comparison of overall MG parameters
between the two groups

The average gland length in the control group was significantly
longer than in the AC group. However, other parameters such as
average gland width, gland area, gland dropout ratio, and gland
deformation co-efficient showed no significant differences between
the two groups (Figure 2). In the comparison of the central five
glands, the length and area of the central MGs in AC group were
significantly reduced, while other morphological characteristics
showed minimal changes (Figure 3). To further explore potential
differences in meibomian gland parameters and other clinical
factors, we performed subgroup analyses based on gender. Male
and female participants in the allergic and control groups were
analyzed separately. In the male subgroup (Supplementary Figures
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1, 2), the central MG length and area were significantly higher
compared to the AC group. In the female subgroup (Supplementary
Figures 3, 4), the average MG length in the control group was greater
than that in the AC group. Additionally, the central MG length and
area were also significantly larger in the control group compared to
the AC group.

3.3 Correlation betweenMG parameters and
clinical symptoms in allergic group

Correlation analysis (Figure 4) revealed that the gland drop out
ratio was positively correlated with gender (0.19) and negatively
correlated with OSDI (−0.24) and age (−0.19). Gland count was
negatively correlated with non-invasive first TBUT (−0.21) and non-
invasive average TBUT (−0.21). Gland area was positively correlated
with non-invasive first TBUT (0.17) and non-invasive average
TBUT (0.17). Additionally, conjunctival hyperemia was positively
correlated with OSDI (0.19).

4 Discussion

Although previous studies have identified allergies as a potential
risk factor for MG damage (Mizoguchi et al., 2017b; Chao and Tong,
2018; Wu et al., 2022b), these investigations have often been
constrained by subjectivity and limited reproducibility. Recent
advancements in AI have demonstrated high accuracy and
reliability in evaluation of MG parameters (Xiao et al., 2021;
Fasanella et al., 2016; Zhang et al., 2022). In this study, we
utilized an AI-based quantitative analysis system to systematically
examine the changes in MGs in patients with AC, aiming to explore
the specific effects of AC onMGs and their correlation with clinically
relevant parameters.

Our study found that compared to the control group, the AC
group exhibited reduced tear meniscus height, shorter non-invasive
first TBUT, increased conjunctival hyperemia, and significantly
higher OSDI scores. The reduction in tear meniscus height may
reflect decreased tear production or increased tear evaporation,
leading to reduced tear retention. The shortened non-invasive

first TBUT indicates decreased tear film stability, making the
ocular surface more susceptible to external stimuli, causing
discomfort. Additionally, the increased conjunctival hyperemia
and elevated OSDI scores further confirm the exacerbation of
ocular discomfort in AC patients. These findings are consistent
with previous studies (Kim and Moon, 2013; Akasaki et al., 2022),
which showed that dry eye symptoms are more severe in patients
with AC, and the more allergens present, the worse the dry eye
symptoms become.

In terms of MG morphology, the overall gland length in the AC
group was shorter, and the central five glands showed significantly
reduced length and area compared to the control group. This finding
further supports the notion that AC affectsMG structure, particularly in
the central glands, whichmay be related to chronic inflammation of the
ocular surface. The reduction in central gland length and area may
result from glandular atrophy or dysfunction caused by local
inflammatory responses. Studies have shown that chronic
inflammation can trigger immune cells to release various
inflammatory mediators, such as cytokines and chemokines, as well
as bacterial imbalances, releasing endotoxins, leading to MG structure
damage (Mizoguchi et al., 2017b). In our study, there were no
significant differences in the width and tortuosity of the central
5 glands, which may be due to the fact that AC-induced
inflammation is more likely to damage the openings or ends of the
MGs and has less effect on the width and direction of growth of the
MGs; and the direction of growth of the MGs is constrained by the
anatomical structure of the eyelids, which also allows for the consistency
of the overall tortuosity of the MGs. Additionally, mechanical
stimulation of the eyes, such as frequent eye rubbing or changes in
blinking patterns, may accelerate MG damage, causing glandular
atrophy or dysfunction (Wang et al., 2018; Arita et al., 2010).

In the correlation analysis, the gland drop out ratio has a positive
correlation of 0.19 with gender, suggesting that male patients may be
more prone to gland dropout. This finding aligns with a recent meta-
analysis (Hassanzadeh et al., 2021), which revealed that men are
more likely to developMGD, with an estimated overall prevalence of
35.8%. The reasons may be related to different lifestyle habits of men
and women, such as smoking and drinking, which can cause some
damage to the glands. In addition, it appears that androgens have an
effect on gland shortening. The observed negative correlation

TABLE 1 Demographic characteristics and clinical data of the participants.

Characterizes Allergy group Control group p-Value

Age (years) 11.78 ± 6.77 11.65 ± 9 >0.05

Age distribution range (years) 5–77 7–58

Sex >0.05

Male 153 121

Female 99 79

Tear meniscus height (mm) 0.26 ± 0.10 0.44 ± 0.08 <0.0001

Non-invasive first TBUT (s) 8.65 ± 6.31 10.48 ± 2.58 0.0002

Non-invasive average TBUT (s) 10.53 ± 6.26 11.56 ± 3.67 0.2366

Conjunctival congestion 1.1 ± 0.52 0.97 ± 0.30 0.0116

OSDI 8.33 ± 7.6 4.00 ± 0.50 <0.0001
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of −0.24 between gland dropout ratio andOSDI contradicts previous
findings, which may be explained by the fact that in allergic
conjunctivitis, patient awareness is influenced by various factors,
leading to a potential masking of the subjective perception of
symptoms. Furthermore, the negative correlation between gland
dropout ratio and age may indicate that as children grow older, their
gland function gradually develops and matures, leading to a
reduction in gland dropout.

Among patients with allergic conjunctivitis, gland count has a
negative correlation of−0.21with both the non-invasive first TBUT and
non-invasive average TBUT, this suggests that an increased number of
glands can lead to tear film damage in AC patients. The main reason to
consider is still because, an increased number of glands may result in
loss of epithelial cells and cup cells due to inflammation, produce
abnormal or poor-quality lipids, imbalance the tear composition

exacerbating tear film breakup (McCulley and Shine, 2004; Nelson
et al., 2011). Gland area has a positive correlation of 0.17 with tear
breakup time, which is consistent with previous research, suggesting
that amore uniform and complete lipid layer helps to cover the tear film
surface, reducing tear evaporation and maintaining tear film stability
(Mizoguchi et al., 2017c). Conjunctival hyperemia has a positive
correlation of 0.19 with OSDI, indicating that the inflammatory
response in allergic conjunctivitis directly affects patients’ subjective
symptoms, particularly worsening dry eye symptoms.

A key clinical value of our study lies in the use of AI algorithms
to assess changes in the meibomian glands of AC patients, which
enhances the precision, objectivity, and diversity of parameters. AI
algorithms are capable of detecting even the smallest changes, which
is especially useful in AC, where the meibomian glands may undergo
varying degrees of inflammation or functional damage. Traditional

FIGURE 2
Comparison of MG parameters between the AC and control groups (A). Average gland length (B). Average gland width (C). Average gland area (D).
Gland dropout ratio (E). Average Gland Deformation Coefficient (F). Gland count. * indicates a statistically significant difference (p < 0.05); ns indicates no
significant difference.
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methods often struggle to quantify these subtle pathological changes
accurately. Furthermore, AI provides a quantitative evaluation of
key meibomian gland parameters, such as gland length, width, area,
counts and gland deformation. Additionally, by standardizing the
evaluation process, AI algorithms significantly reduce human biases,
resulting in more consistent and reliable assessments. These offers a
powerful tool for tracking and monitoring the ocular surface
conditions of AC patients during follow-up visits.

There are several limitations to this study. First, the analysis is
restricted to parameters from the upper eyelid, as previous studies have
shown that the upper eyelid provides clearer and higher-quality
meibography images compared to the lower eyelid, minimizing

uneven focus and demonstrating stronger correlations with clinical
indicators (Deng et al., 2021; Daniel et al., 2019). Second, Further
research is required to explore the distinct changes in the MGs across
these different AC subtypes. Third, various environmental exposures
could have also played a role in the results. Factors such as air pollution,
climate conditions (e.g., humidity and temperature), and prolonged
screen time are known to affect ocular health and meibomian gland
function. Future studies should control for these confounding variables.
Lastly, the cross-sectional design of this study limits the ability to
establish causal relationships. Future longitudinal studies could provide
more robust evidence by tracking changes in MG parameters and
clinical symptoms over time in a cohort of AC patients.

FIGURE 3
Comparison of central fiveMG parameters between the AC and control groups (A). central MG length (B). Central MGwidth (C). Central MG area (D).
Central MG deformation coefficient. ** indicates a statistically significant difference (p < 0.01); ns indicates no significant difference.
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5 Conclusion

This study systematically evaluated changes in the MGs of
patients with AC using a novel quantitative analysis algorithm.
The findings demonstrate that AC significantly affect the overall
length of the MGs, as well as the length and area of the central five
glands. These structural changes are strongly associated with
decreased tear film stability, increased conjunctival hyperemia,
and worsening ocular discomfort. These results underscore the
detrimental impact of AC on MG function and overall ocular
surface health.
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