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Muscle repair and regeneration are complex processes. In Duchenne muscular
dystrophy (DMD), these processes are disrupted by the loss of functional
dystrophin, a key part of the transmembrane dystrophin-associated
glycoprotein complex that stabilizes myofibers, indirectly leading to
progressive muscle wasting, subsequent loss of ambulation, respiratory and
cardiac insufficiency, and premature death. As part of the DMD pathology,
histone deacetylase (HDAC) activity is constitutively increased, leading to
epigenetic changes and inhibition of muscle regeneration factors, chronic
inflammation, fibrosis, and adipogenesis. HDAC inhibition has consequently
been investigated as a therapeutic approach for muscular dystrophies that,
significantly, works independently from specific genetic mutations, making it
potentially suitable for all patients with DMD. This review discusses how HDAC
inhibition addresses DMD pathophysiology in a multi-targeted mode of action
and summarizes the recent evidence on the rationale for HDAC inhibition with
givinostat, which is now approved by the United States Food and Drug
Administration for the treatment of DMD in patients aged 6 years and older.
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Introduction

In patients with Duchenne muscular dystrophy (DMD), the direct effect of the
characteristic lack of dystrophin is the loss of muscle sarcolemma membrane stability,
which results in DMD pathology (Mozzetta et al., 2024). DMD is characterized by
progressive loss of muscle tissues, leading to loss of ambulation and the need for
assisted ventilation, and, eventually, premature death in the 2–4th decade (Ryder et al.,
2017; Walter and Reilich, 2017). Indirectly, the loss of dystrophin results in a cascade of
pathological events in the muscle cell that include chronic inflammation and failed
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regeneration (Dowling et al., 2023). One pathological aspect
perpetuating the pathological pathways is the increased activity of
histone deacetylase (HDAC) enzymes. As such, the global inhibition
of HDAC activity has received attention as a therapeutic approach
for treating muscular dystrophies (Lamb, 2024). Preclinical and
clinical studies have demonstrated positive effects of HDAC
inhibition on multiple levels of DMD-related pathogenic events
(Mozzetta et al., 2024). Pivotal phase 3 clinical trial data have
recently been published for givinostat, an HDAC inhibitor that
was investigated in ambulant boys aged 6 years and older with DMD
(Mercuri et al., 2024). In this multicenter, randomized trial,
givinostat significantly delayed DMD disease progression
compared with placebo and had a positive risk/benefit profile.
Givinostat has recently been approved by the US Food and Drug
Administration for the treatment of DMD in patients aged 6 years
and older (Lamb, 2024; United States Food and Drug
Administration, 2024), and evaluation by the European
Medicines Agency is ongoing (Duchenne UK, 2023). The

purpose of this narrative review is to elaborate on how HDAC
inhibition addresses DMD pathophysiology in a multi-targeted
mode of action and to summarize the recent evidence on the
rationale for HDAC inhibition with givinostat.

Dystrophin and DMD

DMD results from mutations in the DMD gene encoding
dystrophin, the largest known human gene (Aartsma-Rus et al.,
2016; Okubo et al., 2017). So far, over 7,000 mutations in the DMD
gene have been identified (Aartsma-Rus et al., 2016; Bladen et al.,
2015). These mutations result in the absence of functional
dystrophin (Blake et al., 2002; Hoffman et al., 1987).

Dystrophin has a mechanical, stabilizing function in skeletal
muscle fibers by connecting the cytoskeleton—part of the contractile
machinery—to the connective tissue surrounding each muscle fiber.
Specifically, dystrophin binds to F-actin in the cytoskeleton and to a

FIGURE 1
Constitutive HDAC activity contributes to dystrophic muscle pathology. DAPC, dystrophin-associated protein complex; DMD, Duchenne muscular
dystrophy; FAP, fibro-adipogenic progenitor; HAT, histone acetyltransferase; HDAC, histone deacetylase; MuSC, muscle stem cell; NO, nitrous oxide;
NOS, nitric oxide synthase. LEFT: healthy muscle fibers with intact dystrophin and DAPC. (A)MuSC and satellite cells reside on the muscle fibers ready to
differentiate into newmuscle fibers (B) Intact DAPC regulates activity of HDAC to allow translation of muscle regeneration factors (C) In the nucleus
HDAC and HAT work in balance to regulate the expression of muscle regeneration factors RIGHT: DMD muscle with mutated dystrophin and disrupted
DAPC (D) Absent or mutated dystrophin leads to disruption of the DAPC with multiple consequences for muscle repair (E) These consequences include
damage to the sarcolemma leading to cytoplasmic leakage displacement of NOS and decreased levels of NO, which, in turn, lead to aberrant constitutive
expression of HDACs (F) Increased HDAC activity results in repression of translation and transcription of muscle repair regeneration factors (G) The
absence of gene transcription leads to changes in the production of newmyofibres from satellite cells, prolongation of inflammatory phases of repair into
a chronic state, and induction of FAP differentiation into fibroblasts and adipocytes.
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part of the transmembrane dystrophin-associated glycoprotein
protein complex (DAPC) called beta-dystroglycan, which in turn
binds to the connective tissue protein laminin (Mukund and
Subramaniam, 2020; Wilson et al., 2022; Campbell and Kahl,
1989; Ervasti and Campbell, 1993; Guiraud et al., 2015).

Normal muscle repair

Muscle contraction and relaxation cause stress to the muscle
fibers, and damage can occur during regular activity or trauma.
Muscle fibers are postmitotic, and muscle damage repair is
orchestrated by satellite cells, quiescent cells that lie on top of
muscle fibers, which are activated when there is damage. Upon
activation, satellite cells proliferate into muscle stem cells (MuSC),
which differentiate intomuscle fibers to repair the damage (Figure 1)
(Mukund and Subramaniam, 2020). Healthy skeletal muscle has a
unique immune-privileged status, with fewer antigen-presenting
cells and pro-inflammatory cells present, and no constitutive
major histocompatibility complex class I (MHCI) or II (MHCII)
expression, resulting in less necrosis and a lower capacity to generate
abscesses (Bez Batti Angulski et al., 2023; Sciorati et al., 2016).
Contraction can cause membrane damage and leakage of
cytoplasmic content into the extracellular compartment. Due to
skeletal muscle’s unique immune privilege, rapid membrane repair
mechanisms, and membrane stability conferred by intact
dystrophin, this inflammatory response is limited, controlled, and
quickly resolved in healthy muscle (Sciorati et al., 2016).

Myogenesis also depends significantly on the interaction
between satellite cells and their microenvironment (Mukund and
Subramaniam, 2020). In healthy muscle, injury is repaired by the
asymmetric division of satellite cells; the interactions of DAPC
subunits are essential for this process (Chang et al., 2018; Duan
et al., 2021; Dumont et al., 2015). The activation and migration of
satellite cells to the injury site and their proliferation and
differentiation into muscle fibers is a synchronized series of
stepwise processes. First, upon muscle injury, there is an acute
and transient innate immune system response. During this
process, the immune system will inhibit the myogenic repair
system, enabling inflammatory cells (neutrophils, eosinophils, and
macrophages) to be recruited to clear the area of debris.
M1 macrophages arrive first and induce a pro-inflammatory
phase that, in muscle, causes the secretion of cytokines,
promoting myogenic cell proliferation. In the subsequent anti-
inflammatory phase, M2 macrophages facilitate myogenic
differentiation, stimulating the activation, proliferation, and
division of satellite cells (Blau et al., 2015; Rugowska et al., 2021;
Ziemkiewicz et al., 2021). Once the damage is cleared, fibro-
adipogenic progenitors (FAPs) are activated to repair the
extracellular matrix. FAPs are muscle-resident multipotent
mesenchymal stem cells that can differentiate into adipocytes,
fibroblasts, or osteocytes. Intrinsic and extrinsic regulatory
mechanisms control the activation, proliferation, cell fate
decision, and clearance of FAPs (Molina et al., 2021). Finally,
satellite cells are activated to proliferate and differentiate into
mature muscle either by fusing with the remaining muscle fiber
or by forming a new fiber within the shell of connective tissue. Many
transcription factors are involved in muscle development and repair,

and they have a temporal sequence of activation across various
stages of myogenesis (Mukund and Subramaniam, 2020). While the
differentiation of satellite cells produces newmyofibers necessary for
muscle repair and regeneration, the self-renewal of satellite cells is
crucial for maintaining the stem cell population (Kodippili and
Rudnicki, 2023).

Failed muscle repair in DMD

The loss of functional dystrophin in DMD results in the
disassembly of DAPC complexes, reduced expression levels of
certain DAPC components, and the loss of the interaction
between the F-actin cytoskeleton and the extracellular matrix.
This leads to wide-ranging consequences, including loss of
membrane and myofiber integrity, impaired muscle fiber
contractile activity, contraction-induced membrane rupture, and
progressive muscle degeneration (Figure 1) (Dowling et al., 2023;
Kodippili and Rudnicki, 2023). The membrane leakage leads to
continuous release of cytoplasmic content, including damage-
associated molecular patterns that are ligands to toll-like
receptors, P2RX7, and other pattern recognition receptors on
muscle and adaptive immune cells (Bez Batti Angulski et al.,
2023; Giordano et al., 2015; Henriques-Pons et al., 2014;
Sinadinos et al., 2015). Pattern recognition receptors activate
downstream signaling cascades and initiate the innate immune
response, and pro-inflammatory cytokines induce the expression
of MHCI and MHCII on muscle fibers, removing the immune
privilege (Bez Batti Angulski et al., 2023).

Membrane leakage also results in abnormal calcium handling
and associated proteolytic degradation of muscle proteins, leading to
a cascade of pathological events in the muscle cell and a
desynchronization of the repair processes with failure of proper
myogenic repair (Dowling et al., 2023).

Compared with the cycling states in normal muscle tissue, the
innate and adaptive immune system becomes chronically activated
in patients with DMD, inhibiting muscle repair even at locations
where the debris has been cleared. The chronic inflammatory
response in muscle fibers of patients with DMD is maintained by
overlapping pro- and anti-inflammatory signaling, preventing the
full resolution of inflammation (Bez Batti Angulski et al., 2023).
FAPs are improperly activated and persist at sites of tissue damage.
Here, they produce excess connective tissue leading to fibrosis and
differentiate into fibroblasts and fat cells that produce fat tissue
(adiposis) (Giuliani et al., 2022). TheMuSCsmaintain a proliferative
state, and due to the signals from inflammatory cells and FAPs, they
transdifferentiate into FAPs—additionally, increased symmetric
satellite cell expansion results in satellite cell hyperplasia. Fewer
asymmetric cell divisions lead to low myogenic progenitor cell
numbers (Kodippili and Rudnicki, 2023).

Functions of HDACs

HDACs are evolutionarily conserved enzymes that remove
acetylated groups from lysine residues in histones. This action
leads to a “closed” histone structure and reduced DNA
accessibility. The HDAC counterparts, histone acetylases, add
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acetyl groups to proteins, leading to an “open” histone structure and
increased DNA accessibility for transcription factors (Eslaminejad
et al., 2013; Mozzetta et al., 2024).

The combinations of histone modifications determine their
overall interaction with DNA, leading to activation and/or
inhibition of transcription (Eslaminejad et al., 2013). Many
chromatin states are regulated and maintained in a tissue-specific
way, ensuring DNA is accessible at specific times and precise
locations (Mariño-Ramírez et al., 2005). Specifically, the
acetylation and deacetylation of proteins influence important
processes in muscle cells (Sandonà et al., 2023).

HDACs have many roles (Molinari et al., 2023; Sandonà et al.,
2023); by both directly and indirectly regulating gene expression,
they also control key cellular processes through the deacetylation of
non-histone proteins and act as effectors in response to
physiological and pathological signals (e.g., acetylation of SMADs
can dampen TGF-β signaling by reducing SMAD phosphorylation)
(Osseni et al., 2022). Genetic and pharmacological manipulations of
HDACs in both in vitro and in vivo settings have emphasized their
crucial role in the maintenance and adaptation of skeletal muscle
metabolism (Molinari et al., 2023).

Increased levels of HDACs in DMD

A lack of dystrophin results in HDAC hyperactivity, which
exacerbates, at least in part, the pathological processes outlined
above. Dystrophin, as part of the DAPC, has many other important
roles in addition to providing mechanical stability to muscle fibers
(Dowling et al., 2023). It is crucial for signal transduction between
the internal and external environments of the muscle cell, providing
a scaffold responsible for the membrane localization of signaling
proteins. In health, the DAPC anchors a variety of signaling
molecules to their functional sites at the sarcolemma via the
syntrophin protein. One such is the enzyme nitric oxide synthase
(NOS), which regulates the intramuscular generation of nitric oxide
and microribonucleic acids (miRNAs) required for muscle tissue
maintenance and regeneration. This is achieved through the
modification of HDACs (Marrone and Shcherbata, 2011). In
DMD, dystrophin loss and DAPC disassembly lead to the
displacement of muscle-specific NOS. The resultant reduction in
nitric oxide generation leads to an aberrant, constitutive
hyperactivation of HDACs due to NO-mediated S-nitrosylation
(Kodippili and Rudnicki, 2023; Marrone and Shcherbata, 2011;
Sandoná et al., 2016).

The consequences of constitutive
HDAC activity

Aberrant and constitutive hyperactive HDACs in patients with
DMD cause excessive acetyl group removal from histone proteins,
preventing transcription of key homeostatic genes (Mozzetta et al.,
2024), resulting in a decrease in the levels of myogenic miRNAs
(Rugowska et al., 2021).

This has many pathological consequences for muscle damage
repair. First, the immune system becomes chronically activated in
the muscle (Rosenberg et al., 2015). HDACs appear to have a role in

the regulation of the immune response (Licciardi and Karagiannis,
2012; Sweet et al., 2012). In the context of DMD, in which immune
cells infiltrate muscles and contribute to disease pathology, the
constitutive hyperactivity of HDACs affects the balance between
pro-inflammatory and anti-inflammatory immune cell populations,
thereby influencing disease progression (Figure 1) (Bez Batti
Angulski et al., 2023; Kulthinee et al., 2022; Licciardi and
Karagiannis, 2012). Specifically, HDAC hyperactivity has been
associated with the suppression of regulatory T cells through the
deacetylation of Foxp3 (Beier et al., 2011).

Second, it results in altered FAP activity. The FAPs stall in
connective tissue production mode and become fibroblasts and fat
cells instead of supporting the satellite cells to differentiate and
repair muscle (Figure 2) (Marrone and Shcherbata, 2011; Ren et al.,
2024; Rugowska et al., 2021; Saccone et al., 2014; Sandoná et al.,
2016). Evidence from a DMD mouse model (mdx) has revealed an
HDAC-regulated network that consists of myogenic miRNAs and a
chromatin remodeling complex that is able to activate the myogenic
program in FAPs. HDAC-mediated repression of myogenic
miRNAs is reported in dystrophic muscles (Saccone et al., 2014).

Third, activated satellite cells cannot differentiate into new fibers
without FAP involvement (Figure 1). Hyperactive HDACs
deacetylate faster than HATs (Hyperactive HDACs deacetylate
faster than HATs acetylate), thereby reducing the activity of
transcription factors and co-factors critical for myogenic
differentiation, such as MyoD and MEF2 (Marrone and
Shcherbata, 2011; Rugowska et al., 2021) and impairing the
differentiation of satellite cells (Marrone and Shcherbata, 2011;
Ren et al., 2024). This leads to ineffective muscle repair and
regeneration in patients with DMD. Furthermore, the FAPs
produce factors causing activated satellite cells to
transdifferentiate into fibroblasts and lose muscle repair
capability (Molina et al., 2021; Ren et al., 2024).

Proteins other than histones are also regulated by the addition
and removal of acetyl groups, which can further exacerbate muscle
damage and pathology in DMD. For example, a key regulator of
fibrosis, TGF-β, works by triggering the addition of a phosphate
group to a protein complex, SMAD, leading to fibrosis (Biernacka
et al., 2011). Normally, this process is inhibited by SMAD acetylation
(Osseni et al., 2022). However, with HDAC hyperactivity, these
acetyl groups are actively removed, reducing the threshold for
adding phosphate groups and thus further increasing fibrosis.

HDAC inhibition in dystrophinopathy

The finding that dystrophin deficiency leads to constitutive
HDAC activation in muscles has provided a rationale for
investigating HDAC inhibitors such as givinostat in DMD
(Lamb, 2024): given that multiple muscle damage and repair
processes are exacerbated by excessive HDAC activity, inhibiting
HDAC activity could improve muscle repair and alleviate DMD
pathology. HDAC inhibition is expected to allow immune cells to
transition from a pro-inflammatory state to a modulatory state,
which would diminish the immune response and reduce the
inhibition of muscle repair processes. HDAC inhibition might
also direct FAPs to regain their supportive role in muscle repair
and prevent their production of fat and connective tissues. Evidence
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suggests that FAPs exposed to HDAC inhibitors increase the
extracellular vesicle levels of a subset of miRNAs that target
biological processes such as regeneration, fibrosis, and
inflammation (Sandonà et al., 2020). Satellite cells can also be
prompted to differentiate into muscle fibers rather than
remaining stalled in proliferation mode (Figure 2) (Kodippili and
Rudnicki, 2023).

Exposure of mdx mice to HDAC inhibitors demonstrated
therapeutic effects in dystrophinopathy, including histological
improvement in fibrosis and inflammation, as well as enhanced
muscle regeneration, decreased membrane permeability, and
increased muscle strength and performance (Mozzetta et al., 2024).

Effects of givinostat in DMD

Although HDAC inhibitors have been in development for many
years and for many diseases, relatively few have been approved for
use in specific indications (Mozzetta et al., 2024). HDAC inhibitors
have a narrow therapeutic window; doses above a certain threshold
are required for a therapeutic effect, but high doses can be associated
with dose-limiting side effects (Sandonà et al., 2023).

Givinostat is an orally bioavailable, potent HDAC inhibitor
(Lamb, 2024; United States Food and Drug Administration,

2024) designed to overcome the challenges observed in previous
studies (Mozzetta et al., 2024). Unlike other HDAC inhibitors,
givinostat has shown efficacy at dosing levels that are generally
tolerated (Lamb, 2024; Mercuri et al., 2024).

On a molecular level, HDAC inhibition by givinostat leads to a
cascade of changes in gene expression, protein function, and cellular
processes. Specifically, one effect of HDAC inhibition by givinostat
leads to hyperacetylation of histones, resulting in a more open and
relaxed chromatin structure. Consequently, transcription factors
and other regulatory proteins can more easily access DNA,
enhancing the transcription of genes involved in muscle repair
and anti-inflammatory responses. The effects of this inhibition by
givinostat have been consistently demonstrated throughout a
defined preclinical and clinical program.

Preclinical evidence of
givinostat efficacy

The effect of givinostat on myogenic miRNAs has been
investigated in mdx mice. In untreated mdx versus wild-type
mice, 120 miRNAs were found to be significantly upregulated
and 66 were found to be significantly downregulated (Licandro
et al., 2021), and correlations noted with patients with DMD

FIGURE 2
Multiple effects of HDAC inhibition on DMD-related pathogenesis. DMD, Duchenne muscular dystrophy; EV, extracellular vesicle; FAP, fibro-
adipogenic progenitor; HDACi, histone deacetylase inhibitor, MuSC, muscle stem cell. HDAC inhibition leads to (A) Reduction in hyperacetylation of
chromatin by HDAC and restoration of gene transcription (B) Increase in the number of EVs produced by FAPS that contain microRNAs that influence the
biological processes controlling muscle regeneration, fibrogenesis, and inflammation (C)Decrease in the differentiation of FAP cells into adipocytes
and fibroblasts (D) Decrease in chronic inflammation and reduction in inflammatory cytokines, which also reduces fibrosis (E) Increases transcription of
muscle genes and decreases myofiber membrane leakage andmyofiber degeneration/necrosis. Inhibits activation of TGF-β signaling (F) Increases fusion
of myoblasts into differentiated myotubes (G) Increases formation of regenerating, center-nucleated myofibers.
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(Cacchiarelli et al., 2011; Licandro et al., 2021). Furthermore, specific
miRNAs have been shown to correlate with DMDpathology. Inmdx
mice, givinostat was shown to induce miRNAs (miR-449a-5p and
miR-92b-3p) that are known to be linked to stem cell pluripotency
and are reduced in patients with heart failure (Licandro et al., 2021).
Both in vitro and ex vivo, givinostat restored human DMD FAP
ability to support MuSC differentiation into multinucleated
myotubes, indicating that additional events resulting from DAPC
disassembly can be dysregulated in DMD MuSCs (Sandonà et al.,
2020). The muscle regeneration factor, miR-206, is repressed in
DMD MuSCs (Cacchiarelli et al., 2011); and could be compensated
by FAP-derived EVs-miR-206 to restore MuSC ability to regenerate
dystrophic muscle (Sandonà et al., 2020).

Histopathological analysis also demonstrated improvements
with givinostat treatment. Givinostat significantly reduced fibrosis
by up to 30%–40% inmdxmice compared with healthy controls and
reduced inflammation (Consalvi et al., 2013). In another study,
givinostat also reduced fibrosis, necrosis, and fat replacement in
skeletal muscle tissue in mdx mice (Licandro et al., 2021). Fibrosis,
often regarded as the most detrimental consequence of disease
progression in DMD mouse models, arises from complex
interactions between resident cell types and inflammatory
infiltrates. The myeloperoxidase (MPO) enzyme produced by
neutrophils, monocytes, and macrophages serves as a marker for
quantifying inflammation linked to muscle degeneration in
muscular dystrophies. Significantly reduced MPO activity was
observed in the muscles of mdx mice treated with givinostat
compared to those treated with a vehicle control. These results
were also supported by functional improvements in mdx mice,
where givinostat treatment resulted in muscle regeneration.
Histological images showed that givinostat increased muscle fiber
diameter (measured as myofiber cross-sectional area) in mdx mice
compared to control (Consalvi et al., 2013). Givinostat treatment
resulted in increased muscle strength, demonstrated by dose-
dependent improvements in the grip test (Licandro et al., 2021).
Improvements were also seen in the treadmill exhaustion test, both
in terms of distance covered and time to exhaustion (Consalvi et al.,
2013; Licandro et al., 2021).

First-in-human evidence of HDAC
inhibition by givinostat

Orally administered givinostat 50 or 100 mg transiently reduced
the in vitro production of pro-inflammatory cytokines (while not
affecting anti-inflammatory cytokines) in a phase 1 trial in healthy
males. After seven daily doses of givinostat 200 mg, the reductions in
cytokine production were generally similar to those following the
initial dose (Furlan et al., 2011).

Clinical evidence of givinostat efficacy

In an open-label, two-part, phase 2 study, the histological effects
of givinostat were analyzed in 20 ambulant boys with DMD (Bettica
et al., 2016). The histological effect of givinostat treatment was
confirmed, with a significant increase in muscle tissue and
reductions in fibrosis, tissue necrosis, and fatty replacement.

Givinostat was subsequently shown to slow DMD progression in
a placebo-controlled phase 3 trial, in which both groups continued
to receive corticosteroids. The results indicated that over 18 months
of treatment, givinostat significantly improved muscle function and
strength compared with the placebo group. It effectively slowed the
progression of muscle degeneration in the participants. The primary
endpoint, change in four-stair climb from baseline, was met. All
secondary endpoints were in favor of givinostat, including other
timed function tests, the North Star Ambulatory Assessment and
muscle strength. Givinostat reduced fat infiltration in the vastus
lateralis in patients with DMD by 30%. Magnetic resonance
spectroscopy evidence suggested less fat infiltration in the vastus
lateralis at 72 weeks with givinostat compared to control group
(LSM difference in fat fraction −2.92% [–5.64 to −0.20] (Mercuri
et al., 2024). These findings are consistent with those observed in the
givinostat pre-clinical studies (Consalvi et al., 2013; Licandro et al.,
2021) and phase 2 clinical trial (Bettica et al., 2016).

In terms of safety, givinostat was generally well tolerated. The
most common side effects were mild to moderate and included
monitorable gastrointestinal symptoms such as diarrhea,
thrombocytopenia and hypertriglyceridaemia, and were
manageable with dose adjustments. No severe or serious adverse
events were directly related to the drug or resulted in study
withdrawal (Mercuri et al., 2024).

Future considerations for
combination treatment

Now that givinostat is approved by the Food and Drug
Administration (United States), there is an opportunity for
combination with other approved treatments that induce
production of partially functional dystrophin. The expectation
is that the combination would have added benefit, as the
dystrophin-restoring approaches rely on the presence of
muscle and muscle quality. The micro-dystrophin gene
therapy approach (delandistrogene moxeparvovec) relies on a
muscle-specific promotor and thus the transgene will only be
expressed in skeletal and cardiac muscle (Hoy, 2023).
Furthermore, the micro-dystrophin is only partially functional
and will slow down but not stop pathology. As such, a second
treatment aiming to slow down muscle pathology should be
beneficial. The exon skipping approach (eteplirsen, golodirsen,
casimersen and viltolarsen) uses antisense oligonucleotides that
target exons during pre-mRNA splicing of dystrophin transcripts
(Aartsma-Rus, 2023). These transcripts are only produced in
muscle tissue and not in fibrosis or adipose tissues. For exon
skipping however, an added benefit of givinostat co-treatment is
expected, as it has been shown that dystrophin transcript
expression is reduced in patients with DMD due to chromatin
remodeling. It is expected that givinostat treatment can increase
dystrophin expression per se. Without exon skipping, this would
not lead to dystrophin protein production; after exon skipping, it
would. Indeed, in the mdx mouse model, treatment with mouse
specific exon skipping compounds and givinostat resulted in
increased levels of dystrophin transcripts and protein
compared with exon skipping by itself (García-Rodríguez
et al., 2020).
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Conclusion

DMD pathogenesis is complex and multifaceted. All currently-
available dystrophin-restoring treatments restore only partially
functional dystrophins that may slow down disease pathology,
but the pathophysiological processes remain inevitable. HDACs
have been shown to be hyperactive in patients with DMD and
contribute to this pathology, therefore HDAC inhibition has arisen
as a potential therapeutic option. Through its novel, multi-targeted
mode of action, the HDAC inhibitor givinostat has demonstrated
the potential to address the pathophysiological cascade of DMD by
targeting key pathological events originated by the lack of
dystrophin. The reduction of muscle degeneration is achieved by
lowering inflammation in the muscle, reverting inhibition of
myogenesis, promoting muscle regeneration, and decreasing
fibrogenesis and adipogenesis in patients with DMD.

Givinostat is the first nonsteroidal treatment for DMD to be
approved for use irrespective of the specific genetic variant
underlying the disease and received its first approval for the
treatment of DMD in patients ≥6 years old in March 2024 in the
United States (Lamb, 2024). Ongoing clinical studies continue to
evaluate the potential of HDAC inhibition in DMD and other
disorders where elevated HDAC activity plays a role.
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