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Introduction: Diabetic retinopathy (DR) has long been recognized as a common
complication of diabetes, making accurate automated grading of its severity
essential. Color fundus photographs play a crucial role in the grading of DR. With
the advancement of artificial intelligence technologies, numerous researchers
have conducted studies on DR grading based on deep features and radiomic
features extracted from color fundus photographs.

Method: We combine deep features and radiomic features to design a feature
fusion algorithm. First, we utilize convolutional neural networks to extract deep
features from color fundus photographs and employ radiomic methodologies to
extract radiomic features. Subsequently, we design a label relaxation-based
collaborative learning algorithm for feature fusion.

Results: We validate the effectiveness of the proposed method on two fundus
image datasets: the DR1 Dataset and the MESSIDOR Dataset. The proposed
method achieved 96.86 of AUC on DR1 and 96.34 of AUC on MESSIDOR, which
are better than state-of-the-art methods. Also, the divergence between the
training AUC and testing AUC increases substantially after the removal of
manifold regularization.

Conclusion: Label relaxation can enhance the distinguishability of training
samples in the label space, thereby improving the model’s classification
accuracy. Additionally, graph constraints based on manifold learning methods
can mitigate overfitting caused by label relaxation.
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1 Introduction

Diabetes Mellitus (DM) is a chronic metabolic disorder typically characterized by
insufficient insulin production or ineffective insulin action, resulting in elevated blood
glucose levels and a cascade of severe complications (Niţulescu et al., 2023; Zhang et al.,
2022). Diabetic Retinopathy (DR) has long been recognized as a prevalent complication of
diabetes and is the primary cause of vision impairment among diabetic patients, with severe
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cases potentially leading to permanent blindness (Tan and Wong,
2023). In recent years, the prevalence and associated blindness rates
of DR have risen rapidly. According to the World Health
Organization (WHO), the number of individuals affected by DR
is expected to reach 552 million by 2030, making it a leading cause of
blindness among the working-age population (Wang et al., 2022). In
clinical practice, early-stage DR often presents without noticeable
visual symptoms, making it difficult to detect. However, once visual
impairment occurs, it results in irreversible damage for the patient.
According to the International Clinical Diabetic Retinopathy
Disease Severity Scale (Dai et al., 2024), the progression of DR is
categorized into five stages: DR0 to DR4, with higher stages
indicating more severe disease, as shown in Figure 1. Specifically,
DR0 indicates the absence of apparent lesions; DR1, DR2, and
DR3 represent mild, moderate, and severe non-proliferative
diabetic retinopathy (NPDR), respectively. DR4 is classified as
proliferative diabetic retinopathy (PDR), the most severe stage,
during which patients commonly experience acute vision
deterioration, potentially leading to complete blindness. Therefore,
regular retinal screening is essential for diabetic patients, facilitating
the early detection and accurate grading of DR. Different treatment
approaches can then be implemented based on the severity of the
condition, promoting early identification, timely intervention, and
effective treatment to prevent vision loss. Thus, establishing an AI-
aided diagnostic model to assist in the diagnosis of DR is both a
feasible and necessary solution. AI-aided diagnostic models can
alleviate the workload of specialized physicians (Wu et al., 2024),
significantly enhance the efficiency of DR screening, and provide a
second, objective opinion during the diagnostic process. This
approach reduces the subjectivity inherent in human assessments,
enabling more accurate diagnoses and timely treatment for DR
patients, ultimately lowering the risk of vision loss due to the disease.

The aim of developing an AI-assisted diagnostic model is to
enable precise automated grading of diabetic retinopathy severity.
Traditional methods for DR grading require the design of hand-
crafted feature extraction algorithms, alongside the use of general

classifiers such as Support Vector Machines (SVM) or Random
Forests (RF) and their various adaptations to classify the severity of
DR (Nayak et al., 2008; De la Calleja et al., 2014; Carrera-Escalé et al.,
2023; Soren et al., 2024). For instance, Nayak et al. (2008) utilized
morphological operations and texture analysis to detect regions of
hard exudates, vascular areas, and contrast features, subsequently
inputting these characteristics into an Artificial Neural Network
(ANN) for disease staging, achieving an accuracy of 93%. De la
Calleja et al. (2014) applied Local Binary Pattern (LBP) algorithms to
extract local features, which were then analyzed using ANN, SVM,
and Random Forest (RF) classifiers for DR grading. Their results
indicated that RF performed best within a dataset of 71 images,
achieving an accuracy of 97.46%. In addition, radiomics has been
demonstrated its power in DR grading, which aims to analyze a large
number of quantitative features from medical imaging data to
uncover potential biological information and clinical relevance.
For instance, Laura et al. extracted radiomics features from
angiography (OCT) images and established machine learning
models to classify DM, DR and referable-DR (R-DR) (Carrera-
Escalé et al., 2023). Soren et al. constructed a DR grading model and
found that radiomics features are significantly different for
increasing levels of DR severity (Soren et al., 2024). While these
methods demonstrate significant potential, they tend to rely heavily
on prior knowledge and still require improvements under complex
imaging conditions. In recent years, deep learning algorithms have
made significant advancements in the field of computer vision, with
Convolutional Neural Networks (CNNs) emerging as the dominant
architecture for medical image analysis due to their powerful
capabilities in high-level feature extraction and representation.
Ting et al. (2017) from the National University of Singapore
utilized the VGG network for DR screening. Similarly, the
Krause research team at Google Research employed the Inception
V4 model to automatically detect DR in color fundus photographs
and predict its severity (Krause et al., 2018). However, given the
complexities involved in the DR grading task, relying solely on CNN
models has not yielded optimal results. Consequently, researchers

FIGURE 1
Example of DR grading.
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have explored various methods to enhance model performance for
DR classification. Sugeno et al. (2021) applied a Laplacian filter with
a kernel size of 5 to filter out blurred images, calculating the standard
deviation of the Laplacian operator’s output to eliminate noise. The
resulting clear color fundus photographs were then input into a
CNN for DR prediction, significantly improving model performance
compared to previous approaches. Bellemo et al. (2019) utilized two
different deep learning models, VGG and ResNet, to extract features
and employed ensemble learning to integrate the prediction scores
from both models, thereby achieving more accurate results. Tariq
et al. (2021) adopted deep transfer learning, combining the
classification results from various CNNs to diagnose DR effectively.

From above-mentioned studies, we can see that both hand-
crafted features and deep features play significant roles in AI-aided
DR grading. However, few studies focus on how to mine the
complementary or consistent patterns from them to improve DR
grading performance. In multi-view learning, it has been
demonstrated that mining complementary or consistent patterns
from different views can improve the classification performance.
Therefore, in this study, we utilize convolutional neural networks to
extract high-level deep features from color fundus photographs and
employ radiomic methodologies to extract radiomic features. Then
we design a label relaxation-based collaborative learning algorithm
for high-level deep feature and radiomic feature fusion. That is to
say, high-level deep features can be considered as one view, radiomic
features can be considered as another view. The method aims to
mine the complementary or consistent patterns from the two views.

The rest sections are organized as follows. Section 2 gives data
preprocessing steps. In Section 3, we show our method. In Section 4,

we report our experimental results from different aspects. In the final
section, we conclude this study.

2 Data preprocessing

In this study, we collect two public fundus image datasets for our
experimental studies. Based on the two public datasets, we construct
a binary classification task which aims to distinguish abnormal and
normal color fundus photographs. In the following, we briefly
introduce the two datasets and present the data preprocessing steps.

2.1 Dataset

2.1.1 DR1
DR1 dataset is provided by the Ophthalmology Department at

the Federal University. It comprises 1,014 color fundus photographs,
in which 687 images are normal and 327 iamges are abnormal.
Among the abnormal images, 245 exhibit bright lesions, while
191 display red lesions. Additionally, 109 images show evidence
of both bright and red lesions (Rocha et al., 2012). The images were
captured using a Topcon TRC-50X mydriatic camera, all with a
resolution of 640 × 480 pixels. Each image has been manually
annotated by three medical experts to indicate the presence or
absence of bright or red lesions. According to the evaluators,
normal images show no signs of Diabetic Retinopathy (DR),
while abnormal images may present various lesions, including
exudates, hemorrhages, and microaneurysms.

FIGURE 2
Framework of the proposed method.
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2.1.2 MESSIDOR
MESSIDOR is another available fundus image dataset (Decencière

et al., 2014). It comprises 1,200 eye color fundus photographs collected
from three different sites, with 800 images obtained with pupil dilation
and 400without. The images were captured using a color video 3 CCD
camera at resolutions of 1440 × 960, 2240 × 1488, or 2304 ×
1536 pixels. Based on the severity classification of DR in patients,
the dataset is divided into five levels. Specifically, MESSIDOR includes
546 images classified as DR0 (normal), 153 images as DR1 (mild),
247 images as DR2 (moderate), and 254 images as DR3 (severe), with
level 3 encompassing both severe non-proliferative retinopathy and
proliferative retinopathy.

2.2 Preprocessing

In this study, we aim to extract radiomic features and high-level
deep features from the two datasets. For radiomic feature extraction,

according to Liang’s suggestion (Liang et al., 2021), all color fundus
photograph are cropped into a fixed resolution of 350 × 350 pixels,
and the green channel is extracted. Additionally, as suggested by
Liang (Liang et al., 2021), Contrast Limited Adaptive Histogram
Equalization (CLAHE) (Zimmerman et al., 1989) is employed to
mitigate the influence of external factors as much as possible. For
high-level deep feature extraction, all color fundus photographs are
cropped into a fixed resolution of 224 × 224 pixels.

3 Methodology

Figure 2 shows the framework of the proposed method, which
contains three components, radiomics feature extraction, high-level
deep feature extraction and label relaxation-based
collaborative learning.

3.1 Radiomic feature extraction

Radiomic features capture both the homogeneity present in the
image and the structural arrangement of the object’s surface, which
may exhibit gradual or periodic variations. To extract a richer set of
radiomic features from the regions of interest (ROIs), we evaluated
various types of texture features. Unlike previous radiomics studies,
our approach did not require manual delineation of any ROIs.
Instead, we employed a threshold-based segmentation method to
generate the corresponding mask automatically.

Global features are typically first-order statistical attributes that
capture the statistical characteristics of images. Four common
matrix-based texture features used in texture classification
include the Gray Level Co-occurrence Matrix (GLCM), the Gray
Level Run Length Matrix (GLRLM), the Gray Level Size Zone
Matrix (GLSZM), and the Neighborhood Gray Tone Difference
Matrix (NGTDM).

TABLE 1 Categories of radiomics features and corresponding number of features in each category.

Categories of radiomics features Number of features Category description

GLCM 10 Gray Level Co-occurrence Matrix

GLRLM 15 Gray Level Run Length Matrix

GLSZM 15 Gray Level Size Zone Matrix

NGDTM 7 Neighborhood Gray Tone Difference Matrix

LBP 256 Local binary patterns

MRELBP 900 Median Robust Extended Local Binary Pattern

BPPC 1,087 Binary Pattern of Phase Congruency

IWBC 2048 Improved Weber Local Descriptor

GDP 256 Gradient directional pattern

LFD 512 Local Frequency Descriptor

MBC 3,090 Monastic Binary Coding

LTrP 256 Transition of intensity change in different directions over a local area

GLOBAL 3 Frst-order statistical features

TABLE 2 Main mathematical notations.

Notations Description

Xk Dataset of the k-th view

Y Label matrix

H Nonnegative label relaxation matrix

U Luxury matrix

Ok Edge weight matrix of the k-th view

Lk Laplacian matrix of the k-th view

K Number of views

N Number of samples

ωk Weight of the k-th view
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The GLCM represents the joint distribution of two pixels with a
specific spatial relationship, effectively functioning as a joint
histogram of pixel gray value pairs, thereby providing second-
order statistics. The GLRLM captures comprehensive information
about the gray images, reflecting variations in direction, adjacency,
and amplitude. The GLSZM calculates the number of connected
voxels in an image. Adjacent voxels sharing the same gray level are
considered connected. NGTDM quantifies the difference between
the gray value of a specific point and the average gray value of its
surrounding neighborhood, storing the cumulative differences
between all gray levels and their average gray values within
the matrix.

Prior to extracting these features, we conducted three
preprocessing operations on the images: WBPF (wavelet band-
pass filtering), IR (isotropic resampling), and GCLT (quantization
and gray level transformation), as suggested by Vallières (Vallières
et al., 2015), to enhance the richness of the extracted
texture features.

3.1.1 WBPF
To mitigate the influence of noise and enhance the

differentiation among various bandwidths, we employed the
“Sym8” wavelet basis function for the decomposition and
reconstruction of images in this study. The ratio of high and
low-frequency coefficients is denoted by “W”.

3.1.2 IR
To enrich the extracted texture features, this operation was

performed to obtain images at varying resolutions. The size of
the isotropic resampling is represented by “S”.

3.1.3 GCLT
To reduce time complexity and facilitate the extraction

of additional texture features, this operation converts images
to different gray levels. Two key parameters in this process are
the quantization algorithm and the number of gray levels,
denoted as ‘Algo’ and ‘Ng’, respectively. In this work, we
selected two quantization algorithms: equal-probability
(Vallières et al., 2015) and Lloyd-Max quantization (Max,
1960). Table 1 shows the number of extracted
radiomics features.

3.2 High-level deep feature extraction

Convolutional Neural Networks (CNNs) comprise multiple
layers, enabling the learning of data representations at various
levels of abstraction. The representation generated by each layer
is derived from that of the preceding layer. CNNs can be trained
using an end-to-end BP algorithm, as this approach effectively
integrates feature extraction with classification processes.

FIGURE 3
Core idea of LRCL.
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Generally, convolutional layers are usually taken as feature
extractors, while fully connected layers are taken as classifiers.
The lower layers of a CNN capture low-level features, whereas
the higher layers identify high-level features that can describe
either the entirety or specific components of objects within
images. Current studies indicate that features extracted from pre-
trained CNNs are highly powerful for a range of classification tasks
(Alghamdi et al., 2024; Hakim et al., 2023; Lankasena et al., 2024). In
this study, we utilize pre-trained AlexNet provided by the Matlab
toolbox “MatConvNet” as feature extractors to extract high-level
deep features, as illustrated in Figure 2.

3.3 Label relaxation-based collaborative
learning (LRCL)

To effectively fuse radiomic features and high-level deep
features, we propose a novel label relaxation-based collaborative
learning model termed as LRCL. Somemainmathematical notations
used in the study are summarized in Table 2.

The core idea of LRCL is illustrated in Figure 3. From Figure 3, we
see that two regularizations are used to reach the goal of collaborative
learning. The first one is view-weighting. Specifically, “Shannon entropy”
is used to automatically learn the weight ω1 of radiomic features and the
weight ω2 of high-level deep features. The view weights are then
embedded into empirical risk calculation. The second one is the
consistency regularization which is used to mine the consistent
patterns across radiomic features and high-level deep features.
Specifically, we firstly train a classifier, e.g., Ridge on the radiomic
feature space and the high-level deep feature space, respectively, then
the trained parameter on each feature space, e.g., the transformation
matrix in Ridge is taken as priori knowledge for the following consistent
pattern mining. Then in the stage of consistent pattern mining, we
construct a consistency regularization, as shown in Figure 3, to keep the
consistency across the two feature space.

Moreover, to future improve the performance of collaborative
learning, we introduce a label relaxation technique to re-construct
the label space. Suppose that Y is the original label matrix, in which
the element Yij � 1 means the i-th sample belonging to the j-th
class, Yij � 0 means the i-th sample belonging to other classes.
Therefore, Y is a strict binary matrix. To relax the strict binary
matrix, we introduce a luxury matrix U, which is defined in
(Equation 1).

Uij � +1 ifYij � 1
−1 ifYij � 0{ (1)

With U, the original label matrix Y can be relaxed to ~Y by the
following (Equation 2).

~Y � Y + U ⊙ H (2)
where H is an nonnegative label relaxation matrix needed to be
learned on training samples, and ⊙ is a Hadamard product operator.

In previous studies (Wang et al., 2021; Fang et al., 2017), some
authors indicated that although label relaxation can enlarge the
class margins between different classes and allows the classifier to
have greater flexibility in fitting the labels, it may increase the risk
of overfitting. To reduce overfitting risk, inspired by manifold
learning, we suppose that if two samples on the radiomic feature
space or the high-level feature space are in a same manifold, then
in the relaxed label space, the two samples should be kept as close
as possible. To achieve this goal, on each feature space, we
construct a undirected graph and define the edge weight Ok,ij

as follows.

Ok,ij � e−
xk,i−xk,j‖ ‖2F

δ

0 otherwise

⎧⎪⎨⎪⎩ if xk,i and xk,j are in the samemanifold

(3)
In (Equation 3), δ is a user-defined kernel width. It can be seen

from Equation 3 that in the k-th feature space, if two samples
xk,i and xk,j have the same label in the feature space, the closer their
distance, the large weightWk,ij will be. Therefore, by minimizing the
following objective function shown in (Equation 4), we can keep
xk,i and xk,j close in the relaxed label space.

∑K
k�1

∑N
ij

xk,iZk − xk,jZk

���� ����2FOk,ij � tr ZT
kX

T
kLkXkZk( ), (4)

where xk,iZk represents xk,i in the relaxed label space by Zk. Lk is the
Laplacian matrix of the k-th view.

Consequently, based on the analysis above, the final objective of
LRCL can be expressed in (Equation 5).

J Zk,H,ωk( ) � ∑K
k�1

ωk XkZk − Y + U ⊙ H( )‖ ‖2F + ωk lnωk

+αtr ZT
kX

T
kLkXkZk( )

+β XkZk − 1
K − 1

∑K
t�1,t ≠ k

XtPt

���������
���������
2

F

⎛⎝ ⎞⎠, s.t.H≥ 0,

∑K
k�1

ωk � 1 (5)

where α and β are user-defined parameters for balance controlling.
By applying the Lagrangian multiplier optimization method, we

can get the closed-form solutions of Zk, H and ωk, as shown in
(Equation 6, Equation 7 and Equation 8).

Zk � ωk + βωk( )XT
kXk + αXT

kLkXk[ ]−1⎛⎝ωkX
T
k Y + U ⊙ H( )

+βωkX
T
k

1
K − 1

∑K
t�1,t ≠ k

XtPt
⎞⎠. (6)

Label relaxation-based collaborative learning (LRCL)

Input: Xk , α, and β
Output: H, ωk and Zk

Procedures:
Step 1. Use a classifier, e.g., Ridge to compute priori knowledge Pk

Step 2. Compute the Laplacian matrix Lk
Step 3. Randomize H and ωk under H≥ 0,∑K

k�1
ωk � 1

Step 4. Set t=0
Repeat
Step 5. t←t+1
Step 6. Employ (Equation 6) to compute Zk

(t)

Step 7. Employ (Equation 7) to compute ωk
(t)

Step 8. Employ (Equation 8) to compute H(t)

Until ‖Zk
(t) − Zk

(t−1)‖< 10−8
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ωk � e
− Xk− Y+U ⊙ H( )‖ ‖2F−β XkAk− 1

K−1 ∑K
t�1,t ≠ k

XtPt( )��������
��������
2

F

∑K
t�1
e
− Xt− Y+U ⊙ H( )‖ ‖2F−β XtAt− 1

K−1 ∑K
t�1,t ≠ k

XtPt( )��������
��������
2

F

(7)

H � max U ⊙ ∑K
k�1

ωkXkZk − Y⎛⎝ ⎞⎠, 0⎛⎝ ⎞⎠ (8)

With H, ωk and Zk, the algorithm of LRCL can be specified as
follows. The time complexity of LRCL is mainly contributed by the
computation of Step 6, Step 7 and Step 8. It can be seen from (Equation
6) that the time complexity of computing Zk is O(N3). It can be seen
from (Equation 7) that the time complexity of computing ωk isO(N2).
It can be seen from (Equation 8) that the complexity of computingH is
O(N2). Therefore, the time complexity of LRCL is O(t(N3 + 2N2)).

4 Experimental results

4.1 Settings

On each dataset, 60% samples are used for feature selection and
classification model training. 20% samples are used for validation
which aims to select best model. The rest 20% samples are used for
model testing.

For deep feature extraction, fine-tuning is conducted over
30 epochs using stochastic gradient descent with minibatches of
size 50. The learning rate begins at 0.1 and decreases linearly to
0.0001 over the course of these epochs. Weight decay and
momentum are set at 0.0005 and 0.95, respectively. To
mitigate overfitting, fine-tuning typically requires a moderately
sized dataset. Given the limited size of our datasets, we employ
label-preserving transformations to artificially augment the data
(Dan et al., 2012). The data augmentation techniques utilized
include vertical flipping, horizontal flipping, and rotation at
various angles. This approach increases the dataset size by a
factor of 15. For each fundus image dataset, the same data
augmentation methods are applied to both the training
and test sets.

The evaluation of the proposed method can be organized into
two parts. In the first part, as shown in Section 4.2, we report the
comparison results between the proposed method and state-of-the-
art multi-view methods (Xie et al., 2023; Zhou et al., 2023; Luo et al.,
2023; Xu et al., 2024; Zhang et al., 2020), and the comparison results
between the proposed method and traditional machine learning
methods. In the second part, as shown in Section 4.3, we carry out
ablation studies by removing some core components to demonstrate
the power of the removed components.

The parameters of state-of-the-art multi-view methods are
set based on the authors’ suggestions. The parameters of
traditional machine learning methods are set by cross-

TABLE 3 Comparison results between the proposed method and state-of-the-art multi-view methods.

Model DR1 MSESSIDOR

SP SN ACC AUC SP SN ACC AUC

Xie et al. (2023) 93.78* 90.11* 91.17* 95.76 94.34 83.46* 90.55* 92.45*

Zhou et al. (2023) 96.87* 89.45* 92.67* 94.12* 94.32 82.53* 92.64* 92.65*

Luo et al. (2023) 95.27* 88.47* 90.90* 93.82* 91.18* 81.65* 91.45* 94.64*

Xu et al. (2024) 93.41* 87.67* 90.55* 95.67 93.76* 85.32* 92.08* 93.36*

Zhang et al. (2020) 93.34* 87.90* 92.09* 91.98* 94.11* 85.32* 91.87* 95.87

Proposed 98.43 91.78 93.12 96.86 95.11 87.03 94.01 96.34

*means the difference is at 5% significant level, i.e., p-value is less than 0.05. The best performance is marked in bold.

TABLE 4 Comparison results between the proposed method and traditional machine learning methods.

Model DR1 MSESSIDOR

SP SN ACC AUC SP SN ACC AUC

SVM 92.11* 88.76* 90.45* 94.53* 92.34* 80.11* 87.56* 90.11*

Ridge 93.12* 85.43* 90.34* 93.34* 92.45* 80.23* 90.34* 89.23*

XGBoost 93.21* 86.27* 87.34* 92.53* 90.13* 79.61* 89.23* 93.12*

DT 91.45* 85.13* 84.23* 92.45* 91.34* 82.34* 89.12* 90.21*

RF 90.76* 85.64* 90.43* 92.34* 92.19* 80.25* 90.12* 92.34*

Proposed 98.43 91.78 93.12 96.86 95.11 87.03 94.01 96.34

*means the difference is at 5% significant level, i.e., p-value is less than 0.05. The best performance is marked in bold.

Frontiers in Cell and Developmental Biology frontiersin.org07

Zhang et al. 10.3389/fcell.2024.1513971

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1513971


validation with grid search. Pearson Score and Fisher Score are
employed as the feature selection methods. After feature
selection, the final number of radiomics features is 30, the
final number of deep features is 35.

SP (Specificity, %), SN (Sensitivity, %), ACC (Accuracy, %) and
AUC (Area under the ROC curve, %) are employed to measure the
performance of all methods.

4.2 Result analysis

Table 3 shows the comparison results between the proposed
method and state-of-the-art multi-view methods. From Table 3,
we can see that the proposed method performs better than state-
of-the-art multi-view methods on both DR1 andMESSIDOR (best
results are marked in bold). In this study, we adopt view-
weighting and consistency regularizations to mine the
consistent patterns across the radiomic feature space and the
high-level deep feature space. In some of the state-of-the -art
methods, only view-weighting are used for collaborative learning,
which may ignore the hidden patterns across different views. To
further demonstrate the promising performance of the proposed
method, we compare the proposed method with some traditional
machine learning methods, the comparison results are shown in
Table 4. The radiomic feature and the high-level deep features are

directly combined as a new feature vector, and is taken as the
input of the traditional machine learning methods. From Table 4,
we see that the proposed method performs the best. This is
because direct feature combination cannot effectively provide
classification patterns.

4.3 Ablation study

To further demonstrate why the proposed method performs
well, we first remove the consistency regularization from the
objective function. Figure 4 shows the comparison results before/
after consistency regularization ablation. From Figure 4, we see that
when we remove the consistency regularization, the performance
drops significantly, which indicates that the consistent patterns
across the radiomic feature space and the high-level deep feature
space can indeed improve the classification performance. Secondly,
we remove the manifold regularization to observation model
generalization. Figure 5 shows the training and testing AUC
against iteration on DR1 before/after ablation. From Figure 5, we
see that the divergence between the training AUC and testing AUC
increases substantially after the removal of manifold regularization,
which indicates a lower generalization ability when manifold
regularization is removed, in comparison to the ablation
preceding before.

FIGURE 4
Ablation of consistency regularization.

FIGURE 5
Ablation of manifold regularization.
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5 Conclusion

In this study, we design a feature fusion framework to fuse high-
level deep features and radiomic features for DR grading.
Comparing with existing similar studies, the proposed framework
has more freedom to fit the labels with low overfitting risk. In
addition, comparing with direct feature combination, we design the
consistency regularization to mine the consistent patterns across the
high-level deep features and radiomic features, which can improve
the DR grading performance. Experimental results demonstrate the
effectiveness of the proposed framework. However, this study still
has certain limitations. For instance, in addition to consistency
patterns, different feature spaces may also exhibit complementary
patterns, and effectively exploring these complementary patterns
warrants further investigation.
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