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Axon guidance is a key event in neural circuit development that drives the correct
targeting of axons to their targets through long distances and unique patterns.
Exosomes, extracellular vesicles that are smaller than 100 nm, are secreted by
most cell types in the brain. Regulation of cell-cell communication,
neuroregeneration, and synapse formation by exosomes have been
extensively studied. However, the interaction between exosomes and axon
guidance molecules is poorly understood. This review summarizes the
relationship between exosomes and canonical and non-canonical guidance
cues and hypothesizes a possible model for exosomes mediating axon
guidance between cells. The roles of exosomes in axon outgrowth,
regeneration, and neurodevelopmental disorders are also reviewed, to discuss
exosome-guidance interactions as potential clinical therapeutic targets.
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1 Introduction

The complexity and correct connectivity of neural circuits ensures that the brain
operates correctly. During neural circuit development, differentiating neurons extend their
axons to encounter their appropriate targets to form a functional synapse, which is the basis
of neural function in both health and disease (Eisenbach et al., 2004; Kandel, 2005). The
faulty assembly of synapses or misdirection of axonal pathfinding leads to defects in neural
circuits that may result in neural disorders, including schizophrenia and autism spectrum
disorder (ASD) (Gliman et al., 2012; Bakos et al., 2015). In the last decade, genome-wide
association studies (GWAS) on developmental and degenerative neural disorders have
identified candidate risk genes in the developing neural circuit, highlighting the importance
of axonal pathfinding in nervous system development (Bossers et al., 2009; Gliman et al.,
2012; Antonell et al., 2013; Pinto et al., 2014; Ronemus et al., 2014; Kashyap et al., 2019).
Thus, appropriate axon guidance establishes a heathy and well-functioning neural circuit.

The axon guidance process includes axon genesis, outgrowth, pathfinding, and
regeneration. During brain development, billions of axons are guided toward their
proper targets by axon guidance molecules that are subdivided into attractive and
repulsive molecules. Long-range axon guidance cues are required by axons to migrate
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throughout the brain, whereas short-range effects are mediated by
cell-cell contact-dependent ligand-receptor binding models. Long-
range guidance cues are recognized at various intermediate choice
points that express guidance molecules. These choice points exert
either attractant or repellent effects on axons to regulate axon
projection (Squarzoni et al., 2015). Short-range cues function at
the growth cones in a region enriched with filopodia (Landis, 1983).
Protrusion or collapse of the filopodia controls the forward
movement or stopping of the axon, corresponding to attractive
or repulsive guidance cues, respectively (Robles, 2005; Suter, 2011;
Omotade et al., 2017). The combined long- and short-range effects
lead to proper neural circuit formation.

Ramón y Cajal first described axon innervation in the brain and
growth cones as the structures that guide billons of axons to their
targets (Landis, 1983). What are the factors that regulate all these
axons to the correct targets? This question arose a hundred years ago
and has attracted the interest of numerous neuroscientists, moving
from an understanding on a morphological to molecular basis. Since
the 1960s, as the emphasis on guidance cues grew, numerous studies
have focused on defining and identifying axon guidance molecules
(Katz and Lasek, 1979). In later decades, several axon guidance
molecules were discovered and well-studied, including netrin
(Harris et al., 1996), ephrin (Zhu et al., 2006), semaphorin
(Kolodkin et al., 1993), slit (Wu et al., 1999), and non-
conventional cues, such as bone morphogenetic protein (BMP),
sonic hedgehog (Shh), and wingless/int-1 (Wnt) (Yam and Charron,
2013). Recently, researchers have identified new guidance molecules,
such as draxin, which was determined to provide a repulsive signal
for axons in the developing brain and does not share homology with
other axon guidance molecules (Shinmyo et al., 2015). Moreover,
crosstalk occurs between guidance cues and significant cooperation
occurs amongst molecules, such as between netrin and Shh, and
netrin and ephrin (Ricolo et al., 2015; Sloan et al., 2015). Updated
studies indicate that axon guidance cues also regulate axon
projection by mediating changes in gene expression via RNA-
binding proteins, which has been well reviewed by Kim and Kim
(2020). In addition to being a fundamental feature of neural circuit
development, axon guidance contributes to the nerve regeneration
process. Nerve injury occurs frequently and often combines with
other injury or diseases, and its recovery requires proper axon
projection to the original target. Otherwise, the incorrect
navigation of an axon leads to misdirection which may result in
disrupted recovery (Kerschensteiner et al., 2005; de Ruiter et al.,
2008; Hamilton et al., 2011). These studies have established a
overview of axon guidance; however, our understanding remains
incomplete. Challenges in understanding how a long-range cue
precisely guides a single axon to its proper target both spatially
and temporally still exist. Moreover, questions remain about how
deliberate management is established among numerous
intermediate choice points and in signaling crosstalk. To achieve
the goals of axon guidance, a missing factor must be present in large
quantities with ubiquitous distribution in the brain and contain
complex signaling information, which require extracellular
transport rather than being ‘fixed’ to tissues or cells and contain
abundant essential molecules. On the other hand, when considering
clinical treatment, the ability to engineer, isolate, and ensure re-
uptake is essential. Exosomes, which are small extracellular vesicles
(EVs), are a good candidate that fulfill all these criteria.

Exosomes are a subtype of small EVs with nanoscale sizes
ranging between 30 and 100 nm. After their fusion with the
plasma membrane, the multivesicular bodies (MVBs) deliver
exosomes into the extracellular surroundings, and may undergo
reuptake by receptors located on the cell membrane of the recipient
(Denzer et al., 2000; Yuan et al., 2018). Exosomes can be released by
different cell types, including neurons, stem cells, tumor cells, and
immune cells, as well as body fluids, including cerebrospinal fluid
(CSF), blood, and urine (Parolini et al., 2009; Mathivanan et al.,
2010). With their unique lipid bilayer structure, exosomes are able to
carry and protect cargos of biosignaling molecules, including
proteins, lipids, and nuclei acids, to deliver information between
cells to establish various biological signals (Xia et al., 2019; Gao et al.,
2020). Exosomal activity initiates from their fusion with the plasma
membrane of recipient cells or by undergoing endocytosis (Xia et al.,
2022). This functions as a cell-cell communication feature that
provides a contact-independent method to establish signaling
between cells (Théry, 2011; Bang and Thum, 2012). Furthermore,
as exosomes are detected in body fluids, potential clinical
applications may use exosomes as biomarkers for pathological
conditions, such as to identify mRNAs in exosomes that are
isolated from the serum of patients with glioma (Skog et al., 2008).

During brain development, most types of cells secrete exosomes,
including neural stem cells, neurons, astrocytes, and all other types
of glia (Kang et al., 2008; Yuyama et al., 2012). Exosomes are
involved in regulating cell-cell communication, cell morphology,
and plasticity. An increasing number of studies are focusing on the
role of exosomes in neural functions, and a study indicates a
significant impact of exosomes in neurotransmission (Xia et al.,
2019). This study discusses how neural and glial exosomes regulate
synapse activity to control neurotransmitter release and highlights
the potential function of exosome neurite growth. Brain cancers,
including glioblastoma, involve interactions between different cell
types in the brain, such as neuron-astrocyte or neuron-microglia
interactions. Therefore, exosomes as long-range cell-cell interaction
modulators have been linked with brain cancer progression
(Kucharzewska et al., 2013). Conversely, exosomes may serve as
biomarkers for cancer therapeutics. Moreover, the role of exosomes
in Alzheimer’s and Parkinson’s diseases has been well studied,
demonstrating the essential contribution of exosomes in
neurodegenerative disorders. Overall, as research on exosomes
continues to gain popularity, their functions are being further
explored, with an increasing focus on clinical therapies (Khan
et al., 2022; Zakeri et al., 2024). I believe there is a promising
synergy between clinical research and basic science. However, our
understanding of the role of exosomes in neural circuit
development, particularly in axon guidance, remains limited.
Here, we will review current progress that has been made in
neuronal exosome research, with a focus on axon guidance and
regeneration, summarize the interactions between exosomes and
guidance cues, and highlight related neural disorders to discuss the
contribution of exosomes in brain development.

2 Exosomes and axon guidance cues

Exosomes have been described to participate in neural circuit
development in two ways: as vehicles that transfer molecules
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(receptors or ligands) or carry cargos of miRNAs to mediate the
expression of relevant molecules or activate pathways. The miRNAs
carried by various sources of exosomes that participate in axon
guidance are summarized in Table 1. In this section, we review the
most recent reports of exosomes and guidance molecules in axon
guidance (Figure 1).

2.1 Exosomes and ephrins

Researches of exosomal Eph-ephrin signaling was initiated a
decade ago by Choi et al. (2007), who reported the proteomic profile

of a cancer cell line that identified the presence of EphA2-8, EphB1-
4, ephrin-B1, and ephrin-B2 on exosomal membranes. Next, Sun
et al. (2016) added ephrin-A2 to the story. In the pathogenesis of
various cancers, tumor cells release exosomes carrying biological
components into the environment to mediate Eph receptor or
Ephrin expression, establishing their physiological functions,
including cell boundary formation, migration, and axon
guidance. For instance, exosomes derived from hypoxic breast
cancer cells transport miRNA-210 to neighbor cells, which
regulate ephrin-A3 expression to promote angiogenesis (Jung
et al., 2017). This exosome-ephrin interaction mechanism has
also been confirmed by a study of ephrin-B2 function in

TABLE 1 List of exosomal miRNAs that participate in the axon guidance pathway.

miRNA Model Disorder References

miR-181a, miR-29a Human Acute encephalitis Goswami et al. (2017)

miR-3613-5p, miR-4668-5p, miR-8071, miR-197-5p, miR-4322, and miR-
6781-5p

Human Mesial temporal lobe epilepsy with hippocampal
sclerosis

Yan et al. (2017)

miRNA-22a Zebrafish Sheng et al. (2022)

miRNA-4262, miR-144-3p, miR-302d-3p, miR-485-5p Human Brain metastasis affected by radiotherapy Li et al. (2021)

miR-19b, miR-148a, miR-150, miR-221, miR-223 miR-320a, miR-361, and
miR-486

Cattle Muroya et al. (2015)

miR210 Human Breast cancer Jung et al. (2017)

FIGURE 1
Interactions between exosomes and guidance molecules in the axon guidance pathway. Guidance molecules perticipate in the formation of
multivesicular body (MVB) and exosome loading. For example, semaphorin 4A (sema4c) binds to prosaposin to mediate the MVB sorting pathway,
whereas EphB2 interacts with the endosomal sorting complex required for transport (ESCRT) which is necessary for MVB formation. MVBs release
different types of cargo-loaded exosomes, including microRNAs (miRNAs) which bind to or activate guidance molecules or ligands within the
exosome or on the outer surface of the exosomes. These cargos then bind to receptors on the cell membrane or participate in other extracellular
pathways.AD, adenosine; IAP, intestinal alkaline phosphatase; Shh, sonic hedgehog; Wnt, wingless-related integration site.
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endothelial cells (Tae et al., 2017). The most well-studied interaction
is exosomal EphA2 derived from tumor serum that contributes to
vesicular pathfinding, angiogenesis, and cell migration via Eph-
ephrin forward signaling and is a potential diagnostic biomarker
for several cancers (Fan et al., 2018; Gao et al., 2021; Han et al., 2022;
Wei et al., 2020). In the nervous system, as the largest tyrosine kinase
receptor family, Eph-ephrin signaling is implicated in many cellular
events during neural circuit development, such as axon guidance
and neuronmigration via contact-dependent bidirectional signaling.
Gong et al. illustrated that exosomes mediate contact-independent
Eph-ephrin signaling via a long-range intracellular communication
mechanism (Gong et al., 2016). The endosomal sorting complex
required for transport (ESCRT) plays an essential role in MVB
formation and interacts with EphB2. These EphB2+ exosomes
induce ephrin-B1–EphB2 reverse signaling and provide repellent
signaling to ephrin-B1+ growth cones. These findings underscore
the contribution of exosomes in Eph-ephrin signaling.

2.2 Exosomes and semaphorin

A descriptive proteomic analysis of glioma-associated stem cell-
derived exosomes identified semaphorin 7A on exosomal
membranes. Exosomal semaphorin 7A interacts with integrin-β
to increase glioma stem cell (GSC) motility, demonstrating an
important role of exosomal semaphorin in neural stem cell
migration. This may be a new target for disrupting the
interaction between GSCs and neighbor cells (Manini et al.,
2019). In addition to their contribution to neuronal migration,
exosomal semaphorins regulate vascular and neural pathfinding
as guidance cues. Endothelial-derived exosomes carry miRNA-22
as cargo, and the aberrant expression of miRNA-22 leads to
disruptions in vascular and motor neuron pathfinding (Sheng
et al., 2022). Interestingly, miRNA-22 binds to the 3′-
untranslated region of the semaphorin 4C (sema4c) gene,
highlighting its role in regulating vascular and neural pathfinding
through an exosomal pathway (Sheng et al., 2022). Semaphorins also
mediate cargo loading of endodermal exosomes. Under oxidative
stress, semaphorin 4A transfers prosaposin from the Golgi
apparatus to the cell periphery to be loaded and released by
exosomes, and Rab11 mediates this intracellular process in retinal
pigment epithelial cells. These findings underlines the role of
semaphorins in mediating endosomal sorting towards the
exosomal pathway (Toyofuku et al., 2012).

2.3 Exosomes, netrin, and slit

Netrin-1 was the first axon guidance molecule discovered in
vertebrates, making it a significant factor in both central and
peripheral nervous system research due to its role in axon
guidance, cell migration, and morphogenesis (Serafini et al.,
1994). In the peripheral nervous system (PNS), Netrin-1 plays a
key role in the upregulation of the nerve stump following peripheral
nerve injury (PNI). A recent study demonstrated that exosomes
derived from Netrin-1-high endothelial cells (NTN1 EC-EXO) are
involved in the formation of the vascular niche. Multi-omics analysis
confirmed a low expression of let-7a-5p in NTN1 EC-EXO,

highlighting its crucial role in establishing a microenvironment
for nerve repair after PNI by activating key signaling pathways
such as focal adhesion and axon guidance (Huang et al., 2024). On
another hand, Exosomal netrin-1 increases the neuronal
differentiation rate of bone marrow mesenchymal stem cells
(BMSCs) via Hand2/Phox2b signaling. Moreover, BMSC
transplantation potentially repairs the structure of damaged tissue
and restores function, which may be used as a supplementary
treatment in spinal cord injury or congenital spinal disorders,
including spinal bifida aperta (SBA) (Ma et al., 2022).
Additionally, more recent research showed that using engineered
exosomes enriched with Netrin-1 in SCI rats promoted nerve
recovery (Lu et al., 2023). Both results highlight the therapeutic
effect of exosomal netrin in neural disorders. Roundabout homolog
1 (ROBO1) acts as the direct target of human engineered exosomal
miR-29a-3p, and the interaction between miR-29a-3p and
ROBO1 plays an important role in glioma migration and
vasculogenic mimicry formation (Zhang et al., 2021). Both Netrin
and Slit signaling are classic axon guidance modulators, similar to
the ephrin family; however, there is limited research on exosomal
Netrin or Slit. As mentioned, Huang’s study highlighted the key role
of exosomal Netrin-1 in axon guidance within the vascular niche,
underscoring a new direction for research on exosomal axon
guidance signaling in the microenvironment of the PNS.

2.4 Exosomes and alkaline phosphatase

Alkaline phosphatase (AP), or tissue non-specific alkaline
phosphatase (TNAP) is well known as its role in bone
development and functions. Transgenic mice lacking TNAP
activity display the characteristic skeletal and dental phenotype of
infantile hypophosphatasia (Narisawa et al., 1997). In central nerve
system, TNAP initially highly expressed in migrating primordial
germ cells in neural tube (Foster et al., 2012) and had been
demonstrated that played an important role in cell proliferation
(Altman and Bayer, 1990), embryonic and adult neurogenesis
(Langer et al., 2007), neuronal differentiation (da Silva and Dotti,
2002) and synaptogenesis (Fonta et al., 2005). The role of alkaline
phosphatase (AP) in axon guidance has been poorly studied,
however, Elefant et al. (2016) demonstrated the attractive role of
exosomal AP in the developing avian optic chiasm. During early
development of the chick embryo, intestinal alkaline phosphatase
(IAP) is localized on the outer surface of exosomes that are highly
concentrated in the midline of the developing diencephalon. In a
following study by the same group, the attractive role of IAP was
confirmed using an in vitro culture experiment showing that IAP
acts on ambient extracellular adenosine triphosphate (ATP) to form
an adenosine gradient from the breakdown of extracellular ATP.

2.5 Exosomes and Shh

Shh is a member of the hedgehog (Hh) family and acts as a key
morphogen involved in many long-distance cellular events during
development, including various cell behaviors and neural plasticity.
In various systems, Hh is released and distinctly localized in tissues
to activate target genes (Briscoe and Thérond, 2013). Therefore, the
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transport and release of Hh requires strict spatial and temporal
control. In mammals, the Shh morphogen also directs tissue and
axonal pattering according to a concentration gradient. This
requires the transportation of Shh from producer to recipient
cells, and exosomes are the Shh carriers in this extracellular
process (Gradilla et al., 2014). Moreover, BMSC-derived
exosomal Shh plays a key role in spinal cord injury (SCI) in rats
(Jia et al., 2021). Compared with that in the control group, Shh
knockdown by short hairpin RNA Shh-adeno-associated virus
results in a significantly decreased neuroprotective effect,
including a reduced amount of Nissl bodies, lower motor
function (according to blood–brain barrier analysis), increased
neural apoptosis, and decreased neuronal ends regeneration. This
suggests a neuroprotective role of exosomal Shh. However, after
regeneration of neuronal ends, axons may contact an inappropriate
target, such as misdirection of motor neuron projections after SCI
recovery in the case of no exercise or a inefficitent electrical
stimulation (Gordon and English, 2016). The next steps in neural
injury recovery require further investigation to understand neuronal
pathfinding back to their original targets.

2.6 Exosomes and Wnt

Wnt is a large family of ligands that play an important role in
development, particularly in neuronal development. As a guidance
cue, non-canonical Wnt signaling directs several types of axons,
including neurons that express dopamine and 5-HT in the
hindbrain and corticospinal tract (CST) and post-crossing
commissural axons, via gradient expression of different Wnts
(Lyuksyutova et al., 2003; Liu et al., 2005; Keeble et al., 2006;
Fenstermaker et al., 2010). Non-canonical Wnt signaling (β-
catenin-independent) includes Wnt/planar cell polarity (PCP)
and Wnt/calcium (Ca2+) pathways. The Wnt/PCP pathway is one
of the most popular Wnt non-canonical catenin-independent
pathways involved in the axon guidance mechanism. In PCP
signaling, frizzled (Fz) activates a cascade involving the small
GTPases, Rac1 and RhoA, and c-Jun N-terminal kinase to
regulate cell polarity and tissue morphogenesis (Yam and
Charron, 2013). Dopaminergic and serotonergic axons project
from the hindbrain to their midbrain and forebrain targets
through a Wnt/PCP pathway (Fenstermaker et al., 2010; Shafer
et al., 2011). Gradient-expressed Wnt5a and Wnt7b regulate
dopaminergic axon projection as repulsive and attractive cues,
respectively; however, axons are not affected in mutants of their
receptor, Fz3−/−. In the Ca2+ pathway, Wnt triggers the activation of
G proteins to activate the Fz-mediated phospholipase, and
subsequently trigger Ca2+ release and activate Ca2+-dependent
effectors (Niehrs, 2012). In the spinal cord, Wnt1 and Wnt5a are
expressed in a gradient along the anterior-posterior axis to regulate
CST axons that extend through the spinal cord. Data on Ryk−/−

mutants indicate that receptor-like tyrosine kinase (Ryk) functions
as a Wnts receptor in the CST, and pharmacological in vitro
experiments reveal that Ca2+ mediates the repulsive effect
between Wnts and Ryk T (Liu et al., 2005; Ian et al., 2012).

Recently, an interaction between exosomes and Wnt/PCP
signaling in cancer metastasis has been described. The activation
of exosomes that are released by fibroblasts stimulate the protrusive

activity and motility of breast cancer cells via Wnt/PCP signaling
(Luga et al., 2012). Furthermore, exosomes mediate non-directional
cell migration primarily in an actin-dependent, centrosome-
independent manner (Luo et al., 2019). The Wnt/Ca2+ pathway
induces exosome secretion in melanoma cells (Ekstrom et al., 2014).
Moreover, in melanoma cells, Wnt5a stimulates exosomes to release
their cargo, including immunomodulatory and pro-angiogenic
proteins such as vascular endothelial growth factor and matrix
metalloproteinase-2. This induction is blocked by the Ca2+

chelator BAPTA, inhibited by a dominant negative version of the
small Rho-GTPase Cdc42, and is accompanied by cytoskeletal
reorganization. Co-culture experiments demonstrate that blocking
Wnt5a expression leads to endothelial cell morphological defects,
whereas expressing Wnt5a in endothelial cells induces exosomes
release from melanoma cells. These data suggest a role for the
interaction between the Wnt/Ca2+ pathway and exosomes in
immunosuppressive and angiogenic functions.

In the nervous system, active Wnt proteins are released by
exosomes at the neuromuscular junction in Drosophila (Gross
et al., 2012). Hippocampal interneuron-derived exosomes release
endogenous proline-rich 7 (PRR7) which is the antagonist of Wnt
signaling (Lee et al., 2018). Exosomal PRR7 is a transmembrane
protein that can be taken up by neighboring neurons to eliminate
excitatory synapses. PRR7 can block the exosomal secretion of Wnts
and activation of glycogen synthase kinase-3 β by promoting
proteasomal degradation of postsynaptic density proteins.
Conversely, exosomes mediate Wnt signaling to contribute to
axonal regeneration in central nervous system (CNS) injury
(Tassew et al., 2017). Fibroblast-derived (FD) exosomes rescue
neurite outgrowth defects when they are applied to cultured
cortical neurons with inhibitory myelin substrate. This rescue
ability is driven by the interaction between exosomes and
Wnt10b, as FD exosomes promote the recruitment of Wnt10b
towards lipid rafts which induces a Wnt10b autocrine signaling
pathway that activates the mammalian target of rapamycin in
neurons. Hence, applying FD exosomes to the eye promotes
optic nerve regeneration after injury (Tassew et al., 2017). A
recent bioinformatic analysis demonstrates that exosomes
released by epiblast-derived stem cells carrying miRNA cargo
that mediate Wnt signaling are significantly enriched during
dopaminergic neuron differentiation (Jin et al., 2020). These
studies highlight a key role for the exosome-Wnt interaction in
both the developing and adult nervous system, including
neurogenesis, axon outgrowth, and neuron differentiation,
providing a new therapeutic target for CNS disorders. However,
our understanding of exosomal Wnt in axon guidance
remains limited.

Similar to long-range regulation by ephrins, non-canonical Wnt
pathways may also act as long-range cues in guiding long-distance
axonal pathfinding. In dopaminergic projections from the brainstem
to midbrain targets, axons are extended along a gradient pattern of
Wnt expression distributed along the existing tissue. This process
may promote non-canonical Wnt signaling via neighboring neuron-
or astrocyte-derived exosomes. Conversely, exosomal non-canonical
cue interactions may indirectly mediate axonal pathfinding via
crosstalk between guidance cues. For instance, Shh regulates the
Wnt expression level to generate a Wnt expression gradient that
regulates post-crossing commissural axons by inducing the
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expression of the Wnt antagonist Sfrp1 (Domanitskaya et al., 2010).
As described previously, Wnt signaling mediates exosome release,
which may activate exosomal guidance cues to regulate axonal
pathfinding, suggesting a new model of exosome-dependent
guidance cue crosstalk.

3 Role of exosomes in axonal
outgrowth and regeneration

Nerve injuries, including traumatic brain, spinal cord, and
peripheral injury, involve damage to nerve tissue that leads to
communication defects within the brain or between the brain
and other organs. Regenerating injured axons from the CNS
injury and rebuilding functional circuits that connect to their
original targets are difficult, and thus injury often results in
permanent disability. However, peripheral nerves perform
dramatic regeneration after injury leading to recovery of the
function of sensory and motor innervations. Diverse surgical
procedures have attempted to repair nerve injuries; however,
several disadvantages remain due to donor tissue absence,
functional nerve damage, and the risk of neuroma generation.
Thus, a new therapeutic target for promoting or improving
axonal outgrowth and regeneration is required.

Recently, exosomes have been widely studied and used as a
popular therapeutic target. Exosomes can be used as an alternative
non-cell-based therapy for nerve regeneration to reduce the risks of
dysfunction and transformation of transplanted stem cells
(Thirabanjasak et al., 2010). To achieve their contribution in
nerve regeneration, exosomes act as vehicles for remyelinating
and regenerative factors or miRNAs that mediate nerve
regenerating events. Retinoic acid (RA), a well-known axon
guidance molecule, plays an essential role in axon/neurite
outgrowth and guidance during development and adulthood
(Dmetrichuk et al., 2006; Farrar et al., 2009). The RA signaling
pathway regulates remyelination and axon/neurite outgrowth after
spinal cord injury, and, interestingly, exosomes mediate the neural-
glial crosstalk that contributes to this process (Goncalves et al.,
2018). Neuronal RA receptor beta (RARβ) activation is required for
the RA signaling pathway in neural injury recovery and leads to the
upregulation of endogenous RA synthesis and release of RA in
exosomes as either cargo or anchored to the membrane to serve as a
positive cue for axon growth, suggesting the importance of exosomes
in nerve regeneration as guidance molecule carriers. As exosomes
may carry miRNAs as cargo, numerous studies are focused on the
molecular mechanism of exosomes in nerve regeneration on the
gene level. Traumatic brain injury (TBI), the primary cause of
acquired permanent neuronal disability worldwide, induces
axonal transection and synapse dysfunction which results in
neurological function deficits (Tsitsopoulos et al., 2017).
Therefore, major therapeutic strategies for TBI focus on axonal
regeneration and synapse recovery.

Several studies demonstrate a key role of microglia in axon
outgrowth and synaptic plasticity via crosstalk with neighboring
neurons (Arnoux and Audinat, 2015), which is regulated by
microglia-derived exosomes. After TBI, miR-5121 carried by
microglial exosomes is significantly decreased, which may
suppress neurite outgrowth and synapse recovery (Zhao et al.,

2021). Overexpression of miR-5121 in a TBI model partly
rescues the axonal and synaptic defects both in vitro and in vivo.
Moreover, motor coordination in mice treated with exosomes
overexpressing miR-5121 is significantly improved after fluid
percussion injury compared with that in untreated animals. The
results of gene ontology and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis revealed that repulsive guidance
molecule A is the downstream direct target of miR-5121 through
which miR-5121 promotes axonal outgrowth and synapse recovery.
In the spinal cord, interestingly, exosomes often promote neurite
outgrowth by reducing inflammation at the lesion site, creating a
favorable environment for neurite outgrowth (Wang et al., 2021).
Exosomes carrying miR-199a-3p/145-5p contribute to SCI (Wang
et al., 2021). miR-199a-3p/145-5p is highly expressed in exosomes
that are derived from by-products of human umbilical cord
mesenchymal stem cells and modulates the nerve growth factor/
tropomyosin receptor kinase A (TrkA) pathway to regulate neuronal
differentiation. Moreover, miR-199a-3p/145-5p increases TrkA
expression at the lesion site to alleviate damage to the lesion site
and facilitate locomotor function in vivo. Huang et al. (2018)
highlighted the role of exosomal miR-124-3p in inhibiting
neuronal inflammation and promoting neurite outgrowth.
Furthermore, microglial exosomal miR-124-3p is significantly
upregulated following TBI. miR-124-3p promotes anti-
inflammatory M2 polarization in microglia to inhibit
inflammation in scratch-injured neurons. Lastly, treatment with
exosomal miR-124-3p rescues the decline in neurite number and
length in a scratch injury model, accompanied by additional
decreases in RhoA, amyloid precursor protein (APP), and Tau.
These findings indicate a key role for exosomes in regulating axonal
outgrowth and regeneration via their cargo of guidance cues or
miRNAs in a direct or indirect manner (Figure 2).

4 Role of exosomes in
neurodevelopmental disorders

Exosomes are thought to be expressed by all cell types in the
nervous system to modulate crosstalk between them. During
nervous system development, exosomes play key roles in
neurogenesis, synaptogenesis, and circuit assembly to regulate
neural circuit development (Sharma et al., 2019). During neural
circuit development, defects in firing assembly and synapse
formation result in numerous neurodevelopmental disorders
(Gilman et al., 2012; Antonell et al., 2013; Iossifov et al., 2014;
Parenti et al., 2020). This section summarizes the role of exosomes in
some of these disorders and discusses the utility of exosomes as a
cell-free therapy tool.

4.1 Autism spectrum disorders (ASD)

ASD is a well-known neurodevelopmental disorder that impacts
emotion control, language learning, cognitive behavior, and social
information perception abilities in children (Fodstad et al., 2009;
Elsabbagh et al., 2011; Pierce et al., 2016). Increasing research has
revealed that ASD is a largely heritable, multi-stage, and prenatal
disorder (Courchesne et al., 2020). ASD is associated with
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abnormalities in multiple brain regions and other organs. Moreover,
ASD is related to a combination of abnormal nerve development
events, including neurogenesis, cell migration, axon outgrowth,
spine development, and synaptogenesis in prenatal and early
postnatal life (Courchesne et al., 2011; Kaushik and Zarbalis,
2016; Packer, 2016; Marchetto et al., 2017). Studies on inducible
pluripotent stem cells (iPSC) derived from individuals with ASD
have demonstrated disruptions in neural activity, cell proliferation,
and synaptogenesis in children with ASD. An iPSC study has
revealed the misregulation of genes involved in neuronal
differentiation, axon guidance, cell migration, and regional
patterning, however, there are barely no genes have a definite
relation with ASD and this disease is eventuated by hundreds of
genses in neurodevelopment and synaptic proteins (Iakoucheva
et al., 2019; DeRosa et al., 2018). Consistently, a GWAS analysis
validated ASD risk genes and determined that most of these genes
were expressed in ASD-implicated brain regions, including the
neocortex, cerebellum, amygdala, hippocampus, and striatum
(Krishnan et al., 2016).

Currently, exosomes have been implicated as potential
biomarkers to diagnose ASD in early childhood, as no specific
biomarker of ASD exists and reliable biomarkers found in
exosome cargos, such as abundant miRNAs, may be easily
obtained from different types of body fluid (Nouri et al., 2024;
Chen et al., 2023; Liu et al., 2024). Moreover, exosomes play key roles
in regulating immune system imbalances in patients with ASD, and
thus may be used as a drug delivery system to reverse immunological
defects in patients with ASD (Chen et al., 2016; Li et al., 2019; Xian
et al., 2019). However, the role of exosomes in regulating neural

circuit defects in ASD is unknown. Several studies show that diverse
resources of exosomes play key roles in axon outgrowth, cell
migration, neurogenesis, and synaptogenesis during development.
Furthermore, Zhdanova et al. (2021) intranasally administered
exosomes derived from multipotent mesenchymal stromal cells in
patients with Alzheimer’s Disease (AD) and detected the labeled
exosomes in the neocortex and hippocampus. These findings
demonstrate the potential therapeutic utility of exosomes in
treating ASD at an early postnatal stage.

4.2 Intellectual disability and down
syndrome (DS)

Intellectual disability is commonly defined as below-average
intellectual functioning before 18 years of age, IQ score below 70,
and defects in communication, self-care, and social skills. Several
factors are linked to the development of intellectual disability,
including genetic disorders, trauma, and prenatal events,
including maternal infection and alcohol exposure. However, in
almost half of these cases, the pathological mechanisms leading to
intellectual disability are unknown (Daily et al., 2000; Schroeder,
2000). DS is the most prevalent intellectual disability that is also
associated with phenotypical defects, including congenital heart
disease and other developmental abnormalities. DS is a non-
lethal genetic developmental disorder with a high incidence rate
and a global morbidity of 1/800. It is described as a cognitive defect
with development of age-dependent neuropathology, such as
Alzheimer’s disease (AD). Before dementia occurs, biomarkers,

FIGURE 2
Role of exosomes in nervous system injury. In traumatic brain injury (TBI), microglial exosomes transfer miRNAs to the target neuron to induce
neurite outgrowth and synapse recovery. In spinal cord injury (SCI), exosomes act as vehicles that carry both miRNAs and other molecules to support the
interaction between neurons and astrocytes or neurons andmicroglia, contributing to axon recovery and subsequent axon pathfinding. RA, retinoic acid;
RARβ, retinoic acid receptor beta.
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including amyloid-β (Aβ) peptides, p-Tau protein, and interleukin-
6, can be detected in the CSF of young patients with DS (Counts
et al., 2017). However, collecting CSF poses risks of invasiveness and
post-lumbar puncture headaches, particularly in young patients
(Hamlett et al., 2017).

In the last 5 years, research on exosomal secretion in DS using post
mortem brain tissue has demonstrated an approximate 40% increase in
exosomes detected in DS samples compared with that in control tissue
(Gauthier et al., 2017). Hamlett et al. (2018) showed a similar increase
in neuron-derived exosomes in blood samples from patients with DS
and determined that the Aβ1-42, p-T181-Tau, and p-S396-Tau cargos
in DS neuron-derived exosomes were significantly increased compared
with that in the control. These findings suggest that exosomes may be
used as potential biomarkers to diagnose the early dementia phenotype
of DS while avoiding the risks associated with CSF collection.
Furthermore, these data reveal a new source of APP-related protein
transport by neuron-derived exosomes in the brain and potentially
non-brain regions in the body. Lastly, peripheral metabolism of Aβ is
associated with the risk of AD, and Aβ synthesis in the liver may result
in a neurodegenerative phenotype (Lam et al., 2021). Together, a new
model of bidirectional brain-body transport of Aβ loaded in exosomes
may be hypothesized.

5 Conclusion

Numerous studies have highlighted the relevant roles of exosomes
in nervous system development and neurodegenerative diseases. As a
potential biomarker, exosomes are easily collected in body fluids such
as blood and saliva, providing an advantage over other collection
methods. Furthermore, exosomal miRNAs are more resistant to
degradation and easier to isolate than free miRNAs in body fluids.
As exosomes are small, present low immunogenicity, lack the ability to
transform cells, and are highly therapeutic, they can be used as disease
diagnosis markers, drug delivery vehicles, and therapeutic agents for
various diseases involving CNS pathology and injury.

Various miRNAs related to axon guidance and neuroplasticity
are loaded in exosomes derived from many cell types. In addition to
these miRNAs, exosomes carry or bind to canonical guidance cue
ligands or receptors resulting in the regulation of long-range axonal
pathfinding. Moreover, exosome cargo miRNAs mediate non-
canonical guidance cues, such as Wnt and Shh, to activate
neurite/axon outgrowth and regeneration. Most axon guidance
cues, non-conventional cues, and related miRNAs are carried by,
expressed, or interact with exosomes. However, studies on the role of
exosomes in neural circuit development is focused on cell-cell
communication, nerve regeneration, and synapse formation.
Axon guidance plays a key role in neural circuit development to
regulate the correct targeting of 80 billion neurons in the brain.
Clinically, axon guidance is also implicated in numerous

neurodevelopmental and neurodegenerative disorders, including
ASD, DS, AD, and Parkinson’s disease. Axon guidance is a key
step in ensuring that the regenerated axons project to their original
targets during nerve injury recovery. In the latest studies, researchers
seem to prefer using specifically derived exosomes as a “pathway
candidate pool” to better understand the contents of functional
exosomes, which have been shown to have positive therapeutic
effects on certain disorders (Tang et al., 2024; Wu et al., 2024; Coy-
Dibley et al., 2024; Liu et al., 2024). This trend illustrates a new
approach to characterizing exosomes from “inside”, focusing not on
generalities, but on their specific functions.
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