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Most blood cells derive from hematopoietic stem cells (HSCs), originating from
endothelial cells. The induction of HSCs from endothelial cells occurs during
mid-gestation, and research has revealedmultiple steps in this induction process.
Hemogenic endothelial cells emerge within the endothelium, transition to
hematopoietic cells (pre-HSCs), and subsequently mature into functional
HSCs. Reports indicate transcription factors and external signals are involved
in these processes. In this review, we discuss the timing and role of these
transcription factors and summarize the external signals that have
demonstrated efficacy in an in vitro culture. A precise understanding of the
signals at each step is expected to advance the development of methods for
inducing HSCs from pluripotent stem cells.
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Introduction

Various types of blood cells, such as lymphoid and myeloid cells, are produced from
hematopoietic stem cells (HSCs) in the bone marrow, which is not the site of HSC
development. During mouse embryogenesis, HSC development begins with endothelial cell
differentiation. Some endothelial cells undergo an endothelial-to-hematopoietic transition
(EHT), giving rise to HSC-precursors (pre-HSCs) (Taoudi et al., 2008; Zhou et al., 2016).
The pre-HSCs then migrate to the fetal liver and mature into HSCs, which ultimately move
to the bone marrow and maintain lifelong hematopoiesis (Dzierzak and Speck, 2008; Orkin
and Zon, 2008).

HSCs arise from endothelial cells in the aorta-gonad-mesonephros (AGM) region
(Muller et al., 1994; Cumano et al., 1996; Medvinsky and Dzierzak, 1996; de Bruijn et al.,
2002; Zovein et al., 2008). Although the HSC developmental process appears simple, there
are branching points at each differentiation stage that determine the cell fate. Most
endothelial cells engage in the formation of blood vessels, but a small proportion of
these cells differentiate into hemogenic endothelial cells. These hemogenic endothelial cells
undergo an EHT and differentiate into pre-HSCs as well as hematopoietic progenitor cell
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precursors (pre-HPCs), which enter into processes that lead to the
formation of intra-aortic hematopoietic clusters (IAHCs) in the
dorsal aorta of the AGM region between the embryonic day (E)
9.5 and E11.5 (Zovein et al., 2008; Chen et al., 2009; Boisset et al.,
2010; Yokomizo and Dzierzak, 2010; Boisset et al., 2015). Here, we
focus on the transcription factors and their target genes, and discuss
hemogenic endothelium development, EHT, and IAHC formation.
We also summarize the signaling molecules that are expressed
during HSC development and the timing of their expression,
focusing primarily on findings obtained from in vitro culture studies.

Developmental pathway of HSCs

Development of hemogenic endothelium

The first HSCs were observed in the AGM region during
midgestation (Muller et al., 1994; Medvinsky and Dzierzak,
1996), and were shown to originate from IAHCs derived from
endothelial cells in the innermost layer of the AGM region
(Jaffredo et al., 1998; Zovein et al., 2008; Boisset et al., 2010).
Whereas most endothelial cells eventually contribute to blood
vessel formation, some differentiate into hemogenic endothelium,
which undergoes an EHT to generate IAHCs. Amongst several
transcription factors, RUNX1 has been shown to be a key factor
during this sequence. RUNX1 is important for hematopoietic
development and is lethal in knockout mice around E12.5 due to
extensive hemorrhages (Okuda et al., 1996). North et al. showed the
generation of HSCs from Runx1-expressing cells (North et al., 2002),
with RUNX1 contributing to HSC production via an enhancer
regulated by GATA/ETS/SCL (Nottingham et al., 2007). The
activation of this enhancer was initiated in the endothelial cell
layer, suggesting that hemogenic endothelium development likely
occurs in the endothelial cells (Swiers et al., 2013). Indeed, when
Runx1 is deleted in cells expressing the endothelial cell markers
Cdh5 or Tie2, HSCs are not generated (Li et al., 2006; Chen et al.,
2009), indicating that endothelial cells are the origin of HSCs and
that RUNX1 contributes to their developmental process.

RUNX1 functions as a transcription factor by forming a dimer
with CBFB; thus, Cbfb-deficient mice exhibit the same phenotype of
definitive hematopoietic deficiency as Runx1-deficient mice. Chen
et al. attempted to rescue this hematopoietic defect in Cbfb-deficient
mice by introducing transgenes but found that whereas the
introduction of Tie2-Cbfb induced erythro-myeloid progenitors
(EMPs), only the introduction of Ly6a-Cbfb induced HSCs (Chen
et al., 2011). These findings strongly suggest that hemogenic
endothelial cells producing EMPs and HSCs are distinct.

In the yolk sac, EOMES transcription factor is expressed earlier
than RUNX1, and regulates hematopoietic cell production through
RUNX1 (Harland et al., 2021). Additionally,Meis1 is reported to be
expressed before RUNX1 in the AGM region, and is important in
regulating pre-hemogenic endothelium development (Coulombe
et al., 2023). Meis1-knockout mice show reduced hematopoietic
cells, including HSC production, and are embryonic lethal by
E14.5 due to defective hematopoiesis and angiogenesis (Hisa
et al., 2004; Azcoitia et al., 2005). Thus, studies suggest that fate
determination from endothelial cells to hemogenic endothelial cells
is initiated prior to the expression of RUNX1, and further

elucidation of the mechanism underlying hemogenic endothelium
development is necessary to expound upon these findings.

The search for hemogenic endothelium markers working
alongside RUNX1 is ongoing (Fadlullah et al., 2022). Several
groups are focusing on cell-surface markers to isolate select cells
for experimentation. CD44 is expressed in endothelial cells,
including hemogenic endothelial cells, and is also maintained in
IAHCs formed by EHT from hemogenic endothelium (Oatley et al.,
2020). Recently, it was reported that CD32 is characteristically
expressed in hemogenic endothelial cells in human embryonic
and human iPS-derived endothelial cells (Scarfo et al., 2024).
Many CD32+ endothelial cells differentiate into hematopoietic
cells, which enriches the hemogenic endothelium. However, it
remains unclear whether CD32+ hemogenic endothelial cells can
differentiate into HSCs, because an in vitro system that
demonstrates the differentiation of human hemogenic endothelial
cells into HSCs has not been established. Other works indicate the
existence of different types of hemogenic endothelial cells (Chen
et al., 2011; Dignum et al., 2021; Kobayashi et al., 2023), and thus we
expect to see future work describing HSC-specific hemogenic
endothelial cells.

Molecular mechanism of EHT

EHT is based on two events: the loss of endothelial cell
characteristics and the acquisition of hematopoietic cell
characteristics. As IAHCs were not formed from hemogenic
endothelium in Runx1-deficient mouse embryos (North et al.,
1999; Yokomizo et al., 2001), many studies have since sought to
investigate the role of RUNX1 in EHT. In an in vitro differentiation
system using ES cells, one group showed that the loss of Gfi1 and
Gfi1b—the target genes of RUNX1—results in the persistence of
endothelial cell morphology instead of the spherical shape
characteristic of hematopoietic cells (Lancrin et al., 2012). The
same group has also shown that the loss of Gfi1 and Gfi1b in the
AGM region prevents EHT and the formation of IAHCs, and thus a
failure to produce HSCs (Thambyrajah et al., 2016). In their report,
the authors showed that Gfi1 is specifically expressed in hemogenic
endothelium from E10.5 and that its expression gradually decreases.
However, contrastingly, the expression ofGfi1b increases, and this is
consistent with the expression pattern of hematopoietic cell markers,
such as KIT and CD41. The authors also show that a complex
comprising LSD1 generates epigenetic changes that contribute to the
loss of endothelial cell characteristics by GFI1 and GFI1B. Yet,
despite these findings, inducing Gfi1 and Gfi1b expression in Runx1
KO cells to produce hematopoietic-like spherical cells leads to low
colony-forming capacity. Collectively, these results suggest that
molecules other than GFI1 and GFI1B might be involved in the
acquisition of hematopoietic cell characteristics (Lancrin
et al., 2012).

In parallel with the loss of endothelial cell characteristics by
GFI1 and GFI1B, several hematopoietic-related genes become
activated. ETS transcription factor Spi1 is one of the target genes
activated by RUNX1 (Okada et al., 1998; Huang et al., 2008;
Hoogenkamp et al., 2009). In Spi1-deficient mice, there is a
reduction in the proportion of pre-HSCs (CD31+KIT+CD45+

cells) in the AGM region as well as HSCs in the fetal liver (Kim
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et al., 2004; Zhang et al., 2024). The requirement of SPI1 for the
acquisition of hematopoietic competence is conserved across
species. Single-cell RNA-sequencing (scRNA-seq) data analyses of
the human fetal AGM region or of endothelial cells and
hematopoietic cells derived from the human iPS cells show that
the decrease in endothelial cell marker genes, Cdh5 and Sox17, is
accompanied by an increase in Runx1, Spi1, and Gata2 (Qu et al.,
2024). Spi1 regulates the heterogeneity of hematopoietic cell
differentiation pathways, and the Spi1 target genes, Lyl1 and Klf1,
determine the direction of hematopoietic cell differentiation (Qu
et al., 2024).

GATA2 is another transcription factor that regulates EHT.
Deletion of the transcriptional regulatory region of Gata2 can
inhibit EHT and the formation of IAHCs (Gao et al., 2013).
Interestingly, the authors show that repression of Gata2
transcription activity can suppress the expression of other
transcription factors, such as Runx1 and Tal1. Previous reports
showed that deletion of Tal1 causes embryonic lethality due to
hematopoietic failure and TAL1 contributes to erythroid
differentiation (Shivdasani et al., 1995; Mikkola et al., 2003). Thus,
it is known that there are multiple transcription factors involved in
EHT, and they cause EHT in a coordinated manner. This intricate
network of transcription factors has been shown to continuously play
a crucial role throughout the developmental process of HSCs (Wilson
et al., 2010). On the other hand, studies using zebrafish and mice have
also reported that GATA2 causes HSC development independently of
RUNX1 (Bresciani et al., 2021). Gata2-knockout mice have been
reported to die of hematopoietic failure at around E10.5 (Tsai et al.,
1994), and Gata2 heterozygous knockout mice also show
abnormalities in HSC generation and function (Ling et al., 2004).
More interestingly, Gata2 loss specifically in Cdh5-expressing
endothelial cells inhibits HSC generation, and Gata2 loss in Vav-
expressing hematopoietic cells after EHT results in an inability to
maintain HSCs. These reports suggest that GATA2 plays a dual role in
the regulation of HSCs from their generation to their maintenance (de
Pater et al., 2013). On the other hand, the deletion of Runx1
specifically in Vav-expressing hematopoietic cells does not reduce
HSCs (Chen et al., 2009), suggesting that RUNX1 is important for
differentiation progression up to EHT before E11.5.

Regarding EHT process, many scRNA-seq analyses have been
conducted using pre- and post-EHT cells to explore its
mechanisms and specific markers (Zhou et al., 2016; Baron
et al., 2018; Hou et al., 2020; Vink et al., 2020; Zhu et al.,
2020; Calvanese et al., 2022; Fadlullah et al., 2022; Hadland
et al., 2022; Yokomizo et al., 2022; Menegatti et al., 2023).
These analyses have confirmed the dynamic expression
patterns of transcription factors such as Runx1 and Gfi1,
which have previously been implicated in EHT. Furthermore,
similarities between mice and humans have been observed in the
expression of HSC-related transcription factors (Hlf andMecom)
(Zhou et al., 2016; Calvanese et al., 2022; Yokomizo et al., 2022).
However, no mention has been made regarding the potential
involvement of novel transcription factors in EHT. On the other
hand, these studies have been highly effective in identifying new
surface markers. Hadland et al. identified VE-
cadherin+CD61+EPCR+ cells as a precursor to functional HSCs
(Hadland et al., 2022), Vink et al. reported that the earliest
functional HSCs are marked by CD27 (Vink et al., 2020), and

Menegatti et al. identified CD82 as a novel surface marker specific
to EHT (Menegatti et al., 2023).

Formation of IAHCs and their heterogeneity

EHT causes the formation of specific cell clusters in arteries
called IAHCs (Boisset et al., 2010; Yokomizo and Dzierzak, 2010).
The cells constituting these IAHCs express the transcription factor
Hlf, the expression of which is maintained after the cells differentiate
into HSCs (Yokomizo et al., 2019).Hlf expression is regulated by the
transcription factor Evi1, as evidenced by the reduction in Hlf-
positive cells in Evi1-deficient mice. Thus, Evi1 activation and the
subsequent expression of Hlf in cells within IAHCs may be a
pathway for HSC differentiation. Interestingly, Evi1 expression is
heterogeneous within IAHCs and cells with high Evi1 expression can
differentiate into HSCs (Yokomizo et al., 2022). Therefore, it is
possible that cells with high Evi1 expression within IAHCs are pre-
HSCs. Future studies are expected to reveal the differentiation
pathway of pre-HSCs to HSCs using a combination of
transcription factors and cell-surface antigens as markers.

HSC development has been defined using cell-surface antigens
(Figure 1). Hemogenic endothelial cells transform into
hematopoietic cells by EHT, and demonstrate a significant
change in cell-surface antigen expression. Hemogenic
endothelium before EHT expresses the endothelial cell marker
VE-cadherin and the arterial endothelial cell marker DLL4, while
the blood cell markers KIT, CD41, and CD45 are not yet expressed
(Hadland et al., 2015; Hadland et al., 2017; Morino-Koga et al.,
2024). When EHT occurs and IAHCs are formed, DLL4 expression
is downregulated (Porcheri et al., 2020) and this downregulation is
inversely correlated with the increased expression of KIT and CD41.
On the contrary, VE-cadherin expression is maintained after EHT
(Rybtsov et al., 2011; Rybtsov et al., 2014; Porcheri et al., 2020;
Morino-Koga et al., 2024). Cells that eventually become CD45+ and
migrate to the liver will acquire the ability to become HSCs (Rybtsov
et al., 2011; Rybtsov et al., 2014; Morino-Koga et al., 2024). After
liver migration, VE-cadherin expression gradually decreases and
HSCs expressing so-called HSC markers are detected (Morrison
et al., 1995; Kim et al., 2005; Taoudi et al., 2005; Papathanasiou
et al., 2009).

Of note, IAHCs are not a cell mass containing only pre-HSCs
but also contain heterogeneous cell populations, most of which are
pre-HPCs that do not differentiate into HSCs (Baron et al., 2018;
Yokomizo et al., 2022). Consequently, it is difficult to distinguish
pre-HSCs from pre-HPCs using the current definition of pre-HSCs
through cell-surface antigens. The search for specific marker
molecules for pre-HSCs is an upcoming challenge.

HSC development and
signaling molecules

Thus far, HSC development via the intricate interactions of
nuclear transcription factors has been summarized. The next
question is, how do extracellular signals control HSC
development? Unlike transcription factors, it is challenging to
clarify the roles of signals because knockout mice do not exhibit
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clear phenotypes. A common approach is to add signaling molecules
to culture systems to observe their effects. Specifically, tissues or cell
populations that are precursors to HSCs are isolated from mouse
embryos and transferred to culture systems where different signaling
molecules are introduced to assess whether transplantable HSCs can
be induced. This method helps to infer the signaling pathways
functioning in vivo.

SCF

After studies showed evidence for HSCs within the AGM region,
many groups sought to differentiate AGM-derived cells into HSCs
in vitro. Medvinsky’s group developed an ex-vivo culture system to
demonstrate the existence of pre-HSCs. They co-cultured pre-HSC
candidate cells (VE-cadherin+CD45+ cells) with AGM stromal
elements (including endothelial cells) in the presence of stem cell
factor (SCF), Fms-related tyrosine kinase 3 ligand (Flt3l), and
interleukin-3 (IL-3), and showed induction of transplantable
HSCs (Taoudi et al., 2008). These AGM stromal elements could
be replaced by simply using the OP9 stromal cell line (Rybtsov et al.,
2011), with HSCs induced from E9.5 pre-HSC-I (VE-
cadherin+CD45−CD41lo cells) (Rybtsov et al., 2014). This report
also examined the necessity for signaling molecules, and showed that
E9.5 pre-HSC-I differentiated into HSCs after supplementing SCF
with OP9 stromal cells and serum, and this occurred even in the
absence of other signaling molecules. Others have shown production
of HSCs from E9.5 hemogenic endothelium under serum-free
culture conditions following the addition of four signaling
factors—SCF, Flt3l, IL-3, and thrombopoietin (TPO)—as well as
AGM-derived endothelial feeder cells overexpressing Akt (Hadland
et al., 2015). More recently, we showed that E11.5 pre-HSC-I
differentiated into HSCs in the presence of SCF and TPO, even
under serum-free and feeder-free conditions (Morino-Koga et al.,
2024). These results indicate that SCF consistently contributes to
HSC development from E9.5. KIT, an SCF receptor, is persistently
expressed from E9.5 pre-HSC-I to E12.5 HSCs (Hadland et al., 2015;
Morino-Koga et al., 2024), suggesting that SCF is continuously
required for HSC development.

Scf deficiency is known to cause perinatal lethality due to severe
anemia (Ding et al., 2012), and loss of Scf activity can impair HSC
generation and function (Azzoni et al., 2018). Therefore, SCF might
be important for HSC development and hematopoietic function.
However, does SCF reside in the AGM region? Through scRNA-seq
of periaortic tissues and livers from E10.5 and E11.5 mouse embryos,
we recently revealed that Scf is expressed in various tissues, including
endothelial cells, stromal cells, genital ridge progenitor cells, nephric
duct, and hepatoblasts (Morino-Koga et al., 2024). These results are
consistent with the earlier histological findings showing Scf
expression to be strongly observed in the ventral wall of the
dorsal aorta (Souilhol et al., 2016a). In that report, Scf expression
was also detected in surrounding cells, such as stromal cells and
genital ridge cells, supporting that Scf is present in the
microenvironment where IAHC formation occurs. Among these,
Scf produced by endothelial cells is important for HSC development
(Azzoni et al., 2018).

Flt3l

Flt3l was identified as a ligand for FLT3 (Lyman et al., 1993) and,
since Flt3-deficient mice exhibit hematopoietic abnormalities
(Mackarehtschian et al., 1995), it is thought to be involved in
lineage commitment. Additionally, FLT3 is often used as a
marker for hematopoietic progenitors immediately after
differentiation from HSCs (Adolfsson et al., 2005; Forsberg et al.,
2006). Tracing experiments using Flt3-Cre BAC transgenic mice
have shown that nearly all hematopoietic lineages, except HSCs, are
marked (Boyer et al., 2011; Buza-Vidas et al., 2011). Interestingly, a
subset of HSCs in the embryonic stage is marked by Flt3-Cre, but
these FLT3+ cell-derived HSCs disappear after birth (Beaudin et al.,
2016). These results suggest that Flt3l/FLT3 signaling is not essential
for the development and maintenance of the types of HSCs that are
preserved into adulthood. On the other hand, in HSC induction
culture systems, Flt3l is added along with SCF and IL-3 and is used
for the induction of HSCs from pre-HSCs after E9.5 (Rybtsov et al.,
2011; Rybtsov et al., 2014). In an aggregation culture system
developed later using OP9 stromal cells, the authors suggested

FIGURE 1
Transition of cell-surface antigens during HSC development. Hemogenic endothelium expressing endothelial cell markers undergoes EHT and
differentiates into pre-HSC-I and pre-HPCs. During this process, some endothelial cell markers are retained while the expression of blood cell markers
increases. Pre-HSC-I then differentiates into pre-HSC-II, which express CD45, and ultimately mature into HSCs. VEcad, VE-cadherin.
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that Flt3l was not needed (Rybtsov et al., 2014) and suggested that
Flt3l may not be essential for the in vitro development (maturation)
of HSCs. Indeed, it is possible that the same effect afforded by Flt3l is
compensated by other pathways.

IL-3

Early findings by Robin et al. highlighted IL-3 as an inducer of
transplantable HSCs in an in vitro culture system using
E11.5 AGM region isolated from Runx1+/− mice (Robin et al.,
2006). Since then, IL-3 is touted to play a role in HSC
development through RUNX1. In the same report, the authors
also showed that lL-3 was expressed in the cells of the AGM
region, with expression of the IL-3 receptor noted on some
hematopoietic cells in that region. Later work showed IL-3 as
an effective inducer of HSC differentiation of E11.5 pre-HSCs in
a co-aggregation culture with OP9 stromal cells (Rybtsov et al.,
2014). Collectively, these findings suggest a contribution by IL-3
in the differentiation of pre-HSCs into HSCs after E11.5.

Inflammatory signaling

Inflammatory signaling has been reported to be involved in the
development and maintenance of HSCs during embryogenesis
(Espin-Palazon et al., 2014; Sawamiphak et al., 2014; He et al.,
2015; Mariani et al., 2019; Frame et al., 2020; Zhang et al., 2024).
Both Interferon-γ (Ifn-γ)- and Ifn-γ receptor-deficient mouse
embryos show a reduced proportion of functional HSCs (Li
et al., 2014). However, bone marrow-derived HSCs in Ifn-γ-
deficient mice are normal (Baldridge et al., 2010), suggesting that
the HSCs produced are functional. It is surmised that the addition of
IFN-γ may be effective in inducing functional HSCs in vitro. One
group showed that the addition of interferon-α (IFN-α) to AGM-
derived cells using an in vitro culture system could induce HSCs with
high engraftment capacity in the bone marrow (Kim et al., 2016). In
that report, Ifn-α was minimally expressed in the E11.5 AGM region
but upregulated in the E13.5 fetal liver, suggesting IFN-α
involvement in the maturation of HSCs in the fetal liver.

Notch signaling

Recently, we reported that E11.5 pre-HSC-I could induce HSCs
by adding only SCF and TPO even in the absence of serum and
feeder cells (Morino-Koga et al., 2024). However, we also showed
that E10.5 pre-HSC-I and E10.5 hemogenic endothelium could not
differentiate into HSCs with SCF and TPO, requiring co-culture
with the endothelial cell line. These results are consistent with
previous results obtained using Akt-overexpressing embryonic
endothelial cell lines (Hadland et al., 2015; Hadland et al., 2017),
suggesting that co-culture with endothelial cells might be necessary
to induce HSCs from E10.5 hemogenic endothelium in an in vitro
culture system. Furthermore, HSCs have been successfully produced
from E9.5-E10.5 CD45−VE-cadherin+CD41-Dll4+ cells, which are
defined as arterial endothelial cells, by co-culturing with endothelial
feeder cells (Hadland et al., 2017; Morino-Koga et al., 2024). Thus, it

might support the process of generating HSCs from arterial
endothelial cells via EHT.

What kind of environment do endothelial cells provide for
hemogenic endothelium? One of the most promising candidates
is Notch signaling (Clements et al., 2011; Kanz et al., 2016; Rho et al.,
2019; Thambyrajah and Bigas, 2022). Notch signaling is also
important for angiogenesis, and thus it is not easy to distinguish
whether hematopoietic cells are directly affected or if their absence is
due to a defect in angiogenesis. Studies using ES cells or endothelial
cells derived from mice lacking Notch1 have reported that Notch1 is
required for endothelial cells to undergo EHT and differentiate into
HSCs (Kumano et al., 2003; Hadland et al., 2004). These results
suggest that hemogenic endothelium and/or pre-HSCs might
express Notch1, since cells lacking Notch1 cannot differentiate
into HSCs. HSCs can be induced from E10.5 CD45−VE-
cadherin+ cells with activated Notch signaling by aggregate
culture with OP9 stromal cells and suppressed by either adding
the Notch inhibitor DAPT to the AGM tissue culture at E10.5, or by
treating a reaggregated culture of E10.5 AGM-derived cells with a
Notch1 inhibitor antibody (Souilhol et al., 2016b). Collectively, these
findings suggest that Notch1-expressing cells differentiate into
HSCs. Let us return to the main question: Does the endothelial
cell line express a ligand acting on the Notch1 receptor? Whole-
embryo immunohistochemical staining of mice at E9.5 and
E10.5 shows that endothelial cells in the P-Sp/AGM region
express the Notch ligands (DLL4, JAG1, and JAG2) and
receptors (Notch1 and Notch4) (Robert-Moreno et al., 2005).
Notch1 is expressed in the ventral side of the dorsal aorta where
IAHCs form, whereas Notch4 is uniformly expressed throughout
the vessel. Therefore, these Notch1-expressing cells are expected to
undergo EHT and differentiate into HSCs. On the other hand, all
three Notch ligands are expressed throughout the endothelial cells.
Compared with primary endothelial cells, the authors highlighted an
upregulation in the expression of DLL1, DLL4, JAG1, and JAG2 in
Akt-overexpressing endothelial cells (Hadland et al., 2015). In
addition, endothelial cell lines that contributed to HSC
development showed expression of Dll1, Dll4, and Jag1, but not
Jag2; albeit the expression intensity varied (Morino-Koga et al.,
2024). Thus, the endothelial cell line may not only serve as a scaffold
but may also contribute to the HSC differentiation via the Notch
ligands, DLL4 and JAG1.

For Notch signaling, we analyzed the scRNA-seq dataset using
endothelial cells and hematopoietic cells from E10.5-E11.5 mouse
embryos (Figure 2) (Yokomizo et al., 2022; Morino-Koga et al.,
2024). Consistent with previous histological findings (Robert-
Moreno et al., 2005), expression of Dll4, Jag1, and Jag2 was
observed in arterial endothelial cells, but not Dll1 expression.
Furthermore, Notch4, which is reported to be uniformly
expressed in vascular endothelial cells, was highly expressed in
endothelial cells. Interestingly, Notch1 was expressed not only in
endothelial cells but also in regions reported to be hemogenic
endothelium and in pre-HSCs, consistent with previous reports
that Notch1 is expressed in HSC precursors (Kumano et al., 2003;
Hadland et al., 2004; Souilhol et al., 2016b). Thus, in the
developmental environment of HSCs—particularly in the AGM
region of E10.5-E11.5 where pre-HSC-I is produced—the
innermost layer, the arterial endothelium, expresses the Notch
ligand. Although Notch signaling remains important, Hadland
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et al. recently reported on the contributions of factors other than
Notch signaling in the role of the stromal environment within the
in vitro HSC induction system (Hadland et al., 2022). This report
demonstrated that Notch signaling alone could not induce HSCs
and that additional signal activation from fibronectin and
CXCL12 was required, supporting that multiple signaling
molecules are coordinately involved in HSC development.

BMP4

BMP4 was originally identified as being important for
mesoderm development (Winnier et al., 1995; Lengerke et al.,
2008) and in the promotion of EHT. BMP4 can generate
hematopoietic cells from endothelial cells using an in vitro
differentiation assay (Tsuruda et al., 2021). Furthermore, cells
with activated BMP signaling in the AGM region are present in

IAHCs and there is evidence that transplantation of BMP-activated
cells into irradiated mice results in the engraftment of HSCs (Crisan
et al., 2015).

BMP4 is abundant on the ventral side of the dorsal aorta from
E10.5-E11.5 (Durand et al., 2007), while the expression of BMP
inhibitory molecules is increased, and indeed, BMP signaling
inhibitors have been shown to promote HSC development in an
in vitro culture system (Souilhol et al., 2016a; McGarvey et al.,
2017). Recently, we found that HSCs were induced by adding
BMP4, SCF, and TPO to E9.5 hemogenic endothelium using an
in vitro culture system (Tsuruda et al., 2024). In this culture
system, it was important to remove BMP4 in the latter part of the
culture. On the other hand, BMP4 was not necessary when
generating HSCs from E10.5 hemogenic endothelium or pre-
HSC-I (Morino-Koga et al., 2024). Therefore, it is likely that
BMP4 is required for HSC development before E10.5 and
gradually becomes unnecessary.

FIGURE 2
scRNA-seq analysis of blood and endothelial cells from E10.5 and E11.5 mouse embryos. The expression patterns of various marker genes:
hemogenic endothelium andHPC (Spi1), endothelial cells and pre-HSCs (Mecom), Notch ligands (Dll1, Dll4, Jag1, Jag2), andNotch receptors (Notch1 and
Notch4). HPC, hematopoietic progenitor cells; EryP, primitive erythrocytes; EryD, definitive erythrocytes; G/M, granulocytes and monocytes; Mk,
megakaryocytes.
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Retinoic acid (RA)

In mouse embryos deficient in the RA synthase enzyme Raldh2,
RA synthesis is impaired, resulting in defective hemogenic
endothelium development in the yolk sac and decreased
hematopoietic cellularity (Goldie et al., 2008). Raldh2-deficient
mouse embryos are embryonic lethal at around E10.5 due to
various morphogenetic abnormalities (Niederreither et al., 1999).
The deletion of Raldh2 specifically in Cdh5-expressing endothelial
cells inhibits HSC production (Chanda et al., 2013). In that report,
Cdh5-expressing cells at E10.5-E11.5 were shown to express the RA
receptor, and treatment of Raldh2-deficient mice with an RA
receptor agonist restored HSC production. Therefore, it is
expected that supplementation with RA can promote HSC
production in vitro.

Sonic hedgehog (Shh)

The notochord is present in the dorsal periphery of the dorsal
aorta. Shh supplied by the notochord is important for the
differentiation of E10.5 AGM-derived cells into HSCs but not
E11.5 AGM-derived cells (Souilhol et al., 2016a). Indeed, since
the addition of Shh to the tissue culture systems using the
E10 AGM region differentiates them into HSCs (Peeters et al.,
2009), it is still unclear whether Shh is required before E9.5.
Importantly, strong Shh signaling was observed in stromal cells
located around the dorsal aorta (Peeters et al., 2009; Souilhol et al.,
2016a). It is possible that Shh may not act directly on HSC
progenitor cells but may indirectly influence HSC development
by acting on surrounding cells.

Catecholamine

The nervous system surrounding the AGM region is known
to influence HSC development (Kwan et al., 2016; Lv et al., 2017).
Cells of the sympathetic nervous system developing near the
aorta secrete catecholamines via the transcription factor Gata3,
which promotes HSC development in the AGM region (Fitch
et al., 2012). The cell cycle regulator p57Kip2 (Cdkn1c) is also a
regulator of the sympathetic nervous system; its suppression
promotes sympathetic nervous system development that, in
turn, promotes HSC development via catecholamines
(Mascarenhas et al., 2009; Kapeni et al., 2022). Although
experiments adding catecholamines have been studied in
tissue culture of the E11.5 AGM region and contribute to HSC
production (Fitch et al., 2012), it is unclear when catecholamines
begin to affect HSC development. Further insight could be gained
by additional experiments in an in vitro differentiation system of
hemogenic endothelium or pre-HSCs.

TPO

TPO signaling has been reported to be important for HSC
maintenance and quiescence in the bone marrow and is also
required for HSC engraftment capacity (Qian et al., 2007;
Yoshihara et al., 2007). Yet, the source of Tpo is the liver, not the
bonemarrow (Decker et al., 2018); this suggests that TPO expression
in the liver is important in maintaining HSCs. However, since HSC
development in the fetal liver in Tpo-deficient mice is normal (Qian
et al., 2007; Lee et al., 2022), evidence suggests that TPO is not
required for HSC development in the fetal liver.

FIGURE 3
Signaling molecules and transcription factors required for HSC generation in mice. Solid lines indicate the signaling molecules involved in
development, while dashed lines indicate those with unclear involvement. RA, retinoic acid; TPO, thrombopoietin; CA, catecholamine.
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On the other hand, many reports have shown that TPO is
important in differentiating hemogenic endothelium and pre-HSCs
into HSCs in vitro culture (Kieusseian et al., 2012; Hadland et al.,
2015; Mascarenhas et al., 2016). Recently, we reported that
E11.5 pre-HSC-I can be induced into HSCs in an in vitro culture
system without serum or feeder cells using just two signaling
molecules: SCF and TPO (Morino-Koga et al., 2024).
Furthermore, the cell-surface expression of MPL, the receptor for
TPO, was gradually observed on E10.5 pre-HSC-I. Considering that
HSC engraftment capacity was not very high, these two signaling
molecules are necessary but insufficient for HSC differentiation.
Interestingly, no Tpo-expressing cells were present in the AGM
environment or surrounding tissues, and hepatoblasts in the fetal
liver were the only Tpo-producing cells in the HSC developmental
environment (Morino-Koga et al., 2024). HSCs are first produced at
the AGM region but are detectable in high quantities at E12.5 in the
fetal liver, suggesting that pre-HSCs can mature by migrating to the
fetal liver and activating TPO signaling. As mentioned above, HSCs
were produced even when TPO signaling was lost, suggesting the
existence of compensatory mechanisms that activate the TPO
downstream molecule, JAK2.

Conclusion

This review focused on signaling molecules in vitro
differentiation systems in HSC development (Figure 3).
Meanwhile, efforts are currently underway to identify
transcription factors and signaling molecules that control HSC
development and their engraftment in the bone marrow using
human iPS cells (Doulatov et al., 2013; Piau et al., 2023; Ng
et al., 2024). We believe that establishing an HSC in vitro
differentiation system is important because it will lead to clinical
applications of HSCs for hematopoietic disorders. However, in
addition to the signaling molecules shown in this review,
multiple environmental factors surrounding the AGM region are
likely to support HSC development. For example, studies using mice
and zebrafish show that HSC development is affected by blood flow-
induced shear stress (Adamo et al., 2009; North et al., 2009).
Therefore, it is crucial to investigate in detail which signaling
molecules affect HSC development when recreating the
microenvironment in vitro. Our serum-free culture system using
only commercially available products (Morino-Koga et al., 2024)
allows for the re-evaluation of key signaling molecules during HSC
development under serum-containing conditions or using tissue
culture systems derived from the AGM region. In the future, the
identification of truly essential signaling molecules is expected to

contribute to the establishment of in vitro differentiation
systems for HSCs.
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