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Ferroptosis, distinct from apoptosis, is primarily characterized by the
accumulation of iron-dependent lipid peroxides (LPO) and reactive oxygen
species (ROS). This process plays a pivotal role in the pathophysiology of
various diseases and has recently emerged as a promising therapeutic strategy
in oncology, garnering significant attention. Non-coding RNAs (ncRNAs),
including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular
RNAs (circRNAs), serve as crucial regulators in numerous biological processes,
particularly in cancer initiation and progression. Increasing research efforts are
focused on targeting ferroptosis through modulation of these ncRNAs. This
review provides an overview of the mechanisms underlying ferroptosis and
explores the roles of ncRNAs in breast cancer (BC) and its regulation.
Furthermore, we examine the interactions between ferroptosis and ncRNAs in
BC, aiming to identify potential therapeutic targets for BC treatment.
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1 Introduction

Breast cancer (BC) represents a significant global health threat to women (Makhoul
et al., 2018). Recent cancer statistics indicate that BC has surpassed lung cancer as the most
prevalent malignancy among women (Nik-Zainal et al., 2016). Although BC can occur post-
adolescence, its incidence increases with age (Duffy et al., 2012). Despite significant
advancements in cancer diagnosis, treatment, and prevention, the global mortality rate
from BC remains the fifth highest among all cancers, primarily due to the growing resistance
to chemotherapy and radiotherapy (Sung et al., 2021). Approximately 90% of BC-related
deaths are attributed to distant metastases from recurrent or primary tumors.
Consequently, early diagnosis, prompt treatment, and the development of more
effective therapeutic strategies are crucial for improving patient outcomes (Chen
et al., 2018).

Ferroptosis, a novel form of regulated cell death, was first identified in 2012
(Dixon, 2017).

It is characterized by the accumulation of iron-dependent lipid peroxides (LPO) and
reactive oxygen species (ROS) (Huang R. et al., 2023). However, this unique, iron-
dependent mode of cell death—distinct from apoptosis, autophagy, and necrosis—had
been observed prior to its formal designation. Morphologically, ferroptotic cells exhibit
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shrunken mitochondria, increased membrane density, and reduced
cristae, while nuclear morphology remains relatively unaffected
(Mou et al., 2019; Dixon et al., 2012; Li J. et al., 2020).
Ferroptosis plays a pivotal role in various physiological and
pathological processes, including neurodegenerative diseases,
cancer, and cardiovascular disorders (Li J. et al., 2020).
Interestingly, tumor cells resistant to conventional therapies still
exhibit high sensitivity to ferroptosis (Hassannia et al., 2019).
Therefore, understanding the mechanisms and regulation of
ferroptosis is crucial for elucidating the pathogenesis of these
diseases and developing novel therapeutic strategies. However,
the interactions between ferroptosis and BC remain
underexplored, and the impact of ferroptosis on BC prognosis is
not yet fully understood.

Non-coding RNAs (ncRNAs) are RNA molecules that do not
encode proteins but possess regulatory functions. These include
microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and
circular RNAs (circRNAs). ncRNAs play crucial roles in various
biological processes, particularly in regulating cancer initiation and
progression. Recent evidence suggests that ncRNAs can modulate
ferroptosis by regulating ferroptosis-related genes and metabolic

pathways. Through these mechanisms, ncRNAs may either promote
or inhibit cancer development (Luo Y. et al., 2021).

This review discusses the mechanisms underlying ferroptosis
and examines its relationship with BC. Additionally, we review the
structure and function of ncRNAs and their roles in both BC and
ferroptosis. Furthermore, we summarize ferroptosis-related
ncRNAs in BC that are crucial for anticancer therapy, offering
new insights into the development of novel therapeutic strategies for
BC. Finally, we explore recent advancements and future prospects of
targeting ferroptosis-related ncRNAs in BC treatment.

2 Ferroptosis

2.1 Mechanisms of ferroptosis

Ferroptosis, an iron-dependent form of regulated cell death
distinct from apoptosis, is closely associated with disruptions in
redox homeostasis. This process is triggered by an imbalance in
redox regulation (Dixon and Olzmann, 2024). Key features of
ferroptosis include the excessive accumulation of ROS and LPO,

FIGURE 1
Overview of Ferroptosis Mechanisms. This image illustrates the mechanistic pathway of ferroptosis, a distinctive form of cell death characterized by
iron-dependent lipid peroxidation. Iron (Fe) Metabolism. Polyunsaturated Fatty Acids (PUFAs) Metabolism. Antioxidant Defense. Lipid Peroxidation. These
steps elucidate the mechanistic basis by which ferroptosis, through iron-dependent lipid peroxidation, culminates in the destruction of cellular
membranes, leading to cell death.
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often driven by iron overload or lipoxygenase activity. The loss or
reduced expression of critical antioxidant enzymes, such as
glutathione peroxidase 4 (GPX4), further exacerbates lipid
peroxidation, ultimately leading to cell death (Jiang et al.,
2021) (Figure 1).

2.2 Oxidative system overactivation

Iron is an essential element in biological systems, playing key
roles in oxygen transport, electron transfer, and enzymatic reactions
(Morales and Xue, 2021). Within cells, iron primarily exists as
ferrous (Fe2⁺) and ferric (Fe³⁺) ions (Fairweather-Tait, 2001).
Under normal conditions, cells maintain iron homeostasis
through tightly regulated mechanisms that govern iron uptake,
storage, utilization, and export (Liu et al., 2022). However, in
pathological conditions, such as genetic mutations, environmental
toxin exposure, or disease states, this balance can be disrupted,
leading to iron accumulation, oxidative stress, and the initiation of
ferroptosis (Nakamura et al., 2019). Excessive accumulation of
ferrous ions triggers the Fenton reaction, generating highly
reactive hydroxyl radicals (·OH) and other ROS (Toyokuni,
2002). These ROS then target and damage various intracellular
biomolecules, including lipids, proteins, and nucleic acids (Zhang K.
et al., 2020).

Acyl-CoA synthetase long-chain family member 4 (ACSL4) is a
key enzyme in lipid metabolism (Doll et al., 2017; Zou et al., 2019),
critical for initiating lipid peroxidation and determining cellular
susceptibility to ferroptosis (Cui et al., 2021). ACSL4 selectively
activates specific polyunsaturated fatty acids (PUFAs), such as
arachidonic acid (AA) and adrenic acid, by converting them into
acyl-CoA derivatives (Xiang et al., 2024). This modification alters
membrane lipid composition, increasing their susceptibility to
peroxidation and promoting ferroptosis (Doll et al., 2017; Yuan
et al., 2016). ACSL4-mediated incorporation of PUFAs into
membrane phospholipids further enhances their vulnerability to
oxidative damage (Chen X. et al., 2021).

Lipoxygenases (LOXs), a family of non-heme iron-containing
dioxygenases, directly oxidize PUFAs within cellular membranes
(Kuhn et al., 2018), particularly AA and adrenic acid (Gaschler and
Stockwell, 2017). Due to their multiple double bonds, PUFAs are
optimal substrates for LOX-mediated oxidation, leading to the
generation of various LPO (Porter et al., 1979; Xie LH. et al., 2022).

2.3 Imbalance of antioxidant systems

Glutathione (GSH), a tripeptide composed of glutamate,
cysteine, and glycine, is a critical intracellular antioxidant (Niu
et al., 2021). Under normal conditions, GSH collaborates with
GPX4 to inhibit ferroptosis. GPX4, a selenium-dependent
enzyme, is the primary catalyst responsible for reducing
phospholipid hydroperoxides (PLOOHs) to their corresponding
alcohols in mammalian cells, thereby mitigating lipid
peroxidation and protecting cell membranes from oxidative
damage (Ursini et al., 1982; Ursini et al., 1985). Disruption of the
GSH system can occur through several mechanisms:

First of all, GSH synthesis is a key determinant of GSH system
function. This process is contingent on the cellular availability of
cysteine, which is primarily imported into cells via the cystine/
glutamate antiporter system (system Xc-) (Dixon et al., 2012; Liu
et al., 2022). Dysfunction of the Xc-system reduces cysteine uptake,
impairing GSH synthesis. In the absence of GSH, GPX4 loses its
ability to detoxify LPO, leading to increased lipid peroxidation (Liu
et al., 2022).

Secondly, increased GSH consumption disrupts the balance of
GSH availability. Under pathological conditions, reduced GSH is
required to neutralize enhanced cellular activities, such as iron
accumulation, elevated lipoxygenase expression, increased enzyme
activity, and excessive LPO (Ursini and Maiorino, 2020). During the
reduction of LPO to their corresponding alcohols, GPX4 utilizes its
selenocysteine residues to transfer two electrons—typically provided
by GSH—to the LPO. In some cases, these electrons may also be
sourced from other low-molecular-weight thiols or protein thiols
(Maiorino et al., 2018). This reaction occurs as GSH binds to the
active site of GPX4 via its thiol group, facilitating the reduction of
the peroxyl bond in the lipid peroxide (Chen X. et al., 2021).
Additionally, exogenous compounds or metabolic byproducts
may bind to GSH, accelerating its depletion. For example,
RSL3 has been shown to directly inhibit GPX4, destabilizing the
GSH system and impairing antioxidant defense (Jiang et al., 2021).

Thirdly, reduced GSH regeneration: After its antioxidant
activity, GSH is oxidized to glutathione disulfide (GSSG).
Normally, intracellular glutathione reductase uses nicotinamide
adenine dinucleotide phosphate (NADPH) as a reducing agent to
convert GSSG back into GSH, thereby maintaining cellular GSH
levels (Flohé, 2013). However, when glutathione reductase activity is
suppressed or NADPH availability is limited, GSSG cannot be
efficiently recycled to GSH, resulting in a decline in the pool of
active GSH (Averill-Bates, 2023).

While the GPX4 pathway serves as a major antioxidant defense
in ferroptosis, studies have identified ferroptosis suppressor protein
1 (FSP1) as another critical regulator of ferroptosis inhibition
(Bersuker et al., 2019; Doll et al., 2019). Initially considered a
pro-apoptotic gene (Wu et al., 2002), FSP1 was later found to
confer resistance to ferroptosis in cells lacking GPX4. CoQ10, a
lipid-soluble quinone compound, is abundant in mitochondria and
cellular membranes, where it plays a key role in both antioxidant
defense and energy metabolism (Raizner, 2019). CoQ10 exists in two
redox states: reduced and oxidized forms. Ubiquinol scavenges lipid
peroxyl radicals, effectively neutralizing lipid peroxidation and thus
preventing ferroptosis. FSP1 facilitates the regeneration of reduced
CoQ10, ensuring a continuous supply of this antioxidant. When the
CoQ10 system is dysregulated, ubiquinol levels decrease,
ubiquinone levels rise, and the risk of ferroptosis escalates (Doll
et al., 2019). Dysregulation of CoQ10 can occur through several
mechanisms:

2.3.1 Decreased synthesis of CoQ10
CoQ10 is synthesized in various tissues and primarily stored in

mitochondria. Its biosynthesis involves multiple enzymatic steps,
and disruptions at any stage, due to genetic defects or pathological
conditions, can lead to insufficient CoQ10 production
(Raizner, 2019).
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2.3.2 Increased consumption of ubiquinol
During oxidative stress, high levels of ROS and lipid

hydroperoxides (LOOH) are produced (Gordan et al., 2018;
Berdoukas et al., 2015; Hershko, 2010; Kruszewski, 2003), which
rapidly oxidize ubiquinol to ubiquinone, depleting the active
antioxidant form of CoQ10. This reaction can be represented as:
CoQ10redred + LOOH → CoQ10oxox + LOH (Doll et al., 2019).
The reduction in ubiquinol diminishes the cell’s capacity to
neutralize LPO, exacerbating oxidative damage.

2.3.3 Impaired regeneration of ubiquinol
CoQ10 reductases in the body use NADH or NADPH as

electron donors to reduce ubiquinone back to ubiquinol
(Cadenas et al., 2022). Studies have shown that certain
mitochondrial enzymes, including complexes I and II of the
respiratory chain, transfer electrons to ubiquinone, regenerating
it to its reduced form. Similar mechanisms may also occur in other
electron transport systems, such as the endoplasmic reticulum
(Martínez-Reyes et al., 2020).

When these antioxidant systems are imbalanced, susceptibility
to ferroptosis increases significantly. Furthermore, these systems
often interact (Fang et al., 2019). For example, GPX4, a key regulator
of ferroptosis, relies on GSH to detoxify LPO. When the
CoQ10 system is impaired, GPX4’s dependence on GSH
intensifies, further depleting cellular GSH reserves. Excessive
oxidative stress, coupled with dysfunction of antioxidant systems,
leads to mitochondrial ROS accumulation (Dixon et al., 2012),
exacerbating oxidative stress and creating a vicious cycle that
heightens the risk of ferroptosis (Bedard and Krause, 2007).

3 Ferroptosis and BC

BC can be treated through various methods, including surgery,
chemotherapy, and radiotherapy. However, reducing the incidence
andmortality of BC remains a significant challenge (Barzaman et al.,
2020). Studies have demonstrated that BC exhibits a heterogeneous
phenotype in terms of ferroptosis-related metabolites and metabolic
pathways, characterized by oxidized phosphatidylethanolamine and
altered GSH metabolism (Yang F. et al., 2023). Importantly, BC has
been identified as a lipid- and iron-rich tumor (Martinez-
Outschoorn et al., 2017; Xiao et al., 2022), making ferroptosis
induction a promising therapeutic strategy. This mechanism
primarily disrupts cancer cell metabolism, inducing cell death
through redox imbalance and increased intracellular ROS levels
(Tang et al., 2021) (Mou et al., 2019). Furthermore, research has
shown that targeting the ferroptosis pathway in BC may enhance
therapeutic sensitivity (Yang F. et al., 2023). Conversely, inhibiting
this pathway can increase resistance to other chemotherapeutic
agents (Xu et al., 2023).

Studies have shown that mutations in the tumor suppressor
genes BRCA1 and BRCA2 increase the risk of BC (Liu L. et al., 2020).
The loss of function in these genes impairs DNA repair, thereby
promoting tumorigenesis (Ben Ayed-Guerfali et al., 2021). Similarly,
deletion of the tumor suppressor gene PTEN, which normally
inhibits cellular proliferation, invasion, and metastasis, accelerates
tumor progression (Chen et al., 2022a). Mutations in other genes,
such as CHEK2, ATM, PALB2, BRIP1, and CDH1, allow cancer cells

to evade immune surveillance and develop resistance to
conventional therapies (Neves et al., 2023; Hansen et al., 2015;
Piccolo et al., 2014). In response, researchers have focused on
discovering novel anticancer compounds, leading to the
identification of ferroptosis inducers (Dolma et al., 2003; Yagoda
et al., 2007). Notably, cancer cells resistant to standard treatments
have shown increased sensitivity to ferroptosis inducers
(Viswanathan et al., 2017; Hangauer et al., 2017; Tsoi et al., 2018).

The development of ferroptosis-based therapies for BC
remains in its early stages. Current research focuses on several
non-targeted approaches aimed at promoting ferroptosis by
enhancing cellular uptake of iron, peroxides, and other
substances to eliminate BC cells. Concurrently, efforts are being
made to develop targeted therapies that modulate ferroptosis-
related molecules, such as enzymes (Hassannia et al., 2019;
Hassannia et al., 2018). For example, silencing the GPX4 gene
using RNA interference or CRISPR/Cas9, or inhibiting
GPX4 activity with ferroptosis inducers like RSL3, can induce
ferroptosis by reducing GPX4 levels (Yang et al., 2014; Yang et al.,
2016). Targeting GSH metabolism, such as by inhibiting
interferon-gamma (IFN-γ), can suppress the XC- system,
reducing cystine uptake and GSH synthesis (Sato et al., 1995;
Koppula et al., 2021). Similarly, inhibiting glutathione reductase or
decreasing NADPH supply can hinder GSH reduction, thereby
promoting ferroptosis (Niu et al., 2021). Additionally, silencing
FSP1 decreases the production of ferroptosis suppressor proteins,
reducing levels of reduced coenzyme Q10 and further potentiating
ferroptosis (Wang H. et al., 2021). Iron metabolism plays a central
role in ferroptosis, with transferrin (TF) and transferrin receptor 1
(TFR1) regulating iron uptake. Overexpression of TF and TFR1, or
inhibition of the iron export pump FPN, increases intracellular
iron concentration and LPO, thereby promoting ferroptosis
(Bogdan et al., 2016; Gammella et al., 2017; Geng et al., 2018;
Torti and Torti, 2020). Finally, certain immune cells, such as CD8+

T cells, can enhance the sensitivity of BC cells to ferroptosis (Wang
W. et al., 2019). Ferroptosis can also enhance the immune function
of cells like neutrophils, aiding BC treatment (Yotsumoto et al.,
2017). By altering the tumor microenvironment, ferroptosis may
influence tumor prognosis and suppress tumor cell proliferation
(Kim et al., 2023).

4 The role of ncRNA in BC

4.1 miRNA and BC

miRNAs are short RNA molecules derived from longer stem-
loop precursors that bind to and inhibit messenger RNA (mRNA)
(Chen, 2016). miRNAs exert their function by sequence-specific
binding to target RNAs, thereby repressing gene expression (Bartel,
2009; Lee et al., 2009). This process is not solely governed by direct
RNA interactions but also involves effector proteins within the
miRISC complex (Bartel, 2009). Beyond their role in post-
transcriptional gene regulation, miRNAs can recruit their
respective ribonucleoprotein complexes to modulate target
translation (Vasudevan et al., 2007). miRNAs regulate numerous
biological processes, including stress responses, cell adhesion,
motility, inflammation (Hata and Kashima, 2016), differentiation,
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proliferation, senescence, apoptosis, and hematopoiesis (Jensen
et al., 2013)—all of which are closely associated with tumorigenesis.

Aberrant miRNA expression is common across cancers and is
regulated by epigenetic and tissue-specific mechanisms. This
dysregulation is often linked to DNA methylation-mediated gene
silencing and distinct cancer phenotypes (Sengupta et al., 2021).
Growing evidence highlights the importance of miRNAs as crucial
biomarkers in the initiation, progression, detection, and prognosis of
BC. For example, in triple-negative breast cancer (TNBC), the most
aggressive molecular subtype, miR-200b suppresses metastasis by
targeting Rho GTPase-activating protein 18 (ARHGAP18) and
promoting RhoA activation (Humphries et al., 2017),
underscoring the critical role of miR-200b in BC progression.
Elevated levels of miR-10b, miR-34a, and miR-155 are found in
patients with metastatic BC (Roth et al., 2010), with circulating miR-
10b and miR-373 significantly increased in lymph node-positive
patients compared to those without nodal metastasis or healthy
controls (Schwarzenbach et al., 2012). Notably, miR-10b has
emerged as a potential biomarker for brain (Ahmad et al., 2014)
and bone metastasis (Zhao et al., 2012), suggesting its utility for early
detection and prognosis. Furthermore, in hormone receptor-
positive BC cells resistant to endocrine therapy (tamoxifen), the
miR-221/222 cluster is upregulated through the negative regulation
of cyclin-dependent kinase inhibitor 1B (p27Kip1) (Hanna et al.,
2012; Gan et al., 2014; Miller et al., 2008). p27Kip1, an enzyme
inhibitor encoded by the CDKN1B gene, plays a pivotal role in
regulating the human cell cycle (Kurozumi et al., 2015; Toyoshima

and Hunter, 1994). Therefore, the miR-221/222 cluster has been
proposed as a potential therapeutic target and predictor of
tamoxifen resistance in BC treatment (Figure 2) (Table 1).

4.2 lncRNA and BC

lncRNAs are transcripts longer than 200 nucleotides that do not
encode proteins (Mattick and Rinn, 2015). They regulate gene
expression through epigenetic modifications, as well as
transcriptional and post-transcriptional mechanisms. lncRNAs
engage in base-pairing with other RNA molecules (e.g., mRNA,
miRNA, or DNA), facilitating direct interactions at the primary
structure level (Novikova et al., 2013). At the secondary structure
level, lncRNAs perform their roles through base-pairing or
ribonucleotide backbone interactions (Cruz and Westhof, 2009;
Mercer and Mattick, 2013). In addition to protein interactions
mediated by their spatial conformation, lncRNAs recognize other
nucleic acids through base-pairing, guiding proteins to specific loci
and thereby broadening their functional roles in cancer.

The relationship between lncRNAs and BC has attracted
increasing attention due to their critical role in regulating various
cancer-related processes, including cell proliferation, invasion,
migration, apoptosis, epithelial-mesenchymal transition (EMT),
and drug resistance across multiple malignancies (Jin et al., 2021;
Wang CJ. et al., 2019; Guo et al., 2019). In BC, lncRNAs influence
prognosis through several mechanisms, which include: (Makhoul

FIGURE 2
Roles of Non-Coding RNAs in Various Biological Processes of Breast Cancer. This image delineates the roles of different types of non-coding RNAs
(ncRNAs), including miRNAs, circRNAs, and lncRNAs, in regulating distinct biological processes in breast cancer, such as cellular proliferation,
angiogenesis, invasion, epithelial-mesenchymal transition (EMT), and cell death. The roles and mechanisms of these non-coding RNAs in various
biological processes of breast cancer are highly intricate, involving complex regulatory networks that drive cancer progression.

Frontiers in Cell and Developmental Biology frontiersin.org05

Liu et al. 10.3389/fcell.2024.1506492

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1506492


TABLE 1 ncRNAs functioning in the process of BC.

ncRNA Target Functions in BC Reference

miR-2467-3p E2F6 Proliferation (−)
Migration (−)
Invasion (−)
EMT (−)

Gao et al. (2022)

miR-223-3p FBXW7 Invasion (+)
Metastasis (+)

Wang Y. et al. (2022)

miR-382 Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) Invasion (−)
Migration (−)
EMT (−)

Zhou et al. (2022a)

miR-379-5p KIF4A Proliferation (−)
Migration (−)
Invasion (−)

Yang et al. (2022)

miR-142-5p DNA methyltransfer-ase 1 (DNMT1) Proliferation (−)
Migration (−)

Li et al. (2022b)

miR-556-5p Parathyroid hormone related protein (PTHrP) Invasion (−)
Migration (−)
EMT (−)

Zhou et al. (2022b)

miR-181a-5p N-myc downstream-regulated gene (NDRG) 2 Proliferation (+)
Invasion (+)
Glycolysis (+)

Zhai et al. (2022)

miR-409 AT-rich sequence-binding protein 1 (SATB1) Proliferation (−)
Invasion (−)

Chen et al. (2022c)

miR-183 SIN3A (SWI-independent-3) chromatin modification complexes Migration (+)
Invasion (+)
Metastasis (+)

Davenport et al. (2022)

miR-606 Stanniocalcin 1 (STC1) Proliferation (−)
Stem cell-like ability (−)
Migration (−)
Invasion (−)

Choi et al. (2024)

miR-148b-3p TSC2/mTORC1 signaling pathway Proliferation (+)
Migration (+)
Invasion (+)

Hao et al. (2023)

miR-7-5p receptor-like tyrosine kinase (RYK) Migration (+)
Invasion (+)
EMT (+)

Liang et al. (2022)

miR-181c MAP4K4 Cells apoptosis (+)
Proliferation (−)
Migration (−)

Xie et al. (2022c)

miR-219-5p TBXT Migration (−)
Invasion (−)
EMT (−)

Ye et al. (2021)

miR-146a NM23-H1 gene Proliferation (+)
Migration (+)
Invasion (+)

Chen et al. (2020)

miR-150-5p MYB Proliferation (−) Jia et al. (2021)

miR-21 Leucine zipper transcription factor-like 1 (LZTFL1) Proliferation (−)
Migration (−)

Wang H. et al., 2019

miR-589-5p Histone deacetylase 3 (HDAC3) Proliferation (−) Rahbari et al. (2022)

miR-138-5p rhomboid domain-containing protein 1 (RHBDD1) Migration (−)
Invasion (−)
EMT (−)

Zhao et al. (2019)

miRNA-874-3p Voltage-dependent anion channel 1 (VDAC1) Migration (−)
Invasion (−)
Proliferation (−)

Yang H. et al. (2023)

(Continued on following page)
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TABLE 1 (Continued) ncRNAs functioning in the process of BC.

ncRNA Target Functions in BC Reference

LncRNA NORAD pro-metastatic protein S100P Migration (−)
Invasion (−)

Tan et al. (2019)

NAT PDCD4-AS1 lncRNA PDCD4 Migration (−)
Proliferation (−)

Jadaliha et al. (2018)

LncKLHDC7B KLHDC7B gene Apoptosis (+)
Migration (−)
Invasion (−)

Beltrán-Anaya et al. (2019)

lncRNA GAS5 miR-378a-5p/SUFU signaling Apoptosis (+) Zheng et al. (2020a)

lncRNA MT1JP miRNA-214/RUNX3 Axis Invasion (−)
Migration (−)
Proliferation (−)
Apoptosis (+)

Ouyang et al. (2020)

LncRNA NEF miRNA-155 Migration (−)
Invasion (−)

Song et al. (2019)

LncRNA XIST IL-6/STAT3 signaling Proliferation (+)
Migration (+)
Cancer stemness (+)

Ma et al. (2023)

LncRNA MEG3 miR-141-3p/RBMS3 axis Proliferation (−)
Apoptosis (+)

Dong et al. (2021)

lncRNA NLIPMT Glycogen synthase kinase 3β (GSK3β) Proliferation (−)
Migration (−)
Invasion (−)
Metastasis (−)

Jiang et al. (2019)

LncRNA GAS5 miR-196a-5p Proliferation (−)
Invasion (−)

Li et al. (2018)

lncRNA DANCR miR-4319/VAPB axis Proliferation (+)
Metastasis (+)

Jia et al. (2022)

LncRNA H19 p53/TNFAIP8 pathway Invasion (+)
Metastasis (+)

Li Y. et al. (2020)

LncRNA NEAT1 miR-133b/CXCL12 axis Paclitaxel resistance (+)
Migration (+)

Wei et al. (2023)

HOTAIR HOTAIR/miR-203/CAV1 axis Proliferation (+)
Invasion (+)
Migration (+)

Shi et al. (2022)

LINC00152 LINC00152-KLF5 loop Proliferation (+) Li et al. (2021)

lncRNA FEZF1-AS1 miR-30a/Nanog axis Proliferation (+)
Invasion (+)
Migration (+)

Zhang et al. (2018b)

LINC00461 miR-144-3p/KPNA2 axis Migration (+)
Invasion (+)

Zhang et al. (2020c)

NEAT1 PGK1/PGAM1/ENO1 multienzyme complex Glycolysis (+)
Mor growth(+)

Park et al. (2021)

LINC01857 miR-2052/CENPQ axis Metastasis (+)
Vascularization (+)
Migration (+)

Qian et al. (2022)

LINC00511 LINC00511/miR-150/MMP13 axis Proliferation (+)
Migration (+)
Invasion (+)

Shi et al. (2021)

circ-UBR1 miR-1299/CCND1 axis Proliferation (+)
Metastasis (+)
Apoptosis (−)

Zhang et al. (2021)

circDDX17 miR-605 Proliferation (−)
Apoptosis (+)

Peng and Wen (2020)

(Continued on following page)
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et al., 2018): Peptide-Encoding lncRNAs: Recent studies have
revealed that certain lncRNAs harbor hidden open reading
frames capable of encoding functional peptides. For example,
LINC00908 encodes a peptide, ASRPS, which exerts antitumor
effects by inhibiting angiogenesis in TNBC (Wang et al., 2020).

(Nik-Zainal et al., 2016) mRNA Stability Modulation: lncRNAs also
regulate mRNA stability in BC cells. For instance, the PDCD4-AS1
lncRNA stabilizes the mRNA of the tumor suppressor gene
PDCD4 by forming double-stranded RNA, which interacts with
RNA decay factors such as HuR, thereby inhibiting BC cell

TABLE 1 (Continued) ncRNAs functioning in the process of BC.

ncRNA Target Functions in BC Reference

circ_103809 PI3K/AKT signaling Cell apoptosis (−)
Proliferation (+)

Qiu et al. (2020)

circ_0000526 miR-492/SOCS2 axis Proliferation (−)
Metastasis (−)
Apoptosis (+)

Wang W. B et al., 2021

circSEPT9 circSEPT9/miR-637/LIF axis Proliferation (+)
Migration (+)
Invasion (+)

Zheng et al. (2020b)

circEPSTI1 miR-145/ERBB3 axis Proliferation (+)
Migration (+)
Invasion (+)

Zhang et al. (2022b)

circGFRA1 circGFRA1-miR-1228-AIFM2 axis Infiltration (+)
Proliferation (+)
Migration (+)

Bazhabayi et al. (2021)

circKIF4A miR-152/ZEB1 axis Migration (+)
Invasion (+)
Apoptosis (−)

Jin et al. (2020)

CircUBE2D2 miR-512-3p/CDCA3 axis Proliferation (+)
Migration (+)
Invasion (+)

Dou et al. (2020)

circHIF1A NFIB Growth (+)
Metastasis (+)

Chen et al. (2021c)

circNR3C2 circNR3C2/miR-513a-3p/HRD1/Vimentin axis Proliferation (−)
Migration (−)
Invasion (−)
EMT (−)

Fan et al. (2021)

circANKS1B miR-148a/152-3p Invasion (+)
Metastasis (+)

Zeng et al. (2018)

circHIPK3 miR-326 Proliferation (+)
Migration (+)
Invasion (+)

Qi et al. (2021)

ciRS-7 miR-1299 Migration (+)
Invasion (+)

Sang et al. (2018)

hsa_circ_0025202 miR-182-5p/FOXO3a axis Proliferation (−)
Colony formation (−)
Migration (−)

Sang et al. (2019)

circ_0045881 miR-214-3p Invasion (−)
Migration (−)

Ren et al. (2024)

circRNF10 DHX15 Proliferation (−)
Migration (−)

Zheng et al. (2023b)

Circ-FOXO3 WHSC1-H3K36me2-Zeb2 axis Proliferation (−)
Migration (−)
Metastasis (−)

Chen et al. (2024)

circNFIB Inhibits synthesis of AA by regulating phospholipase Invasion (−)
Metastasis (−)

Zhong et al. (2024)

circ_ATAD3B miR-570-3p/MX2 pathway Proliferation (−) Song et al. (2023b)

+means promoting, − means inhibiting.
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proliferation and migration (Jadaliha et al., 2018). (Duffy et al.,
2012) lncRNAs in Intercellular Communication: Emerging studies
suggest that certain lncRNAs can be encapsulated in extracellular
vesicles (EVs) and mediate intercellular communication. For
instance, EVs released by cancer-associated fibroblasts (CAFs)
containing the lncRNA SNHG3 are absorbed by BC cells, where
SNHG3 acts as a sponge for miR-330-5p, thereby reprogramming
cellular metabolic pathways (Jin et al., 2021). Overall, lncRNAs
participate in multiple mechanisms that drive BC development and
progression. Research suggests that lncRNAs hold significant
potential as molecular biomarkers for BC, offering both research
and clinical value (Yuan et al., 2021).

Through these mechanisms, lncRNAs exhibit oncogenic and
tumor-promoting activities, influencing cancer development by
engaging in or disrupting key cellular pathways (Zeng et al.,
2022) (Figure 2) (Table 1).

4.3 circRNA and BC

circRNAs are covalently closed RNA molecules formed through
the back-splicing of exons or introns (Jeck et al., 2013). circRNAs are
involved in a range of biological processes. Due to their miRNA-
binding sites, circRNAs can act as miRNA sponges, modulating
miRNA expression (Panda, 2018). In addition to regulating
transcription (Stoll et al., 2020), circRNAs may also be translated
into proteins (Yang et al., 2017), influence protein function by
shuttling between the nucleus and cytoplasm, and promote
cellular senescence (Fang et al., 2018). Furthermore, circRNAs
serve as protein scaffolds, facilitating protein-protein interactions
(Du et al., 2017).

The mechanisms through which circRNAs influence BC are
diverse (Wang Z. et al., 2023): (Makhoul et al., 2018) circRNAs as
miRNA Sponges: circRNAs can modulate gene expression by
sequestering miRNAs, either upregulating or downregulating
their targets. For example, circ_0089153 sponges miR-2467-3p,
alleviating its inhibitory effect on E2F6, thus promoting BC cell
proliferation, migration, invasion, and EMT (Gao et al., 2022).
(Nik-Zainal et al., 2016) circRNAs as RNA-Binding Protein
(RBP) Complexes: circRNAs can interact with RBPs involved
in pre-mRNA transcription, splicing, polyadenylation, and RNA
degradation. The RBP human antigen R (HuR) stabilizes mRNA
and regulates its processing (Lebedeva et al., 2011). Experimental
evidence shows that circ-1073 binds to HuR in BC cells,
increasing the levels of caspases 3/9 and E-cadherin, thereby
inhibiting oncogenic activity (Yi et al., 2020). (Duffy et al.,
2012) circRNAs as Translation Templates: A growing area
of research suggests that circRNAs may also function as
templates for translation (Zhang M. et al., 2018). For example,
circFAM53B encodes a unique peptide in BC cells that binds to
HLA-I molecules, enhancing antitumor immunity by inducing
higher levels of immunoactive substances such as IFNγ and
perforin (Huang et al., 2024). Additionally, circCAPG encodes
a peptide known as CAPG-71AA, which promotes tumor
growth in BC (Song R. et al., 2023). Numerous circRNAs have
been identified as key regulators in BC pathogenesis, with
potential applications in diagnosis, prognosis, and therapeutic
interventions.

In summary, circRNAs play a central role in regulating tumor
proliferation and the surrounding microenvironment, positioning
them as crucial mediators in the initiation and progression of BC
(Figure 2) (Table 1).

5 The relationship between ncRNA and
ferroptosis

5.1 The relationship between miRNAs and
ferroptosis

Research has shown that various miRNAs regulate iron
metabolism by modulating intracellular iron levels, thereby
influencing ferroptosis (Zuo et al., 2022). For example, miR-545
binds to TF mRNA, inhibiting its expression (Zheng et al., 2021),
while miR-214 and miR-367-3p target and suppress TFRC
expression, reducing iron absorption and preventing ferroptosis
(Lu et al., 2020; Huang J. et al., 2023). Additionally, miR-7-5p
downregulates mitochondrial TF, lowering Fe2⁺ levels and
inhibiting ferroptosis (Tomita et al., 2019). In the context of
ulcerative colitis (UC), miR-375-3p binds to the transmembrane
iron transporter SLC11A2, downregulating its transcription and
blocking iron absorption and metabolism, thus preventing
ferroptosis (Luo and Chen, 2023). MiR-19a suppresses
ferroptosis in colorectal cancer by modulating iron metabolism
and inhibiting the ferroptosis-inducing factor iron-responsive
element-binding protein 2 (IREB2) (Fan et al., 2022).
Conversely, miR-761 promotes ferroptosis by reducing hepcidin
levels, preventing the degradation of ferroportin 1 (FPN1) (Zheng
R. et al., 2023). MiR-30b-5p suppresses Pax3 to downregulate
FPN1 transcription, inducing ferroptosis in trophoblast cells,
which is associated with preeclampsia (Zhang H. et al., 2020).
MiR-19b-3p directly targets and reduces ferritin heavy chain 1
(FTH1) expression, resulting in increased free iron and promoting
ferroptosis in lung cancer (Zhang R. et al., 2022). Furthermore,
miR-129-5p targets and downregulates PROM2, inhibiting iron
efflux and enhancing ferroptosis in non-small cell lung cancer
(NSCLC) (Luo W. et al., 2021) (Figure 3).

5.2 The relationship between lncRNAs and
ferroptosis

LINC00618 has been shown to enhance ferroptosis by
increasing levels of ROS and iron, both of which are hallmark
indicators of ferroptosis, while also downregulating
SLC7A11 expression. Deletion of LINC00618 significantly
reduces ROS and iron levels in cancer cells, highlighting its role
in enhancing sensitivity to ferroptosis through classical pathways
(Wang Z. et al., 2021). In contrast, lncPVT1 suppresses ferroptosis
by downregulating miR-214-3p, which leads to increased
GPX4 expression and subsequently promotes cancer
progression (He et al., 2021).

In summary, lncRNAs exert multilayered regulatory control
over ferroptosis in cancer cells. As demonstrated, the
mechanisms through which lncRNAs influence ferroptosis are
complex and interconnected. Although categorizing these
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mechanisms may be challenging, their roles are of significant
importance. This complexity emphasizes the need for further
exploration, making this area a key focus in current cancer
research (Figure 3).

5.3 The relationship between circRNAs and
ferroptosis

circLMO1 and circ_Carm1 promote ferroptosis by upregulating
ACSL4 expression (Mao and Liu, 2022). In contrast, circKIF4A
(Chen W. et al., 2021), circDTL (Shanshan et al., 2021), cmmu_
circRNA_000030 (Jin et al., 2022), and circIL4R (Xu et al., 2020)
inhibit ferroptosis by upregulating GPX4 expression. Similarly, circ_
0067934 (Wang HH. et al., 2021), and circP4HB (Pan et al., 2022)
upregulate SLC7A11 expression, affecting the system Xc− and
inhibiting ferroptosis. CircGFRA1 (Bazhabayi et al., 2021)
upregulates AIFM2, which encodes FSP1, further suppressing
ferroptosis. Recent research has identified numerous circRNAs
that regulate ferroptosis through classical pathways, with ongoing
studies continuing to enhance our understanding of these
mechanisms (Figure 3).

6 Ferroptosis-related ncRNAs and their
association with BC

6.1 Ferroptosis-related miRNAs and their
association with BC

Ferroptosis has become a central focus in BC research. Studies
utilizing 3′UTR luciferase assays have demonstrated that miR-5096
targets SLC7A11, thereby promoting ferroptosis in BC cells by
downregulating SLC7A11 expression. This mechanism increases
ROS production, iron accumulation, and lipid peroxidation,
while inhibiting BC cell proliferation, colony formation,
migration, and invasion. Notably, miR-5096 induces ferroptosis
more effectively in TNBC cells compared to other BC subtypes.
Furthermore, miR-5096 reduces the metastatic potential of MDA-
MB-231 cells in a zebrafish larvae xenotransplantation model. These
findings suggest that miR-5096may serve as a promising therapeutic
target in BC, particularly in TNBC (Yadav et al., 2021).

MiR-128-3p, which is downregulated in BC patients, plays a
critical role in various biological processes. By directly targeting
SP1 mRNA, miR-128-3p inhibits TGF-β1-induced migration,
invasion, and cell cycle progression (Nalla et al., 2022).

FIGURE 3
Mechanisms of Non-Coding RNAs in Regulating Ferroptosis. This image illustrates the mechanisms by which non-coding RNAs (ncRNAs), including
miRNAs, circRNAs, and lncRNAs, regulate the process of ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation. ncRNAs play pivotal
roles at various stages of this process. Non-coding RNAs influence the process of ferroptosis in breast cancer cells through multiple pathways and
mechanisms. These include regulating system Xc⁻, modulating glutathione metabolism and redox reactions, controlling lipid peroxidation, and
influencing ROS production. These complex interactions and regulatory networks involving miRNAs, circRNAs, and lncRNAs underscore the critical role
of ncRNAs in ferroptosis within the context of breast cancer.

Frontiers in Cell and Developmental Biology frontiersin.org10

Liu et al. 10.3389/fcell.2024.1506492

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1506492


CD98 heavy chain (CD98hc), a type II transmembrane glycoprotein,
interacts with several light chain amino acid transporters, including
xCT, LAT1, and y + LAT2, and is involved in the intersection of
oxidative stress and amino acid metabolism (de la Ballina et al.,
2016). Upregulation of CD98hc promotes cell proliferation, EMT,
adhesion, and polarity (Feral et al., 2005), while its downregulation
can trigger ferroptosis. Inhibition of SP1 affects CD98hc expression
(Yan et al., 2007). Consequently, studies have shown that
empagliflozin (EMPA), functioning as a miR-128-3p mimetic,
suppresses SP1 expression, reduces CD98hc levels, sensitizes cells
to ferroptosis, and may serve as a potential adjunct in BC
chemotherapy (Nalla and Khairnar, 2024).

MiR-335-5p exhibits tumor-suppressive properties in various
cancers, including BC (Gao et al., 2021; Qian et al., 2021; Zhang S.
et al., 2023). Adenosine deaminase acting on RNA 1 (ADAR1), an
RNA editing enzyme that converts adenosine to inosine within
double-stranded RNA, plays a crucial role in the initiation and
progression of several cancers and is overexpressed in BC (Li Y.
et al., 2022). Studies have shown that ADAR1 downregulates miR-
335-5p in an editing-independent manner, promoting
Sp1 expression, upregulating GPX4 levels, and inhibiting
ferroptosis in BC. These findings offer new insights into the role
of ADAR1 in BC progression (Yin et al., 2024).

Lidocaine, a commonly used local anesthetic, exhibits antitumor
activity under experimental conditions, including the inhibition of
BC cell viability suppressed by erastin, highlighting its potential role
in BC progression. Lidocaine treatment induces the accumulation of
Fe2⁺, iron, and ROS in BC cells, thereby inhibiting cell proliferation,
while promoting apoptosis and reducing cell invasion andmigration
(Gao et al., 2018; Khan et al., 2019). Studies have shown that
lidocaine enhances ferroptosis by upregulating miR-382-5p,
which downregulates SLC7A11 and suppresses malignant BC
progression. Inhibition of miR-382-5p blocks lidocaine-induced
ferroptosis in BC cells. However, the clinical potential of
lidocaine in BC treatment requires further investigation (Sun
et al., 2021). Metformin, a widely prescribed oral hypoglycemic
agent, has demonstrated inhibitory effects on the proliferation and
metastasis of various cancers, including BC (Wang et al., 2017;
Mallik and Chowdhury, 2018). Metformin suppresses cell
proliferation, upregulates Fe2⁺ and ROS levels, inhibits
GPX4 expression, and induces ferroptosis in BC cells (Yang
et al., 2021). Furthermore, metformin promotes ferroptosis by
upregulating miR-324-3p, which directly targets GPX4 for
downregulation (Hou et al., 2021). These findings suggest that
metformin, in combination with miR-324-3p, holds promise as a
novel therapeutic strategy for cancer treatment.

The investigation of ferroptosis-related miRNAs not only
provides new opportunities for BC treatment but also enhances
our understanding of the mechanisms through which miRNAs
regulate ferroptosis. Future research is anticipated to further
elucidate their clinical potential in therapeutic applications.

6.2 The relationship between ferroptosis-
associated lncRNAs and BC

In the context of BC therapies, ferroptosis has emerged as a
critical mechanism in tumor treatment. lncRNAs have garnered

significant attention due to their multifaceted roles in tumorigenesis
and the regulation of ferroptosis. Several lncRNAs have been
implicated in the modulation of ferroptosis within BC cells,
including AC092916.1, L133467.1, USP30-AS1, AC108474.1,
LINC01235, AL365356.1, AC072039.2, AC012213.3, LIPE-AS1,
MAPT-AS1, and TDRKHAS1. Notably, lncRNA USP30-AS1
exhibits a significant co-expression pattern with nine ferroptosis-
related genes, including SOCS1, CAPG, IFNG, PML, TNFAIP3,
NCF2, SLC2A6, GCH1, and CYBB. This co-expression suggests that
upregulation of USP30-AS1 may be associated with improved
survival in BC patients. Additionally, lncRNA LIPE-AS1 interacts
with key ferroptosis-related genes, such as GPX4, PHKG2, EGLN2,
MAPK14, and HRAS, offering new insights into potential
therapeutic strategies for improving patient prognosis. Similarly,
AC108474.1 has been shown to interact with five ferroptosis-related
genes, including HIC1, ISCU, PLIN4, CAV1, and TAZ, suggesting
its potential role as a protective factor in BC (Xiang et al., 2024).
Research has also identified specific lncRNAs that are strongly
associated with BC prognosis. LINC01871, LINC02384, LIPE-
AS1, and HSD11B1-AS1 have been classified as low-risk
ferroptosis-related lncRNAs (FRLncRNAs), while LINC00393,
AC121247.2, AC010655.2, LINC01419, PTPRD-AS1,
AC099329.2, OTUD6B-AS1, and LINC02266 are considered
high-risk FRLncRNAs.

Recent studies have identified LncFASA as a significant
regulator in BC. LncFASA interacts with a specific domain of
peroxiredoxin PRDX1, promoting its liquid-liquid phase
separation, a process that impairs the enzyme’s peroxidase
activity and affects the SLC7A11-GPX4 signaling axis, which is
crucial for maintaining cellular oxidative stress homeostasis (Lovatt
et al., 2020). This disruption leads to the accumulation of lipid ROS
and triggers ferroptosis (Neumann et al., 2003). Notably, elevated
LncFASA expression is strongly correlated with the formation of
PRDX1 droplets and a favorable prognosis in BC patients (Fan
et al., 2024).

Conversely, certain lncRNAs suppress ferroptosis and promote
BC progression. For example, a novel protein encoded by the
lncRNA HCP5, called HCP5-132aa, promotes the growth of
TNBC by regulating GPX4 and reducing ROS levels, thereby
inhibiting ferroptosis. Kaplan-Meier survival analysis reveals that
high HCP5-132aa expression is associated with an increased risk of
BC-related mortality, positioning it as a risk factor for TNBC
progression (Tong et al., 2023). Additionally, specific lncRNAs,
such as RUNX1-IT1, are selectively upregulated during cancer
progression. RUNX1-IT1 is significantly elevated in BC tissues
and correlates with larger tumor size and more advanced clinical
stages. Mechanistically, RUNX1-IT1 binds to the m6A reader
protein IGF2BP1, stabilizing GPX4 mRNA and inhibiting
ferroptosis (Wang S. et al., 2023). Similarly, the lncRNA
DSCAM-AS1 binds to m6A-modified SLC7A11 mRNA,
enhancing its stability and inhibiting ferroptosis (Yan et al., 2024).

LINC00460 expression is significantly elevated in BC tissues
compared to normal tissues, promoting cancer cell proliferation and
inhibiting ferroptosis by sponging miR-320a and upregulating
myelin and lymphocyte protein 2 (MAL2) (Zhang C. et al.,
2023). MAL2 has been implicated in cancer progression through
various mechanisms (Fang et al., 2021; Jeong et al., 2021; López-
Coral et al., 2020). Research suggests that MAL2 overexpression can
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reverse the effects of LINC00460 knockdown on both proliferation
and ferroptosis in BC cells (Zhang C. et al., 2023).

Given the specificity of lncRNAs in BC cells, several prognostic
models have been developed (Liu Q. et al., 2020). One such model
includes nine metabolism-related lncRNAs—SIRLNT, SIAH2-AS1,
MIR205HG, USP30-AS1, MIR200CHG, TFAP2A-AS1,
AP005131.2, AL031316.1, and C6orf99—which shows potential
for improving predictive accuracy and enabling personalized
treatment for BC patients. Prospective validation of these
lncRNA signatures could further enhance their clinical utility (Ge
et al., 2024). Beyond prognostic models, various therapeutic
strategies targeting lncRNAs have been explored. For example,
metformin has been shown to downregulate lncRNA H19,
inducing ferroptosis in BC cells by increasing lipid ROS levels
(Alimova et al., 2009; Chen et al., 2022b). Additionally, lncRNAs
contribute to overcoming drug resistance, with targeting
LINC00152 demonstrated to increase BC sensitivity to tamoxifen
by stabilizing PDE4DmRNA. This stabilization raises cytosolic Ca2⁺
levels, a key regulator of ferroptosis, thereby enhancing tamoxifen
efficacy through the induction of ROS and ferroptosis. (Gomez et al.,
2002; Pedrera et al., 2021; Saatci et al., 2023). In conclusion,
lncRNAs play critical roles in BC development and ferroptosis,
presenting promising opportunities for future research. Their
involvement in tumor therapy, staging, and prognosis suggests
they could serve as valuable therapeutic targets.

6.3 The relationship between ferroptosis-
associated circRNAs and BC

Although research on ferroptosis-related circRNAs in BC cells
remains limited, we have compiled the existing findings to provide a
basis for future exploration.

CircGFRA1 has been shown to promote the malignant
progression of HER-2 positive BC by acting as a sponge for miR-
1228 and enhancing the expression of AIFM2, an essential NADH
oxidase. CircGFRA1 is upregulated in HER-2 positive BC cells and
tissues, positioning it as a potential biomarker for BC diagnosis.
Silencing circGFRA1 inhibits the proliferation of HER-2 positive BC
cells and attenuates invasion and metastasis, highlighting its
therapeutic potential (Bazhabayi et al., 2021). The mechanisms
underlying this process are as follows: (Makhoul et al., 2018)
circGFRA1 sponges miR-1228, leading to the upregulation of
AIFM2, which inhibits ferroptosis mediated by ubiquinone and
thus promotes BC progression (Bazhabayi et al., 2021; Chen and Xie,
2020); (Nik-Zainal et al., 2016) in experimental models, silencing
circGFRA1 in cancer cells reduces the GSH/GSSG ratio, depletes
GPX4, accumulates highly toxic lipid ROS, and induces ferroptosis
(Seibt et al., 2019). Therefore, circGFRA1 modulates ferroptosis
through multiple pathways in BC cells.

Circ_0000643 regulates ferroptosis in BC cells through the
FOXQ1/circ_0000643/miR-153/SLC7A11 axis. FOXQ1, a member
of the Forkhead box protein family, is an oncogenic transcription
factor highly expressed in various tumors and associated with poor
prognosis (Dong et al., 2022). SLC7A11, a downstream target of
miR-153, is regulated by circ_0000643, which acts as a sponge for
miR-153 in BC cells. By upregulating SLC7A11, circ_
0000643 promotes BC progression and inhibits ferroptosis (Lin

et al., 2020). Furthermore, FOXQ1 enhances the expression of
circ_0000643 in BC by binding to the promoter region of
ZFAND6, establishing circ_0000643 as a critical component in
this regulatory axis (Huang X. et al., 2023).

Emerging studies indicate that circRNAs modulate ferroptosis
and influence drug resistance in BC cells. For example, circ-BGN
directly interacts with the deubiquitinase OTUB1 and the ferroportin-
related protein SLC7A11, enhancing OTUB1-mediated
deubiquitination of SLC7A11, which inhibits ferroptosis. Notably,
the small-molecule ferroptosis inducer Erastin significantly reduces
tumor volume in trastuzumab-resistant BC cells, with increased
efficacy when circ-BGN is co-silenced. This suggests that Erastin
may restore the antitumor effects of trastuzumab by inducing
ferroptosis (Wang S. et al., 2022). Furthermore, SRSF1, circSEPT9,
and GCH1 are upregulated in triple-negative BC (TNBC) cells.
Downregulation of SRSF1 reduces the IC50 of cisplatin (DDP) in
both parental and resistant TNBC cells, inhibiting cell viability and
proliferation, decreasing GSH/SLC7A11 levels, and increasing Fe3+/
ROS/MDA/ACSL4 levels, thereby promoting ferroptosis.
SRSF1 binds to circSEPT9, which in turn upregulates GCH1 by
preventing its ubiquitination, thus enhancing GCH1 protein levels.
Overexpression of circSEPT9 and GCH1 suppresses ferroptosis,
ultimately reducing the chemosensitivity of TNBC cells to DDP
(Song et al., 2024).

In conclusion, while research in this field remains in its early
stages, existing studies provide valuable insights into the diagnosis
and treatment of BC, highlighting its significant potential. Further
investigations are needed to explore additional therapeutic
strategies, validate current approaches, and translate promising
diagnostic and therapeutic targets into clinical practice (Table 2).

7 Conclusion

BC remains the leading cause of cancer-related mortality among
women worldwide. Identifying effective treatment strategies and
improving patient recovery rates are of critical importance. Recent
studies have highlighted the pivotal role of ferroptosis in tumor
development, with increased ferroptosis in cells shown to inhibit
tumor progression (Bedoui et al., 2020; Shen et al., 2018).
Furthermore, ncRNAs, including miRNAs, lncRNAs, and
circRNAs, have been implicated in ferroptosis-related biological
processes, influencing cancer growth (Chen Li, 2020).

Based on the treatment mechanisms, targeting ncRNAs
(ncRNAs) plays a crucial regulatory role in cancer progression
and may emerge as a novel therapeutic strategy for combating
BC in the future. There are generally two main approaches for
targeting ncRNAs: the first involves inhibiting the expression of
overexpressed ncRNAs that act on oncogenes, thereby suppressing
tumor progression. The second approach aims to activate or
upregulate ncRNAs that express tumor suppressor genes to
inhibit cancer development.

Despite the potential of ncRNA-based ferroptosis therapy,
several challenges remain. The regulatory network of ferroptosis-
related ncRNAs in cancer treatment and diagnosis is not yet fully
understood. Current therapies targeting tumorigenesis via ncRNA-
mediated ferroptosis have limited efficacy, and individual variability
in ncRNA expression, along with differing responses to treatment,

Frontiers in Cell and Developmental Biology frontiersin.org12

Liu et al. 10.3389/fcell.2024.1506492

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1506492


significantly affects predictability. Further research is required to
balance the promotion of ferroptosis for tumor inhibition with the
prevention of chemotherapy resistance through ncRNA regulation.
While Erastin is a potent ferroptosis inducer, its low solubility and
rapid metabolic degradation remain significant drawbacks
(Larraufie et al., 2015). In terms of diagnosis, the lack of
standardized reference genes for circulating lncRNAs impedes the
development of reliable diagnostic methods for BC. Moreover,
circulating lncRNAs often exhibit low expression levels, making
detection difficult and reducing diagnostic accuracy (Schlosser et al.,
2016). Additionally, the anti-breast cancer mechanisms of
traditional herbal medicine remain poorly understood, and only a
limited number of lncRNA functions have been elucidated.
Identifying potential therapeutic targets for lncRNAs is crucial
for developing more effective treatments. Identifying potential
therapeutic targets for lncRNAs is crucial for developing more
effective treatments (Li et al., 2023). The impact of immune cell
subsets and signaling pathways on immune checkpoint inhibitor
(ICI) treatment responses requires further investigation.
Additionally, the relationship between genetic characteristics,
immune subtypes, and specific mutations, and how these factors
influence treatment outcomes or resistance, needs to be explored. In

addition, further development of ICIs and targeted therapy,
chemotherapy, radiotherapy, or other immunotherapies (such as
new ICIs and chimeric antigen receptor T cells) is needed to more
accurately select appropriate combination therapies (Xie Q. et al.,
2022). Overall, the clinical application of ncRNA regulation in BC
ferroptosis faces significant challenges, including the lack of effective
therapeutic agents and unresolved chemotherapy resistance. The
unclear targets of ncRNA regulation in ferroptosis will be a major
hurdle for clinical implementation.

To address this issue, further investigation is needed into the
encapsulation of ferroptosis-inducing agents within protective delivery
systems, such as nanoparticles (Larraufie et al., 2015). Additionally, to
explore the clinical potential of targeting ferroptosis-related ncRNAs
for BC treatment, it is essential to focus on the molecular mechanisms
linking these ncRNAswith iron and ROSmetabolism. Further research
is also required to understand the relationship between ferroptosis and
other regulated cell death pathways, such as TP53-mediated apoptosis,
as well as their upstream mechanisms. The role of iron-independent
redox processes in ferroptosis must also be explored. Moreover, the
lack of specific markers for identifying ferroptosis in living cells and
intact tissues hinders the precision of ferroptosis-based treatments and
may lead to unwanted side effects. Therefore, identifying specific

TABLE 2 Ferroptosis-related ncRNAs and Their Association with BC.

ncRNA Mechanism Function Reference

miR-5096 Target SLC7A11 Ferroptosis (+) and BC(−) Yadav et al. (2021)

miR-499a-5p Targe TMEM189 Ferroptosis (+) and BC(−) Fan et al. (2023)

miR-128-3p Target SP1 mRNA/CD98hc Ferroptosis (+) and BC(−) de la Ballina et al. (2016), Feral et al. (2005), Yan et al.
(2007)

miR-335-5p Target Sp1/GPX4 Ferroptosis (+) and BC(−) Yin et al. (2024)

miR-382-5p Downregulate SLC7A11 Ferroptosis (+) and BC(−) Sun et al. (2021)

miR-324-3p Target GPX4 Ferroptosis (+) and BC(−) Hou et al. (2021)

LINC01871 IFNG co-expressed Ferroptosis (+) and BC(−) Xu et al. (2021), Mathias et al. (2021)

lncRNA P53RRA Interact with G3BP Ferroptosis (+) and BC(−) Mao et al. (2018)

LncFASA Upregulate the formation of PRDX1 Ferroptosis (+) and BC(−) Fan et al. (2024)

lncRNA HCP5 Target Xc-/GSH/GPX4 Ferroptosis (−) and TNBC(+) Tong et al. (2023)

LINC00460 Target miR-320a/MAL2 Ferroptosis (−) and BC(+) Zhang et al. (2023b)

LINC00152 Target PDE4D/cAMP/Ca2+ Ferroptosis (−) and BC(+) Pedrera et al. (2021), Saatci et al. (2023)

lncRNADSCAM-AS1 Upregulate SLC7A11 Ferroptosis (−) and BC(+) Yan et al. (2024)

LncRNA RUNX1-IT1
LncRNA H19
CircGFRA1

Upregulate GPX4 promote autophagy
Target miR-1228/AIFM2

Ferroptosis (−) and BC(+)
Ferroptosis (−) and BC(+)
Ferroptosis (−) and BC(+)

Wang H. H. et al. (2023b)
Chen et al. (2022b)
Bazhabayi et al. (2021)

CircRHOT1 circ-
BGN

Target miR-106a-5p/STAT3
Enhancing OTUB1-mediated SLC7A11

Ferroptosis (−) and BC(+)
Ferroptosis (−) and HER2-
positive BC(+)

Banerjee and Resat (2016)
Wang S. et al. (2022)

circ_0000643 Target FOXQ1/circ_0000643/miR-153/
SLC7A11

Ferroptosis (−) and BC(+) Huang X. et al. (2023)

SRSF1 Downregulate GSH/SLC7A11
Upregulate Fe3+/ROS/MDA/ACSL4

Ferroptosis (+) and BC(−) Song et al. (2024)

circSEPT9 Upregulate GCH1 Ferroptosis (−) and TNBC(+) Song et al. (2024)

+means promoting, − means inhibiting.
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markers to detect ferroptosis in vivo is crucial. For instance, a
comprehensive analysis of PLK using databases like Oncomine,
GEPIA, cBioPortal, and Kaplan-Meier plots revealed that PLK1 and
PLK4 are potential targets for precision treatment in BC, while PLK2,
PLK3, and PLK5may serve as new prognostic biomarkers (Jiawei et al.,
2022). Furthermore, studying the ncRNA network in cancer is
essential, as dysregulation of this network can inhibit ferroptosis
and promote tumor cell survival and progression. Enhancing the
detection of circulating lncRNAs and improving diagnostic
accuracy remains a key research direction (Schlosser et al., 2016).
In addition, some drugs have been shown to regulate ncRNA
expression, thereby influencing ferroptosis and exhibiting anti-
cancer effects. Hence, identifying and targeting specific ncRNAs
while minimizing side effects is an important area for future
research. For example, Circ_0069094 enhances the sensitivity of
paclitaxel (PTX) in BC by targeting and silencing the miR-136-5p/
YWHAZ axis, thus regulating the malignant phenotype and paclitaxel
resistance of BC cells (Kong et al., 2023). Traditional herbal medicines,
along with their active ingredients and molecular mechanisms, can be
identified using public databases. This approach provides a scientific
foundation for the prevention and treatment of BC using traditional
Chinese medicine. For example, Ecliptae Herba, known for its anti-
tumor properties, has been shown through network pharmacology and
cytology experiments that TGF-β1 may be a key therapeutic target,
with the TGF-β1/Smad signaling pathway playing a critical role (Li
et al., 2023). Moreover, nomograms or predictive models for
pathologic complete response (pCR) or tumor size reduction could
help identify patients likely to benefit from neoadjuvant chemotherapy
(NAC) for TNBC, enabling personalized treatment strategies (Yan
et al., 2020). Overall, ncRNAs hold significant potential as risk genes,
diagnostic markers, prognostic indicators, nanoparticle cargos, and
therapeutic targets for BC. Understanding the functions of ncRNAs in
future studies may enhance our understanding of breast cancer’s
pathogenesis and lead to more efficient, rapid, and precise
diagnostic and therapeutic approaches.
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