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N-glycosylation plays a crucial role in defining the pharmacological properties and
efficacy of therapeutic proteins, commonly referred to as biologics. The inherent
complexity and lack of a templated process in glycosylation leads to a wide
variation in glycan structures, posing significant challenges in achieving
consistent glycan profiles on biologics. This study leverages omics technologies
to predict which cell lines are likely to yield optimal glycosylation profiles, based on
the existing knowledge of the functional impact of specific glycan structures on the
pharmacokinetics, immunogenicity, and stability of therapeutic antibodies. The
study highlights that bulk RNA-sequencing data holds predictive power for
glycosylation outcomes in of monoclonal antibodies (mAbs). For instance,
Alg5 is identified to be predictive, before beginning a mAb production run, of
mAbs bearing higher levels of Man5. This is inferred to increase glycosylation site
occupancy on endogenous proteins, thereby intensifying competition for
glycosylation enzymes in the Golgi and indirectly influencing mAb glycan
processing. Additionally, the elevation of the UDP-Gal transporter in cell lines
expressing mAbs with a single galactose residue is also observed intranscriptomic
data prior to beginning a production run. These findings suggest that early-stage
transcriptomics can aid in the streamlined development of cell lines by enabling
pre-emptive adjustments to enhance glycosylation. The study also underscores
thatwhile transcriptomic data can predict certain glycosylation trends,more crucial
factors affecting glycan profiles, such as enzyme localization within the Golgi
apparatus and endogenous competition for glycosylation machinery, are not
captured within the transcriptomic data. These findings suggest that while
transcriptomics provides valuable insights, enzyme localization and intracellular
dynamics are critical determinants of glycosylation outcomes. Our study starts to
address the relevant mechanisms essential for improving cell line development
strategies and achieving consistent glycosylation in biologics production.
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Introduction

Cell line development (CLD) is a pivotal step in biopharmaceutical manufacturing,
focused on developing and identifying a single, high-producing clone from a large pool of
candidates. This process is essential for generating stable cell lines that consistently express
therapeutic monoclonal antibodies (mAbs) at high levels, meeting all necessary quality and
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regulatory standards. The selection and optimisation of the cell line
involves rigorous screening, process development, and scaling to
ensure production of clinical grade material suitable for therapeutic
use (Munro et al., 2017). One aspect of the screening process is
ensuring that critical quality attributes of the mAbs, such as
glycosylation status, meet stringent criteria (Sha et al., 2016).

Glycosylation is a crucial post-translational modification of IgG
antibodies produced by mammalian cells, such as the Chinese
hamster ovary (CHO) cell lines commonly used in
biopharmaceutical production (Li et al., 2010). Specifically, IgG1

molecules contain a single conserved N-linked glycan at
Asn297 decorating each of the two heavy chains. During N-
glycan synthesis, various sugar moieties can be added, resulting
in the formation of varied glycan structures, such as Man5, G0-GN,
G0, G0F, G1F among others (Figure 1).

The co-existence of these structures in the final IgG preparation
yields a heterogenous mixture of glycoforms, each of which can
differently impact the efficacy, stability, and immunogenicity of
mAbs. They do this by modulating the binding affinity of the IgG to
Fcγ receptors which in turn influences different antibody related
functions including complement-dependent cytotoxicity (CDC) and
antibody-dependent cell-mediated cytotoxicity (ADCC) (Jefferis,
2009). Glycoform distributions during mAb production can be
influenced by both glycosylation engineering and cell culture
conditions (Serrato et al., 2007; Nettleship et al., 2009; Sou et al.,
2017). Importantly, glycan structures attached to the mAbs are
determined by the expression and arrangement of glycosylation
machinery components within the host cell line (Fisher et al.,

2019b). Controlling glycosylation during CLD is therefore
essential, as particular glycoforms may be necessary to achieve
optimal therapeutic efficacy whilst other glycoforms may need to
be minimized or eliminated to ensure drug safety.

Known control mechanisms such as the expression, regulation,
and intracellular localisation of N-glycosylation enzymes and sugar
nucleotide transporters, play a significant role in shaping the glycan
profiles observed in mAbs. A summary of N-glycosylation enzymes
relevant for this study can be found in Supplementary Table 1.
N-glycosylation, in particular, is initiated in the cytosol, with
precursor glycan structures assembled onto the ER membrane
before being transferred to the nascent protein in the lumen of
the endoplasmic reticulum (ER). Subsequently, glycosylation
enzymes, such as glycosyltransferases and glycosidases, are
responsible for the sequential trimming and addition of sugar
moieties as the glycan structures traverse the ER and Golgi
apparatus (Figure 1). Within the Golgi lumen, the spatial
organisation of these enzymes, particularly within distinct Golgi
cisternae, directly influences the glycan composition of secreted
mAbs (Ferrara et al., 2006). For instance, the compartmentalisation
of glycosyltransferases within different cisternae determines the
accessibility of glycans to specific enzymes, thereby affecting the
maturation and complexity of the N-glycan structures. Additionally,
the dynamic expression levels of these enzymes, as well as the
availability of nucleotide sugar donors influenced by the activity
of specific sugar nucleotide transporters in the Golgi membrane,
further add layers of complexity to the N-glycosylation process. This
regulation is mediated by various cellular pathways, including

FIGURE 1
Glycan processing during lipid-linked oligosaccharide synthesis and post transfer to protein. Enzyme abbreviations: mannosidase I (Man1),
mannosidase II (Man2), fucosyltransferase 8 (Fut88), N-acetylglucosaminyltransferases I-V (Mgat1-5), galactosyltransferases (GalT), sialyltransferases
(SiaT), lipid-linked oligosaccharide (LLO). The glycans which will be discussed in this work have been boxed in red and their used nomenclature indicated.
Of note: Key enzymes for this work are highlighted in red, while thosemarked with an asterisk also participate in O-glycan and glycolipid processing,
competing for enzyme activity.
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transcriptional and post-transcriptional mechanisms that control
the expression of genes encoding these enzymes. Variations in the
expression of N-glycosylation related genes can lead to significant
heterogeneity in glycan profiles, which in turn impacts the biological
activity and therapeutic efficacy of mAbs.

Given the complexity of N-glycosylation, the challenge lies in
identifying the genetic and cellular determinants that drive the
production of desired glycoforms. One promising approach is to
leverage high-throughput transcriptomic analyses to identify cell
lines with more favourable glycan profiles. Transcriptomics provides
a comprehensive overview of gene expression patterns, offering the
potential to pinpoint key regulatory genes involved in glycan
biosynthesis and processing. By correlating gene expression data
with glycan profiles, it may be possible to predict genetic
determinants that influence the glycosylation outcomes of mAbs.
This study aims to explore the relationship between gene expression
and glycosylation patterns in mAb production, with the goal of
identifying key genetic factors that contribute to desirable glycan
profiles. By leveraging a multiomics approach and computational
modelling, we seek to identify the regulatory mechanisms that
underpin glycan processing and optimise the production of
therapeutic mAbs. Understanding these interactions will not only
enhance the quality of biopharmaceuticals but also provide valuable
insights into the fundamental biology underpinning the
glycosylation of mAbs.

Methods

Dataset generation

To generate the datasets used in this study, clonal antibody-
producing cell lines were cultivated using GSK’s proprietary
platform process within the ambr®15 miniature bioreactor
system. Four different mAbs were considered in this study. Cell
samples were collected at key time points during fed-batch
production runs, specifically days 0, 6, and 10. Transcriptomic
analysis was conducted using bulk RNA sequencing, with RNA
counts generated against the Ensembl genome (CriGri_1,
GeneModelVersion: 104). For glycan profiling, N-glycan analysis
was performed using capillary electrophoresis on the GlycanAssure
instrument, following the manufacturer’s protocol for glycan release
and labelling.

Multiomic approach for examining
relationship between transcription and
glycosylation

Experiments were analysed in R (version 4.3.1). Principal
component analysis and k-means clustering were completed
using the package stats (version 4.3.0) with visualisation of elbow
plots requiring the library factoextra (version 1.0.7). The package
mixOmics (version 6.24.0) (Rohart et al., 2017) was used to identify
predictive genes within clusters. A k-fold cross-validation approach
was employed to evaluate the predictive performance of multiomic
data integration. Specifically, 10-fold cross-validation was used,
splitting the dataset into training and testing subsets for each

fold. For each fold, datasets for day 0, day 6, and day
10 transcriptomics and glycan profiling were split into training
and testing sets. Sparse Partial Least Squares (sPLS) models were
generated for each pair of time points (day 0 vs. day 6, day 0 vs. day
10, day 6 vs. day 10), and correlations between the components were
calculated to inform the design of the matrices.

A block-sPLS-DA model was then built using the “block.splsda”
function from the mixOmics package, with the design matrix
specifying the relationships between the datasets. The number of
components was optimised using 10-fold cross-validation with the
‘perf’ function, and the optimal number of features to retain for each
dataset was determined using the “tune.block.splsda” function. The
final model was trained with the optimal parameters, and
predictions were made on the test sets.

The performance of the model was evaluated using the function
“auc” on the final models and the function “plotLoadings” allowed
for visualisation of the most influential genes within each cluster.

Computational modelling of glycan
processing

A custom computational model developed using Java was
previously described (Fisher et al., 2019b; West et al., 2022).
Briefly, the model combines the simulation of glycan processing
via a Gillespie algorithm based stochastic simulation algorithm
(SSA) with iterative parameter adjustment of the used
glycosylation reactions via approximate Bayesian computation
(ABC) to match experimental data.

The SSA processes 10,000 input glycans through simulated
cisternae to generate a glycan profile. The summary statistic used
to compare empirical to simulated glycan profiles was calculated
using the square difference method, which emphasises dominant
glycan species in the profile, at each evaluation of the MCMC chain
in the ABC approach.

High performance computing was used to run 30 parallel fitting
procedures. The Gelman-Rubin R statistic (Gelman and Rubin,
1992) and Mann-Whitney U tests were used to assess the
similarity of the parallel runs and the significance of shifts in
parameter distributions, respectively.

Results

In this study, we aimed to identify glycosylation-related genes that
could serve as predictive markers during CLD for identifying cell lines
with the potential to produce mAbs displaying more favourable
glycan profiles. Our analysis started with bulk RNA-seq data
encompassing the expression levels of 12,935 genes across
53 samples, with each sample measured twice. The sample is
representative of 3 distinct time points within the 15 days mAb
production process, at which transcriptomic analysis was completed:
the cell line at the start of the production run (henceforth referred to as
day 0), day 6, and day 10. Each sample is associatedwith amAb glycan
profile that was collected on day 15, meaning that there is one glycan
profile associated with the 3 separate RNA-seq data sets (Figure 2).
The full set of data can be separated into two distinct projects, each
focusing on a different mAb.
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Principal component analysis (PCA), conducted on the entire
dataset, revealed distinct clustering of samples according to the
project of origin, indicating that the variance in N-glycan
composition was primarily driven by the specific mAb being
produced (Figure 3). Given this clear separation, we opted to
analyse the two projects independently to ensure that the
relationship between gene expression and glycosylation patterns
was fully explored within the context of each unique mAb.

To investigate intra-project differences in glycan profiles, we
applied k-means clustering to the N-glycan data from each project.
This approach allowed us to categorise the samples into distinct
clusters based on their glycosylation patterns, of which one cluster
could be more favourable in terms of mAb therapeutic efficacy, as
explained below. In project A, the data was best separated into two
clusters, while project B required three clusters to achieve a
meaningful division (Figure 4i). Overlaying the assigned clusters
onto a PCA plot of the glycan profiles for each respective project
(Figure 4ii) showed that in project A the two clusters were clearly
distinguished, with the separation predominantly driven by the
abundance of either Man5 or G0F glycan structures. This
observation was supported by the PCA loadings, which
highlighted these glycans as key contributors to the variance
between clusters, and further confirmed by the quantified glycan
profile distributions (Figure 4iii). Between these two clusters the G0F
cluster is considered the more favourable therapeutic entity due to
enhanced clearance of Man5 containing mAbs (Schlesinger
et al., 1978).

For project B, the three distinct clusters were characterised by
the abundance of G0, G0F, and G1F glycans (Figure 4ii, 4iii). The
G1F cluster is likely the most advantageous, primarily due to the
presence of the terminal galactose residue. This galactose residue has
been shown to influence key effector functions of mAbs, including
enhanced binding to C1q and Fcγ receptors, which in turn boosts
complement-dependent cytotoxicity (CDC) and Fcγ receptor
activation. Furthermore, G1F glycans contribute to structural
stability of the CH2 domain of antibodies, which is crucial for
optimal interaction with immune effector molecules (Aoyama et al.,
2019). These properties suggest that the G1F cluster in project B may
lead to mAbs with superior therapeutic efficacy.

To assess the predictiveness of specific glycosylation-related
genes in determining the cluster assignments within each project,

we employed mixOmics for multivariate analysis of the RNA-seq
data. This analysis focused specifically on genes related to
glycosylation to refine our understanding of how these genes
contribute to the observed glycan profiles. The analysis was
narrowed to relevant genes by compiling a list of 184 glycogenes
through a comprehensive literature search (Togayachi et al., 2008).
From this initial list, we further refined our focus to 76 genes that are
relevant to N-linked glycosylation. Using transcriptomic changes in
this curated set of 76 genes, we tested their ability to predict cluster
assignments within each project using mixOmics. Robustness of the
predictive effects was ensured by performing 10-fold cross validation
on the project-specific datasets. The data was partitioned into ten
sets, where 9 were used for training the model, and the remaining set
was used for testing. This process was repeated such that each of the
10 sets served as the test dataset at least once. Genes were considered
to have strong predictive power if they were consistently selected in
7 or more of the 10 cross-validation iterations.

FIGURE 2
Schematic timeline of mAb production highlighting when sampling was completed.

FIGURE 3
Variance between glycan profiles is predominantly as a result of
the project from which the sample originates. Principal component
analysis of glycans displayed on the mAbs collected on day 15 of
production runs. Each data point corresponds to a single glycan
profile, and the samples are coloured by project. n = 53.
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After completing the 10-fold cross validation, we evaluated the
models’ performance using receiver operating characteristic (ROC)
curves, which were generated for each of the three sampling days to
visualise the discriminative ability of the models. The area under the
ROC curve (AUC) was calculated to quantify the accuracy of the
classifiers in distinguishing between the different clusters, with an
AUC of 1 signifying optimal distinguishing power and a score of
0.5 indicating performance equivalent to random change
(Figure 5I). Across both project A and project B, the models
generally performed well, with AUC values consistently above
0.5, indicating that they were better than random at
distinguishing between the clusters.

However, it is important to note that not all time points
performed equally well. In project A, for example, the classifier at
day 6 showed a noticeably lower performance compared to day

0 and day 10. This reduced performance at day 6 could be attributed
to a high level of intercorrelation between genes at this time point,
potentially complicating the model’s ability to accurately
differentiate between clusters (Supplementary Figure S1ii). The
best predictive power, for project A, was observed at day 0,
where the classifier achieved an average AUC value of 0.97. This
may have significant implications for CLD, as RNA analysis of a cell
line may have predictive power for an optimised glycan profile
without the need for a production run.

In contrast, for project B, the AUC values across the three time
points were more closely aligned, indicating that the model’s ability
to distinguish between clusters remained relatively consistent over
time. However, when examining the performance across different
clusters, the model was most effective at distinguishing the G1F
cluster, as indicated by higher AUC values.

FIGURE 4
Subdivision of the projects into clusters with different glycoforms using k-means clustering. i) Elbow plots displaying the variance explained as a
function of the number of clusters in the data. ii) PCA plot showing the clusters and the different loadings which are prominent within that cluster. iii)
Glycan profiles of the clusters depicted in part ‘ii’. WCSS = Within cluster sum of squares.
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In project A, a total of 33 genes were identified as being
predictive of cluster assignments across the three time points
(Figure 5ii). z Specifically, 9 genes were predictive at day 0,
21 genes at day 6, and 3 genes at day 10. Given the
comparatively lower performance of the model at day 6, the
genes identified at this time point were excluded from further
evaluation, though they are detailed in Supplementary Figure S2.
A corroborative finding in project A is the elevation of
Man2a1 levels in the G0F cluster compared to the
Man5 cluster. This observation aligns with the known
biochemical pathways of glycosylation, where elevated levels of
mannosidase II promote the conversion of intermediate glycans
(i.e., Man5) into more complex structures, such as G0F. Two
different isomers of the earlier acting mannosidase, mannosidase
I, showed distinct patterns between the two clusters: Man1c1 was
elevated in the G0F cluster, while Man1a was more prevalent in
the Man5 cluster. The two isomers act onMan9 glycan precursors
by trimming terminal mannose residues until Man5 is formed.
The elevated levels of Man1c1 in the G0F cluster are logical, as the
faster this trimming occurs, the more time there is for Man5 to be
further processed by other enzymes into more complex glycans.
Conversely, the elevation of Man1a within the Man5 cluster is
unexpected and does not align with the anticipated glycosylation
pathway. However, given that Man1a has the smallest
contribution to the Man5 component, its influence might be
minimal and is currently not a primary focus for analysis.
Similarly, the involvement of Mgat5, which is involved in the
branching of glycans to make tri- and tetra-antennary glycans,
does not have a clear biological explanation in this context.

Alg5, which is involved in synthesis of the oligosaccharide donor
used for initiation of N-glycan biosynthesis in the ER, does not
directly influence glycan processing in the Golgi, and thereby the
ratio of different glycoforms (Heesen et al., 1994). Instead, Alg5 will
affect the occupancy of glycosylation sites on a range of endogenous
proteins within the cell. Increased expression of Alg5 leads to greater
site occupancy (Gallo et al., 2022), which in turn increases the
competition for glycan processing enzymes in the Golgi, potentially
reducing glycan processing on the mAb, thus increasing the
proportion of Man5.

In project B (Figure 5ii), several genes associated with the early
stages of glycosylation, prior to the action of oligosaccharide transfer
to the protein, exhibit elevated levels in the G0 and G0F clusters.
These genes, including Dpm1, Alg11, Alg8, and Alg5, are likely
contributing to the same effect observed in the Man5 cluster of
project A. Higher expression of these genes increases site occupancy
on host proteins and thereby competition for the Golgi glycan
processing machinery. This may result in the mAb glycans not
being processed to their full potential, leading to less complex glycan
structures.

The presence of sialyltransferases (St3gal1 and St6gal2) in the
G1F cluster could be another indication of competition. Elevated
levels of these sialyltransferases may increase their competition with
galactosyltransferases for host protein substrates (mAbs are
generally not sialylated). This competition could free up
galactosyltransferases for the modification of mAb glycans within
the G1F cluster, thereby enhancing the galactosylation of these
glycans. Finally, increased expression of the UDP-Gal transporter
(UDP-Gal T) in the G1F cluster is consistent with our

FIGURE 5
Evaluation and visualization of the final mixOmics models and the genes responsible for predictiveness. i) Area Under the Curve (AUC) plots
illustrating the performance of the mixOmics models for predicting glycan profiles. Each plot displays the model’s discriminative ability across different
clusters, with higher AUC values indicating better predictive performance ii) Bar plots showing the genes contributing to the model’s predictiveness. The
bars represent genes that are elevated in the cluster shown above each plot. The length of each bar corresponds to the gene’s absolute contribution
to the prediction, highlighting their relative importance in the model. See Figure 1 for the definition of LLO synthesis.
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understanding of glycosylation: increased transport of galactose into
the Golgi apparatus would provide more substrate for the
galactosylation, thus promoting the formation of G1F glycan
structures. It is interesting to note though that UDP-Gal T levels
are predictive before the start of mAb production on day 0.

To verify the mechanistic interpretations behind these
mixOmics predictions, a stochastic simulation of glycosylation
was performed, coupled with approximate Bayesian computation
(ABC) fitting to assess changes in levels and localisations of key
N-glycan processing enzymes across the Golgi apparatus in the
different project A and B clusters (Figure 6).

The only significant difference predicted by the computation
between the Man5 and the G0F clusters in project A was a reduction
in N-acetylglucosaminyltransferase 1 (Mgat1) levels. This reduction
in Mgat1 fits well with the observed glycan profile clustering, as
lower Mgat1 levels would decrease the conversion of Man5 to more
complex glycans. However, it is important to note that this change in
Mgat1 expression was not captured by the mixOmics analysis, likely
due to the RNA-seq data showing only a slight difference in
Mgat1 expression between the clusters (with mean values of
11.5 in the G0F cluster and 12.2 in the Man5 cluster). This
suggests that the predicted reduction in Mgat1 activity may not
be solely due to differences in RNA expression. The discrepancy
between RNA levels and the predicted enzyme activity could be due
to several factors. For example, the same RNA levels may lead to
varying amounts of Mgat1 protein due to differences in translation
efficiency, post-translational modifications, or other Golgi-related
factors, such as enzyme localization or substrate availability.
Although a change in Mgat1 expression was not picked up by
the mixOmics analysis, the decrease in Man2a1 (the immediate next

enzyme after Mgat1 in N-glycan processing) in the Man5 cluster
could represent the same biological effect.

In project B, there are three key comparisons to be made:
between the G0 and G0F clusters, the G0 and G1F clusters, and
the G0F and G1F clusters. The simulation revealed a consistent
reduction in both Mgat1 and Fut8 levels in the G0 cluster compared
to the G0F and G1F clusters. The reduction in Mgat1 likely serves to
decrease the flux that drives the conversion of G0 glycans, resulting
in their retention. The reduction in Fut8 is an obvious prediction
that would lead to fewer fucosylated glycans, as observed in
the G0 cluster.

The primary difference between the G0F and G1F cluster is, as
expected, in the level of galactosylation. The G1F cluster shows
higher levels of galactosyltransferase (GalT) compared to the G0F
cluster, which is consistent with what is expected. Furthermore, this
could be captured in the mixOmics analysis by the increase in the
UDP-Gal T as predicted in Figure 4. As the SSA/ABC model only
captures overall enzymatic activity, other factors such as substrate
availability are subsumed within the activity value. As such, the
increased galactosylation activity could be capturing the predicted
increase in galactose residues.

Interestingly, the simulation predicted an increase in
Mgat1 levels in the G0F cluster compared to the G1F cluster.
This increase is coupled with the added complexity that the flux
data suggest Mgat1 action to occur earlier in the Golgi with a
reduction in activity in later cisternae. On the surface, this pattern
seems counterintuitive, as one might expect that increased early flux
would allow more time for subsequent galactosylation to occur.
However, a deeper look into the role of fucosylation provides a
plausible explanation.

FIGURE 6
SSA/ABCmodel predictions illustrating the necessary glycosylation gene changes for achieving different glycan profiles. i) Gene expression changes
required to model one cluster’s glycan profile relative to another, for both Project A and Project B. Each plot shows the predicted alterations in
glycosylation gene expression needed to shift from one glycan cluster to another, highlighting specific genes and their relative changes ii) Localization of
Mgat1 flux in Project B. The plot visualizes the predicted spatial distribution of Mgat1 activity within the Golgi apparatus.
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Fucosylation can compete with galactosylation and can inhibit it
when both processes target the same glycan. In the G0F cluster, the
observed shift of Mgat1 activity to an earlier stage may be a
compensatory mechanism to facilitate fucosylation in the absence
of significant competition. By enabling Mgat1 to act earlier, the
glycan structure is primed for fucosylation sooner, maintaining the
window of opportunity for galactosylation to occur later in the
Golgi. However, it’s important to include a disclaimer here.
Fut8 operates at a slower rate compared to other glycosylation
enzymes. This slower reaction rate needed to be accurately
represented in the simulation, but since enzyme activity and
concentration are intertwined in our model, a workaround was
implemented. We introduced an artificial enzymatic process,
equivalent to a hidden Markov state that temporarily restricts
access to the glycan until fucosylation is complete. While this
approach successfully decouples fucosylation’s slow rate from
other reactions, it also introduces a potential artefact where
unprocessed glycans may be retained across the Golgi longer
than expected, resulting in fewer overall modifications.

While the simulation suggests that Mgat1 acts earlier in the G0F
cluster to facilitate fucosylation and limit galactosylation, this result
should be interpreted cautiously. The key takeaway is that
fucosylation is likely competing with galactosylation. This
dynamic helps to explain the less elaborated glycan structures
observed in the G0F cluster. The interaction between fucosylation
and galactosylation, rather than Mgat1 alone, is likely driving these
differences.

Discussion

Our study identified glycosylation related genes as predictive
markers for cell lines that produce mAbs with favourable glycan
profiles. By correlating gene expression patterns with glycan profiles,
we provided insights into potential genetic determinants of glycan
heterogeneity. However, our findings also highlight a critical
limitation: the link between transcriptomic data and glycosylation
outcomes is not a straightforward relationship.

The predictive relationship between transcriptomics and
glycomics observed in our study aligns with findings from
previous research, such as the work by Nairn et al. (2012). Their
study revealed correlations between transcript expression and glycan
abundance in various animal tissues, suggesting that transcript levels
of glycosylation related genes could influence the overall glycan profile
(Nairn et al., 2012). In our study, we similarly observed that distinct
clusters of glycan profiles could be predicted from transcriptomic
data. However, as Nairn et al. noted, not all glycan structures
correspond directly to transcript levels of the biosynthetic enzymes
responsible for their production. This implies that other regulatory
mechanisms are also at play. This is particularly obvious when we
examine the insights gained from the SSA/ABC modelling. One key
finding was the role of Mgat1 in determining the differences between
favourable and unfavourable glycan profiles. The modelling
demonstrated that it was not just the activity level of Mgat1, which
may be influenced by transcriptomic levels, but rather it’s localisation
across the Golgi cisternae that played a pivotal role in influencing
glycan profiles (Bailey Blackburn et al., 2016; Fisher et al., 2019a). This
observation emphasises the importance of considering enzyme

localisation, something which cannot currently be predicted from
transcriptomic data. It may be possible to gain further mechanistic
insight with a larger set of genes which also includes trafficking
machinery, but this is currently unavailable and certainly beyond the
scope of this study.

Our study has identified differential responses at the protein-
specific level which are consistent with the hierarchical nature of
N-glycosylation described by Arigoni-Affolter et al. (2024). While
cellular N-glycome changes could be correlated with glycosylation
enzyme expression, individual mAbs exhibited unique glycosylation
patterns that were likely influenced in concert by their specific protein
structure with the local glycosylation environment. This is another
level of specificity that cannot be captured by the transcriptomic data
and is currently also very hard to model using the SSA/ABC model.
Importantly, in the case of therapeutic mAbs the well-known site-
specific processing of the attached N-glycans is significantly different
from the “average” endogenous processing requirements in the Golgi
(Rudd and Dwek, 1997). Therefore, changes in endogenous glycan
processing reactions that would normally not act on mAbs can have
unforeseen consequences on mAb glycan processing due to altered
competition with enzymes that do act on mAbs.

Moreover, despite the strong correlations and predictiveness
observed between transcriptomics and glycan profiles, several caveats
must be considered. A major limitation of using transcriptomic data to
predict glycan outcomes is the realisation that changes in mRNA levels
do not always translate directly into changes in protein levels. Protein
levels within the cell are governed by a balance of synthesis and
degradation processes, with transcriptomics only capturing the first
half of this lifecycle (Liu et al., 2016). This disconnect may lead to
discrepancies between predicted and actual glycosylation patterns, as
enzyme activity, and not solely protein abundance, is influenced by
factors such as intracellular localisation within the Golgi cisternae and
post-translational modifications. Additionally, enzyme interactions,
relative abundances, and substrate competition play critical roles in
determining flux through various branches of the N-glycosylation
pathway. For instance, while our analyses focus on N-glycosylation,
it is worth noting that key substrates, like UDP-Gal, are involved in
multiple glycosylation pathways, including O-glycosylation and
glycolipid synthesis. The production of a single protein at high
levels, such as when producing a therapeutic mAb, may alter
cellular physiology and impact flux through these other
glycosylation pathways. The inherent complexity and
interdependence of the processes present challenges in predicting
glycan outcomes based solely on transcriptomic data. However,
despite these challenges, the insights gained from our analyses lay
the groundwork for more refined predictive models.

Nonetheless, the findings from our study could have significant
implications for CLD, particularly in optimising cell lines early on in
the production timeline. A noteworthy observation from project A
was that the highest predictive power was achieved prior to beginning
the production run. This early time point’s strong predictive capability
suggests that critical determinants of glycan heterogeneity may be
established early in the culture process. For CLD, this means that early
transcriptomic profiling could be a powerful tool for selecting cell lines
likely to yield desirable glycosylation patterns later in the production
process. In particular, higher levels of Alg5 and the UDP-Gal
transporter in candidate cell lines are indicative of being able to
produce mAbs with higher therapeutic efficacy.
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One of the key genes identified at this early time point was Alg5.
Although Alg5 does not directly influence glycan processing in the
Golgi apparatus, it’s prominent influence on glycosylation could result
from its ability to increase occupation of glycosylation sites on a range
of endogenous proteins within the cell (Gallo et al., 2022). This
increased site occupancy can create competition for glycan
processing enzymes in the Golgi, thereby reducing the processing
of glycans on mAbs. For CLD, this suggests that monitoring and
modulating Alg5 expression early in the cell culture process could be
critical in controlling the glycan profile of mAbs. Specifically, limiting
Alg5 expression might reduce competition for glycosylation enzymes,
thereby enhancing the processing of mAb glycans into more complex
and therapeutically favourable forms.

In addition to Alg5, UDP-Gal T also emerged as a significant
predictive marker in project B. Specifically, UDP-Gal T was notably
predictive for the G1F cluster prior to beginning the production run.
High expression of UDP-Gal T facilitates the addition of galactose,
which is essential for generating more G1F glycans. Therefore,
monitoring and optimising UDP-Gal T expression early in the
culture process could further improve glycan profiles by
promoting the formation of complex, galactosylated glycans that
are advantageous for therapeutic efficacy.

Future work should focus on integrating proteomic data in
addition to the transcriptomics used here to provide a more
comprehensive view of factors influencing glycan heterogeneity.
Additionally, exploring the subcellular localisation of glycosylation
enzymes and their interactions with specific glycoproteins could offer
deeper insights into the mechanisms driving glycosylation patterns.
Understanding these processes will not only enhance the production
of therapeutic mAbs with desirable glycan profiles but also contribute
to the broader field of glycoscience, providing valuable knowledge on
the regulation of protein glycosylation in eukaryotic cells.
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