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Tooth eruption as a crucial part in tooth development and regeneration is
accompanied by ongoing osteogenesis and osteoclast activity. The dental
follicle (DF) surrounding the developing tooth harbors dental follicle stem cells
(DFSCs) which play a crucial role in maintaining bone remodeling. However, the
mechanisms throughwhich they regulate the balance between osteogenesis and
osteoclast activity during tooth eruption remain poorly understood. Notably,
extracellular vesicles (EVs) in bone homeostasis are considered essential. Our
study revealed that the DFSCs could modulate tooth eruption by inhibiting
osteoclast differentiation via EVs. Further investigation showed that EVs from
DFSCs could inhibit osteoclast differentiation through the ANXA1-PPARγ-CEBPα
pathway. Animal experiments indicated that EVs from DFSCs and the cargo
ANXA1 affected tooth eruption. In summary, this study suggests the critical
role of the dental follicle in tooth eruption through EVs, which may provide
therapeutic targets for abnormal tooth eruption and effective approaches for the
eruption of regenerated teeth.
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1 Introduction

Tooth eruption refers to the movement of a tooth from its developmental position
through the bone and overlying soft tissues to its functional position in the oral cavity, which is
a critical stage in tooth development (Takahashi et al., 2019). Eruption disorders can lead to
dental crowding and misalignment, severely impairing the oral function and facial aesthetics
of patient (Yamaguchi et al., 2022). Congenital syndromes with abnormal tooth eruption, such
as cleidocranial dysplasia and primary failure of eruption, remain poorly understood in terms
of pathogenic mechanisms and treatment strategies (Li et al., 2024). Therefore, clarifying the
regulatory mechanisms of tooth eruption is of great significance for preventing abnormal
tooth eruption and promoting the molecular dentistry of the future.

Tooth eruption entails intricate interactions between the tooth and its surrounding
tissues temporally and spatially (Richman, 2019). Among them, the dental follicle tissue,
which surrounds the enamel organ and dental papilla, plays an indispensable role in the
process of tooth eruption (Chai et al., 2000). Numerous studies have shown that during the
intraosseous eruption phase of teeth, the dental follicle exhibits spatiotemporal differences
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in its regulatory effects on the crown and root (Zeng et al., 2022).
Specifically, the root DFSCs can differentiate into osteoblasts under
certain conditions, serving as the driving force for tooth eruption,
and later forming cementum, periodontal ligament, and the alveolar
bone (Morsczeck, 2022). In contrast, the crown dental follicle can
recruit monocytes/osteoclast precursors and induce their
differentiation into osteoclasts, promoting bone resorption and
establishing a pathway for tooth eruption (Bi et al., 2021).
However, excessive activity of osteoclasts can lead to abnormal
tooth eruption, making it crucial to maintain dynamic balance,
the maintenance of which is still not fully understood.

In recent years, extracellular vesicles (EVs) have gained increasing
attention as novel mediators involved in bone biological signal
transduction, playing a crucial role in bone homeostasis (Liu et al.,
2018; Deng et al., 2015). Studies have elucidated the mechanism
underlying osteoclast differentiation mediated by EVs among
osteoblasts, monocytes-macrophages, and osteoclasts (Huang et al.,
2022; Ren et al., 2022). EVs derived from osteoblasts can release
RANKL that promote the differentiation of immature osteoclasts into
mature osteoclasts (Kobayashi-Sun et al., 2020). However, the role of
EVs in tooth eruption remains to be further investigated.

In this study, we demonstrated that EVs derived from dental
follicle stem cell (DFSC-EVs) inhibit osteoclast differentiation,
thereby regulating the balance of osteoclast during the tooth
eruption to ensure normal eruption of tooth. By further
elucidating the role of dental follicle tissue in tooth eruption and
the regulatory mechanisms, we provide novel theoretical insights into
the pathogenesis and treatment of abnormal tooth eruption disorders.

2 Methods and materials

2.1 Cell isolation and culture

All procedures in the present study were approved by the Ethics
Committee of the Institutional Review Board of College of Medicine,
Xi’an Jiaotong University (No. KY-GXB-20240001). DFSCs were
obtained from dental follicle tissues. Briefly, dental follicle tissues
were isolated from an embedded third molar after extraction and
incubated in a solution of collagenase type I (Sigma, United States)
and Dispase (Roche, CH). Acquired tissues were centrifugated and
cultured in α-MEM (Gibco, United States) containing 20%EV-depleted
FBS (Procell, CHN) and 1% penicillin-streptomycin (Solarbio, CHN).

RAW264.7 were purchased from Zhongzhouxinqiao Bio-Tech
(Shanghai, CHN) and cultured in DMEM (Gibco, United States),
supplemented with 10% FBS and 1% penicillin-streptomycin. For
osteoclast induction, RAW264.7 were cultured into complete media
with 100 ng/mL RANKL and 100 ng/ml M-CSF (PH
Biotechnology, CHN).

2.2 DFSC-EVs isolation and characterization

DFSC-EVs were enriched as previously described (Li et al.,
2023). Briefly, culture supernatants were centrifuged twice at
120,000 × g for 70 min at 4°C and resulting precipitates were
-resuspended in PBS. To characterize the isolated DFSC-EVs,
TEM was used to observe the morphological identification, NTA

GRAPHICAL ABSTRACT
DFSCs regulate tooth eruption by releasing extracellular vesicles. During tooth eruption, dental follicle stem cells inhibit osteoclast differentiation by
releasing extracellular vesicles containing ANXA1 and itsmediated PPARγ-CEBPα pathway, thereby preventing premature tooth eruption. The elucidation
of this mechanism is crucial for understanding and treating abnormal tooth eruption diseases and the eruption process of tooth regeneration. (Image
created with BioRender.com, with permission).
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was performed to measure diameter distribution and vesicle number
of the isolated EVs, and Western blotting was conducted to detect
typical EVs markers.

2.3 Mass spectrometry

DFSC-EVs were sent to WUWAN BIOBANK (Wuhan, CHN)
for protein profiles identification. The further function analysis was
performed based on employing Gene Ontology enrichment analysis
to detect systematic interpretation of the proteins associated with
osteoclast differentiation.

2.4 Tartrate-resistant acid phosphatase
(TRAP) staining

After Osteoclast differentiation as previously described, RAW
264.7 cells were fixed with 4% paraformaldehyde (Boster, CHN).
According to the manufacturer’s instructions, TRAP staining was
carried out. Add 800 μL/well TRAP staining solution (Servicebio,
CHN) to each well and incubate for 30 min at 37°C. Cells were
observed under an inverted light microscopy, and TRAP-positive
cells containing three or more nuclei could be counted as osteoclasts.

Mandible bone samples were fixed, decalcified and dehydrated.
After paraffin embedding, all specimens were sectioned into 5 μm
thick slides. Tissue sections were incubated in TRAP staining
solution at 37°C for 20 min. All samples were viewed under a
light microscope.

2.5 Real-time PCR (RT–qPCR)

The mRNA levels of ACP5, CTSK, CFOS, ANXA1, PPARγ and
CEBPα in RAW264.7 was quantified by RT–qPCR. Total RNA of
cells was exacted using TRIzol regent (AG, CHN) and then reverse
transcription was conducted using SPARKscript Ⅱ RT Plus Kit
(SparkJade, CHN) to synthesize cDNA. Finally, the RT–qPCR
was performed employing 2×SYBR Green qPCR Mix (SparkJade,
CHN). The mean fold changes of gene expression were calculated
applying the 2−ΔΔCt method. The sequences of all primers used are
provided in Supplementary Table S1.

2.6 Western blotting

RAW264.7 were lysed in RIPA buffer (Boster, CHN) to extract
proteins and total protein contents were quantified and normalized
using bicinchoninic acid Protein Assay Kit (Boster, CHN). Next, the
proteins were separated by SDS-polyacrylamide gels (Boster, CHN)
and transferred onto a polyvinylidene fluoride (PVDF) membrane
(BIO-RAD, United States). After blocked, the membranes were
probed with following primary antibodies: rabbit anti-ANXA1 (1:
1000; BA0640; Boster, CHN), rabbit anti-PPARγ (1:1000; A00449-3;
Boster, CHN), rabbit anti-CEBPα (1:1000; A00386-1; Boster, CHN),
rabbit anti-ACP5 (1:1000; A03277-1; Boster, CHN), rabbit anti-
CTSK (1:1000; PB9856; Boster, CHN), rabbit anti-CFOS (1:1000;
BA0207-2; Boster, CHN), rabbit anti-GAPDH (1:1000; BM3874;

Boster, CHN). Then, membrane was incubated with HRP
Conjugated AffiniPure Goat Anti-rabbit IgG (1:1000; Boster,
CHN) secondary antibodies. Signals were visualized in
combination with ECL (NCM Biotech, CHN) and densitometry
was performed using ImageJ software.

2.7 Animal experiments

Ten-day-old SD rats were divided into different groups: DMSO
vehicle control, DFSC-EVs group, GW4869 group, si-ANXA1 group
and DFSC-EVs rescue group (each group contains three repeats).
DFSC-EVs group and GW4869 group were injected with 2.5 mg/kg
GW4869 (MCE, CHN) solution to the first molar tooth dental
follicle tissues, and subsequently DFSC-EVs group received an
injection of 10 mg/kg DFSC-EVs, or an equivalent volume of
2.5 mg/kg DMSO (Solarbio, CHN) was injected in the DMSO
vehicle control. Si-ANXA1 group was treated with si-ANXA1.
DFSC-EVs rescue group was treated with si-ANXA1 following
injection of 10 mg/kg DFSC-EVs. Ten days after injection, dental
follicle tissues were collected and fixed with 4% paraformaldehyde
for gross observation, micro-CT assays and histology.

2.8 Micro-CT analysis

Whole mandibular first molar and alveolar bones were collected
and imaged using micro-CT after fixation in 4% paraformaldehyde
for 48 h. According to the size and location of fixed mandible bone
samples, 3-dimensional (3-D) measurements and analysis were
obtained. The average value of the vertical distance from the
highest point of the buccal and tongue to the alveolar ridge was
measured as the eruption distance for comparative analysis.

2.9 Small interfering RNA transfection

ANXA1 gene expression in DFSC-EVs was silenced by the
siRNA transfection. The sense strand of siRNA constructs
(Hanbio, CHN) are as follows: hs-ANXA1-si1: 5′-GGUUAAAGG
UGUGGAUGAATT-3′; hs-ANXA1-si2: 5′-GCAAUUUGAUGC
UGAUGAATT-3′; hs-ANXA1-si3: 5′-GCAGAGUGUUUCAGA
AAUATT -3′. siRNA was transfected according to
manufacturer’s instructions. Briefly, transfection reagent was
incubated with DFSCs at room temperature for 10min, then the
medium was replaced with complete culture medium. Whole cell
lysates were used to verify the ANXA1 gene silencing by RT-qPCR at
24–72 h after transfection. DFSC-EVs were isolated to verify the
ANXA1 expression by Western blotting.

2.10 Immunohistochemistry staining

Mandible bone samples were first fixed in 4% paraformaldehyde
and decalcified in 10% EDTA decalcifying solution (Boster, CHN),
followed by dehydration with gradient ethanol. After paraffin
embedding, all specimens were sectioned into 5 μm thick slides.
Tissue sections were incubated with the primary antibodies include
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anti-Osteopontin/SPP1 antibody (1:100; BM4208; Boster, CHN),
anti-PPARγ antibody (1:400; bsm-33436M; Bioss, CHN), anti-
CEBPα antibody (1:400; bs-1630R; Bioss, CHN), and the control
group was incubated with PBS. Then, the secondary antibodies were
individually used to incubate with sections. Finally, staining the
slides with DAB (Boster, CHN) and haematoxylin (Boster, CHN).
All samples were viewed under a light microscope.

2.11 Statistical analysis

Student’s t-test was selected for determine statistical significance
between pairwise comparisons, and one-way analysis of variance
(ANOVA) was utilized among multiple comparisons. All graphs
were plotted with GraphPad Prism software. The statistical
significance is indicated by*p < 0.05, **p < 0.01, ***p < 0.001,
and ****p < 0.0001.

3 Results

3.1 DFSC regulated tooth eruption
through EVs

To explore whether dental follicle tissue play a role in the
tooth eruption process by the EVs, we suppressed the secretion of
EVs from the dental follicle tissue in SD rats at 10 days post-birth
(during the pre-eruptive stage of tooth development) and
examined the eruption distance of the first molar (Figures 1A,
B). Surprisingly, Micro-CT results showed that compared to the
control group, the eruption distance of the teeth significantly
increased after adding the exosome secretion inhibitor GW4869,
and when DFSC-EVs were reintroduced, there was no significant
difference in eruption distance of the first molar compared to the
control group, indicating that DFSC-EVs rescued this
abnormality (Figures 1C, D). HE staining also showed similar
results (Figures 1E, F). To further investigate the cause of
abnormal eruption, we conducted immunohistochemical
staining for the bone matrix protein osteopontin (OPN) and
staining for tartrate-resistant acid phosphatase (TRAP)+ cells
(osteoclasts). As shown in Figures 1G, H, there was no significant
difference in osteogenic levels among the groups, but after
inhibiting DFSC-EVs, the number of osteoclasts in the root
area significantly increased. After reintroducing DFSC-EVs,
TRAP staining showed no significant difference compared to
the control group (Figures 1I, J), suggesting that DFSC-EVs may
influence tooth eruption by regulating the differentiation process
of osteoclasts.

3.2 DFSC-EVs regulated tooth eruption by
inhibiting osteoclast differentiation

To further clarify the mechanism by which DFSC regulates tooth
eruption, we examined the effect of DFSC on osteoclast
differentiation. The DFSC were identified as expressing
mesenchymal stem cell surface markers and exhibiting multi-
directional differentiation potential (Supplementary Figure S1).

After osteoclast induction, mouse monocyte/macrophage (RAW
264.7) cells were co-cultured with DFSC (Figure 2A), and TRAP
staining was used to detect their differentiation into osteoclasts
(Figure 2B). As shown in Figure 2C, the area of TRAP-positive
regions was significantly decreased after co-culture, indicating a
reduction in the number of osteoclasts. While there was no
significant difference between the EV-inhibited group and the
control group (Figures 2B, C). Further RT–qPCR analysis
validated the expression of osteoclast differentiation marker genes
ACP5, CTSK, and C-FOS (Figure 2D). Western blotting was
employed for further confirmation (Figures 2E, F). The results
showed that DFSC could inhibit osteoclast differentiation.

To further investigate whether DFSC regulates osteoclast
differentiation through the secretion of EVs, RAW 264.7 cells
were co-culture with of DFSC-EVs after osteoclast induction
(Figure 2G). TRAP staining results showed a significant
reduction in the area of TRAP-positive regions after co-culture
with DFSC-EVs (Figures 2H, I). The expression of osteoclast
differentiation marker validated by RT–qPCR and Western
blotting results showed decreased, which indicated DFSC-EVs
inhibited the differentiation of RAW 264.7 into osteoclasts
(Figures 2J–L).

3.3 ANXA1 was the core factor of DFSC-EVs
regulating osteoclast differentiation

To elucidate the molecular mechanism by which DFSC-EVs
regulate osteoclast differentiation, we conducted proteomics
analysis followed by Gene Ontology (GO) enrichment analysis
(Figure 3A). The results indicated that proteins within DFSC-
EVs were significantly enriched in biological processes and
molecular components related to cell matrix adhesion, in
terms of molecular function, these proteins exhibited a notable
enrichment in calmodulin-like activities. Among all identified
calmodulin proteins related to osteoclast differentiation through
mass spectrometry, annexin A1 (ANXA1) was expressed at the
highest level (Figure 3B). Small interfering RNA (siRNA) was
employed to knock down ANXA1 expression in DFSCs, and
Western blotting confirmed successful establishment of low
ANXA1-expressing DFSCs (Figures 3C–E). Subsequently, low
ANXA1-expressing DFSC-EVs were collected and co-cultured
with RAW 264.7 cells after osteoclast induction for TRAP
staining (Figure 3F), and the results demonstrated a significant
increase in the TRAP-positive area in the si-ANXA1 group
(Figures 3G, H). Additionally, RT–qPCR analyses revealed
that knocking down ANXA1 resulted in substantial
upregulation of osteoclast differentiation marker genes
(Figure 3I). Further validation was performed using Western
blotting (Figures 3J, K).

3.4 ANXA1 mediated PPARγ-CEBPα pathway
to regulate osteoclast differentiation

It was revealed that ANXA1 inhibits osteoclast differentiation by
activating PPARγ expression while concurrently downregulating
CEBPα level, which was a key regulator involved in osteoclast
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FIGURE 1
DFSC regulated tooth eruption through EVs. (A) Experimental design and schedule for model construction and result assessment. (B) Methods of
measuring tooth eruption distance. (C) Representative micro-CT images of detecting tooth eruption distance. (D) Analysis of tooth eruption distance
based on micro-CT. (E) Representative H&E staining images of the first mandibular molar area. (F) Analysis of tooth eruption distance based on H&E
staining. (G) Representative immunohistochemistry staining images of OPN expression in the first mandibularmolar area. (H)Quantitative analysis of
OPN expression in the first mandibular molar area. (I) Representative images of TRAP staining. (J) Quantitative analysis of TRAP-positive distance. Scale
bar = 1 mm ns, not significant. **p < 0. 01. n = 3.
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FIGURE 2
DFSC-EVs regulated tooth eruption by inhibiting osteoclast differentiation. (A) Schematic illustration of RAW264.7 and DFSC co-culture system. (B)
Representative images of TRAP staining. Scale bar = 200 μm. (C)Quantitative analysis of TRAP-positive area. (D) ThemRNA level of ACP5,CTSK andCFOS
in RAW264.7 cultured with DFSC. (E) The protein level of ACP5, CTSK and CFOS in RAW264.7 cultured with DFSC. (F)Western blotting quantification. (G)
Schematic illustration of RAW264.7 and DFSC-EVs co-culture system. (H) Representative images of TRAP staining. Scale bar = 200 μm. (I)
Quantitative analysis of TRAP-positive area. (J) The mRNA level of ACP5, CTSK and CFOS in RAW264.7 cultured with DFSC-EVs. (K) The protein level of
ACP5, CTSK and CFOS in RAW264.7 cultured with DFSC-EVs. (L) Western blotting quantification. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001. n = 3.
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lineage differentiation (Perretti and Dalli, 2009; Alhasan et al., 2022;
Ma et al., 2023). RT–qPCR and Western blotting confirmed that
after knocking down ANXA1, the expression of PPARγ was
significantly downregulated, while the expression of PPARγ
downstream target CEBPα was upregulated (Figures 4A–E). In
the co-culture system of DFSC-EVs and RAW 264.7 cells after
osteoclast induction, the PPARγ inhibitor GW9662 was introduced
(Figure 4F). TRAP staining illustrated a significant increase in
positive areas upon inhibition of PPARγ activity (Figures 4G, H).
RT–qPCR and Western blotting results indicated that
GW9662 significantly inhibited the expression level of PPARγ in
RAW 264.7 after induction while upregulating the expression of its
downstream molecule CEBPα (Figures 4I–M). Simultaneously, after
inhibiting PPARγ, the mRNA and protein expression levels of
osteoclast differentiation marker molecules were significantly
upregulated (Figures 4N–P).

3.5 DFSCs-EVs/ANXA1 regulating tooth
eruption by affecting osteoclast
differentiation

In vivo animal experiments were conducted to elucidate the
role of DFSCs-EVs/ANXA1 in the tooth eruption process.
Following si-RNA-mediated knockdown of ANXA1 expression
in the dental follicle tissue of SD rats at 10 days post-birth,
DFSCs-EVs were injected. Micro-CT analysis revealed a
significant increase in tooth eruption distance following
ANXA1 knockdown compared to the control group, while
reintroducing DFSC-EVs without special treatment resulted in
normal eruption distance of the first molar compared to the
control group, indicating that DFSC-EVs could rescue the effects
of ANXA1 deficiency (Figures 5A, B). HE staining also confirmed
these results (Figures 5C, D). Additionally, TRAP staining

FIGURE 3
ANXA1 was the core factor of DFSC-EVs regulating osteoclast differentiation. (A) Gene ontology enrichment analysis of DFSC-EVs protein profiles.
(B) The top proteins of Cadherin related to regulating osteoblast differentiation based on expression level. (C) The mRNA level of ANXA1. (D) The protein
level of ANXA1. (E)Western blotting quantification. (F) Schematic illustration of RAW264.7 and siANXA1-EVs co-culture system. (G) Representative images
of TRAP staining. Scale bar = 200 μm. (H) Quantitative analysis of TRAP-positive area. (I) The mRNA level of ACP5, CTSK and CFOS in
RAW264.7 cultured with siANXA1-EVs. (J) The protein level of ACP5, CTSK and CFOS in RAW264.7 cultured with siANXA1-EVs. (K) Western blotting
quantification. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. n = 3.
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indicated that knocking down ANXA1 led to an increase in the
area of positive regions, while DFSC-EVs effectively restored the
level of osteoclast differentiation (Figures 5E, F). Further
verification of the expression level of the downstream
molecule PPARγ after ANXA1 knockdown by
immunohistochemical staining similarly indicated the
downregulation of PPARγ, while PPARγ expression was
retrieved in the DFSC-EVs group (Figures 5G, H). The
expression level of CEBPα, a downstream molecule of PPARγ,
was upregulated after ANXA1 knockdown, while DFSC-EVs
could downregulate its expression (Figures 5I, J).

4 Discussion

In this study, we conducted in vivo and in vitro experiments to
demonstrate that DFSCs in the dental follicle regulate tooth eruption
by releasing EVs that inhibit osteoclast differentiation.
Mechanistically, DFSC-EVs transported ANXA1 to macrophages,
thereby modulating the downstream PPARγ-CEBPα pathway to
inhibit their differentiation towards osteoclasts, thus maintaining
the homeostasis of bone remodeling during tooth eruption.

The main cells involved in tooth eruption include vascular
endothelial cells, epithelial root sheath cells, osteoclasts and

FIGURE 4
ANXA1mediated PPARγ-CEBPα pathway to regulate osteoclast differentiation (A) ThemRNA level of PPARγ in RAW264.7 culturedwith siANXA1-EVs.
(B) ThemRNA level ofCEBPα in RAW264.7 cultured with siANXA1-EVs. (C) The protein level of PPARγ and CEBPα in RAW264.7 cultured with siANXA1-EVs.
(D)Quantitative analysis of PPARγ protein expression. (E)Quantitative analysis of CEBPα protein expression. (F) Schematic illustration of PPARγ inhibited
RAW264.7 and DFSC-EVs co-culture system. (G) Representative images of TRAP staining. Scale bar = 200 μm. (H) Quantitative analysis of TRAP-
positive area. (I) PPARγ inhibited RAW264.7 construction. (J) The mRNA level of CEBPα in PPARγ inhibited RAW264.7. (K) The protein level of PPARγ and
CEBPα in PPARγ inhibited RAW264.7. (L)Quantitative analysis of PPARγ protein expression. (M)Quantitative analysis of CEBPα protein expression. (N) The
mRNA level of ACP5, CTSK and CFOS in PPARγ inhibited RAW264.7. (O) The protein level of ACP5, CTSK and CFOS in PPARγ inhibited RAW264.7. (P)
Western blotting quantification. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. n = 3.
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FIGURE 5
DFSCs-EVs/ANXA1 regulating tooth eruption by affecting osteoclast differentiation. (A)Representativemicro-CT images of detecting tooth eruption
distance. (B) Analysis of tooth eruption distance based on micro-CT. (C) Representative H&E staining images of the first mandibular molar area. (D)
Analysis of tooth eruption distance based on H&E staining. (E) Representative images of TRAP staining. (F)Quantitative analysis of TRAP-positive area. (G)
Representative immunohistochemistry staining images of PPARγ expression in the first mandibular molar area. (H) Quantitative analysis of PPARγ
expression in the first mandibular molar area. (I) Representative immunohistochemistry staining images of CEBPα expression in the first mandibular molar
area. (J) Quantitative analysis of CEBPα expression in the first mandibular molar area. ns, not significant. Scale bar = 1 mm **p < 0. 01. n = 3.
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dental follicle stem cells (DFSCs). Vascular endothelial cells regulate
the permeability of blood vessels and blood circulation to provide
nutrients for the cellular metabolism involved in tooth eruption (de
Pizzol Júnior et al., 2015). Epithelial root sheath cells are derived
from the oral epithelium and surround the dental papilla during root
development. They participate in regulating root formation by
secreting certain growth factors to induce the differentiation of
dental papilla cells and thus participate in the regulation of root
formation (Wang et al., 2014). Osteoclasts play a crucial role in the
formation of the tooth eruption channel by releasing acidic
substances and proteases to dissolve the mineral components and
organic matrix of the alveolar bone, creating space for tooth eruption
(Wise and King, 2008). While DFSCs play a decisive role in the
process of tooth eruption. On the one hand, DFSCs can differentiate
into osteoblasts to provide the driving force for tooth eruption. On
the other hand, DFSCs can regulate the differentiation of
macrophages into osteoclasts to form the tooth eruption channel.
The dynamic balance between bone resorption and bone formation
during the tooth eruption process is regulated by a complex signal
network involving DFSCs (Zhou et al., 2019). Meanwhile, DFSCs
can differentiate into cementoblasts, which is also very critical for
root development (Zhai et al., 2019). Once DFSCs are removed,
tooth eruption is hindered, but the presence of DFSCs still allows
replacement inert materials to erupt into the mouth (Marks and
Cahill, 1984; Larson et al., 1994). In summary, DFSCs are involved in
all the key aspects of tooth eruption and play an indispensable role.

Dental follicle tissue plays a crucial role in regulating asymmetric
bone remodeling around the tooth, thereby facilitating tooth eruption
(Wise and King, 2008). Previous research has demonstrated that the
excision of dental follicle tissue results in the failure of tooth eruption
(Marks and Cahill, 1984; Larson et al., 1994; Zhang et al., 2019). While
the process of tooth eruption is concomitant with root development and
crown mineralization (Wise, 1998). Premature eruption can lead to
incomplete mineralization of the crown, subsequently increasing
susceptibility to caries (Gozes et al., 2017). Additionally, it may result
in tooth looseness or even asphyxiation due to detachment (Posen,
1965). Therefore, maintaining homeostasis in bone remodeling is vital
for successful tooth eruption (Gaeta-Araujo et al., 2019). In this study, we
identified that DFSC within root dental follicle tissue inhibit premature
tooth eruption by suppressing osteoclast differentiation through the
release of EVs. This investigation offers new insights into the complex
spatio-temporal dynamics exerted by dental follicle tissue on both crown
and root during the process of tooth eruption.

Osteoclasts are specialized cells differentiated from monocytes/
macrophages playing an important role in maintaining bone
homeostasis (Boyle et al., 2003). After adhering to the bone matrix
and maturing, osteoclasts secrete acids and lytic enzymes to degrade
bone tissue in specific regions (Udagawa et al., 2021). Osteoblasts
produce macrophage colony-stimulating factor (M-CSF) to recruit
and stimulate osteoclast formation (Takahashi et al., 1988).

In the early stages of tooth eruption, the DFSCs enriched in the
dental follicle tissue play a role similar to that of osteoblasts. By day
three postpartum they can secrete M-CSF as well endothelial-
monocyte activating polypeptides, recruiting a large number of
monocytes to aggregate in the dental follicle of the mandibular
first molar (Wise GE and Fan, 1989). Meanwhile, M-CSF also
stimulates the proliferation of monocytes and upregulates
RANKL while downregulating OPG expression, significantly

increasing the RANKL/OPG ratio, leading to extensive
differentiation and activation of monocytes (Marks SC and
Cahill, 1987). Subsequently, on day 10 after birth, vascular
endothelial growth factor is highly expressed, replacing the role
of M-CSF and further promoting osteoclast differentiation (Huang
et al., 2016). In this study, we found that DFSCs in the dental follicle
could regulate osteoclast differentiation during tooth eruption
through the release of EVs, indicating that the regulation of
tooth eruption relies on EV-mediated inter-tissue communication.

DFSCs also play a key role in tooth eruption disorders caused by
cleidocranial dysplasia, where DFSCs can regulate osteoclast activity
through the RUNX2-miR-31-SATB2 pathway, thus affecting the
timing and extent of tooth eruption. In patients with cleidocranial
dysplasia, a decrease in RUNX2 expression leads to upregulation of
miR-31 and downregulation of SATB2 expression, resulting in
reduced osteoclast differentiation and activity, ultimately causing
delayed tooth eruption (Wang et al., 2016). In our study, the
inhibition of EVs secreted by DFSCs and their carried key
molecule ANXA1 led to abnormal tooth eruption, while DFSC-
EVs could rescue this abnormality, proposing a newmechanism and
potential therapeutic targets for abnormal tooth eruption.

5 Conclusion

In summary, DFSC-EVs and their carried ANXA1 regulate
tooth eruption by inhibiting macrophage differentiation towards
osteoclasts through the PPARγ-CEBPα pathway, maintaining the
balance of bone homeostasis.
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