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Fat mass and obesity-associated (FTO) protein, a key enzyme integral to the
dynamic regulation of epitranscriptomic modifications in RNAs, significantly
influences crucial RNA lifecycle processes, including splicing, export, decay,
and translation. The role of FTO in altering the epitranscriptome manifests
across a spectrum of physiological and pathological conditions. This review
aims to consolidate current understanding regarding the implications of FTO
in health and disease, with a special emphasis on its involvement in obesity and
non-communicable diseases associated with obesity, such as diabetes,
cardiovascular disease, and cancer. It also summarizes the established
molecules with FTO-inhibiting activity. Given the extensive impact of FTO on
both physiology and pathophysiology, this overview provides illustrative insights
into its roles, rather than an exhaustive account. A proper understanding of FTO
function in human diseases could lead to new treatment approaches, potentially
unlocking novel avenues for addressing both metabolic disorders and
malignancies. The evolving insights into FTO’s regulatory mechanisms hold
great promise for future advancements in disease treatment and prevention.
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1 Discovering FTO and its function

In 1999, Fto was identified as one of the several genes deleted in mice with the Ft (Fused
toes) mutation. It was named Fatso due to its large size, which is where the abbreviation Fto
comes from (Peters et al., 1999). However, its role and function were unknown for a long
time. In 2007, human genome-wide association studies (GWAS) revealed that single
nucleotide polymorphisms (SNPs) in the human FTO gene were associated with
increased body mass index (BMI) and obesity, which is where the gene and its product
derive their full name now: fat mass and obesity-associated (Hinney et al., 2007; Frayling
et al., 2007; Scuteri et al., 2007).

The initial mechanistic insights into FTO’s function emerged already in 2007,
demonstrating that FTO could catalyze the 2-oxoglutarate-dependent oxidative
demethylation of 3-methylthymine in single-stranded DNA and 3-methyluracil in
single-stranded RNA in vitro (Gerken et al., 2007; Jia et al., 2008). However, the main
biological substrate of FTO was unknown until 2011, when it was reported that FTO had
efficient oxidative demethylation activity towards N6-methyladenosine (m6A), an abundant
mRNA modification known from the 1970s (Jia et al., 2011; Desrosiers et al., 1974). This
breakthrough discovery revealed the dynamic nature of mRNA modifications and renewed
the interest of scientists in this field (Dieterich et al., 2021). However, in 2017, another study
indicated that FTO preferentially demethylates N6,2′-O-dimethyladenosine (m6Am) rather
than m6A (Mauer et al., 2017; Mauer and Jaffrey, 2018). Most recently, it was suggested that
the substrate preference of FTO might depend on its cellular localization which varies
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between cell types. While m6A is the preferable target of FTO in the
nucleus, cytosolic FTO demethylates particularly m6Am (Wei et al.,
2018; Relier et al., 2021). Notably, this substrate selectivity may also
be influenced by regulatory proteins such as ZBTB48 (zinc finger
and BTB domain containing 48), a telomeric zinc finger protein that
recruits FTO to specific m6A/m6Am-modified RNAs, thereby
enhancing the specificity of FTO (Nabeel-Shah et al., 2024).
Although FTO’s substrate preference appears context-dependent,
the functional implications of these preferences across diseases are
not fully understood. Further research is needed to clarify how
FTO’s selective demethylation of m6A and m6Am influences
pathophysiological processes, as distinct mechanisms may
underlie FTO’s roles in metabolic, cardiovascular, and
oncological disorders. Accurately distinguishing m6A- and
m6Am-dependent pathways in specific disease contexts could
provide valuable insights for targeted therapeutic strategies.
However, due to the similarity of these modifications, some
methods cannot differentiate between m6A and m6Am,
complicating studies of FTO’s substrate-specific effects (Benak
et al., 2023a). Besides m6A and m6Am, FTO has also an affinity
to N1-methyladenosine (m1A) in transfer RNA (tRNA) (Mauer
et al., 2017; Wei et al., 2018). Dynamic regulation of these
epitranscriptomic modifications by FTO significantly affects the
lifecycle of modified RNAs and consequently influences gene
expression. Thus, epitranscriptomic regulations by FTO vastly
affect cellular physiology and pathophysiology.

The timeline of discoveries related to FTO is summarized
in Figure 1.

2 Protein structure of FTO

The human FTO gene encodes a protein consisting of 505 amino
acids with a molecular weight of 58,282 Da. Although the sequence
of this protein is highly conserved across species, minor differences
exist. For instance, the mouse Fto gene encodes a slightly shorter
protein with 502 amino acids and a molecular weight of 58,007 Da.
Similarly, the rat FTO protein also contains 502 amino acids, though

its molecular weight is slightly lower at 57,972 Da (UniProt
Consortium, 2023).

Structurally, FTO contains two main domains: the N-terminal
domain (NTD) and the C-terminal domain (CTD) (Han et al.,
2010). The NTD (residues 1–322) is catalytically active and includes
binding sites for the metal cofactor, 2-oxoglutarate, and the
methylated nucleobase. The CTD (residues 331–505 does not
interact with FTO’s primary or secondary substrates but forms
extensive contacts with the NTD (Khatiwada et al., 2022). The
catalytic core of NTC is formed by a jelly-roll motif, characterized by
a distorted double-stranded β-helix, which is supported on one side
by two α-helices (α3 and α4) and on the other by a stabilizing loop
between β5 and β6. The CTD’s structure includes a three-helix
bundle with α7, α8, and α10, which extensively interacts with the
NTD, providing essential structural stabilization (Han et al., 2010).
This interaction between the NTD and CTD is necessary for FTO’s
catalytic function, as the NTD alone is inactive. Disruption of the
NTD-CTD interface leads to a loss of FTO’s catalytic capabilities,
underscoring the essential role of inter-domain interactions in the
enzyme’s function (Han et al., 2010; Khatiwada et al., 2022).

3 FTO in obesity

Obesity is characterized by an abnormal or excessive
accumulation of fat, which can negatively impact health. High
BMI is a major risk factor for many non-communicable diseases
including diabetes, cardiovascular diseases (CVDs), and various
cancers, which will be covered in the following chapters of this
review. Unfortunately, the prevalence of overweight and obesity is
reaching pandemic proportions, affecting 60%–70% of the adult
population in industrialized countries and continuous to rise rapidly
(Avgerinos et al., 2019; WHO. Obesity and overweight, 2021).
Notably, FTO has been associated with obesity and each of the
aforementioned diseases (Gholami, 2024).

The link between SNPs in the FTO gene and obesity has been
uncovered through GWAS as mentioned in the previous chapter
(Hinney et al., 2007; Frayling et al., 2007; Scuteri et al., 2007;

FIGURE 1
History of FTO researchmilestones. BMI– bodymass index; FTO – fat mass and obesity-associated; m6A–N6-methyladenosine; m6Am–N6,2‘-O-
dimethyladenosine; SNPs – single nucleotide polymorphisms.
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Piwonska et al., 2022). Interestingly, most of these SNPs are in
intronic regions, with introns 1 and 2 alone containing 89 identified
variants. This observation has given rise to two hypotheses: either
the introns within the FTO gene function as cis-regulatory sites
affecting the expression of adjacent genes (such as IRX3 or
RPGRIP1L), or they serve as auto-regulators for the FTO gene
itself (Azzam et al., 2022; Smemo et al., 2014; Stratigopoulos
et al., 2014; Berulava and Horsthemke, 2010). Interestingly,
research has shown that male individuals carrying FTO risk
alleles respond differently to weight management interventions
compared to females, with exercise leading to greater weight loss
in FTO risk allele carriers compared to those who do not carry these
alleles, but only in males (Wang W. et al., 2022).

Experimental studies confirmed the link between FTO and
obesity also in animal models. Loss of FTO in mice resulted in
reduced body weight and lower fat mass, while higher levels of FTO
caused the opposite (Fischer et al., 2009; Church et al., 2009;
McMurray et al., 2013; Church et al., 2010).

In individuals carrying FTO risk variants, the observed increase
in BMI was primarily associated with higher energy consumption
and diminished food satiety, rather than reduced energy expenditure
(Speakman et al., 2008; Haupt et al., 2009; Wardle et al., 2008; Cecil
et al., 2008; Wardle et al., 2009). However, altered energy
expenditure has been also reported in mice with Fto deletions
(Wu et al., 2021).

FTO is ubiquitously expressed, but the most prominent
expression occurs in the brain, particularly within the
hypothalamic nuclei responsible for the regulation of energy
balance, such as the arcuate nucleus. The hypothalamic nuclei
play a central role in regulating appetite and energy balance by
integrating hormonal and nutrient signals that influence feeding
behavior and metabolic processes. The arcuate nucleus is a key
hypothalamic region that contains specialized neurons responsive to
hormones like leptin and ghrelin, which signal states of satiety and
hunger, respectively. These nuclei modulate energy intake and
expenditure, acting as central coordinators of body weight and
fat accumulation (Dhillo, 2007).

Expression of FTO in the arcuate nucleus is influenced by
feeding and fasting cycles (Gerken et al., 2007). Selective
alteration of FTO levels in the arcuate nucleus was able to
influence food intake in rats (Tung et al., 2010). Inhibition of
hypothalamic FTO activated STAT3 (signal transducer and
activator of transcription 3) through ERK1/2 (extracellular signal-
regulated kinase 1/2), which resulted in reductions in food intake
and body weight (Hu et al., 2023). Moreover, it was reported that
FTO colocalizes with the long isoform of leptin receptor within the
arcuate nucleus and that leptin administration can result in a
reduction of hypothalamic FTO levels both in vitro and in vivo
(Wang et al., 2011). Several studies demonstrated that FTO
promoted the hypothalamic leptin resistance induced by high-fat
diet (Tung et al., 2015; Liu et al., 2024). Also, risk variants of the
human FTO gene were associated with higher serum leptin levels
(Mehrdad et al., 2020; Genis-Mendoza et al., 2020; Magno et al.,
2018). Besides leptin, a link between FTO and hunger hormone
ghrelin has been suggested as Fto knockout (KO) mice exhibited
higher circulating ghrelin levels after a 16-h overnight fast.
Moreover, FTO overexpression in cell cultures (MGN3-1 and
HEK293T cells) reduced m6A methylation of ghrelin mRNA

(Ghrl) and resulted in its upregulation (Karra et al., 2013). This
association was also observed in humans carrying risk FTO alleles,
whose peripheral blood cells exhibited an increased abundance of
FTO and GHRL mRNA (Karra et al., 2013). However, in women
with morbid obesity, the FTO risk variant was associated with
decreased ghrelin levels in the postprandial period (Magno et al.,
2018). This intricate interplay highlights the pivotal role of FTO in
the neuroendocrine regulation of appetite and energy homeostasis.

Besides the regulation of food consumption and food satiety,
FTO also plays a role in adipogenesis. FTO expression gradually
decreased while m6A levels steadily increased during adipogenesis.
Moreover, FTO regulated alternative splicing of adipogenic
regulatory factor RUNX1T1 (runt-related transcription factor 1)
modulating preadipocyte differentiation (Zhao et al., 2014). Another
study showed that Fto KO in 3T3-L1 cells inhibited preadipocyte
differentiation, while its overexpression enhanced the process
(Zhang et al., 2015). Other experiments on 3T3-L1 cells
presented that KO of Fto was linked with higher m6A levels on
transcripts of early mitotic events regulators (Ccna2, Cdk2) and also
autophagy-related transcripts (Atg5, Atg7), which led to their
degradation, resulting in impairment of cell-cycle progression
(Wu et al., 2018), autophagy (Wang X. et al., 2020), and
inhibition of adipogenesis (Wu et al., 2018; Wang X. et al.,
2020). Further research indicated that FTO is a target of NADP
(nicotinamide adenine dinucleotide phosphate), which increases its
activity, promoting m6A demethylation and adipogenesis (Wang L.
et al., 2020). Merkestein et al. (Merkestein et al., 2015) reported that
primary adipocytes and mouse embryonic fibroblasts (MEFs)
derived from FTO-4 mice (Fto overexpression) exhibited
increased potential for adipogenic differentiation, whereas MEFs
derived from Fto-KO mice displayed reduced adipogenesis. Also in
this study, the effect of FTO on adipogenesis appeared to be
mediated via enhanced expression of the pro-adipogenic short
isoform of RUNX1T1 (Merkestein et al., 2015). FTO deficiency
has been also associated with browning, the conversion of white
adipocytes into adipocytes with brown fat characteristics. It has been
reported that FTO inhibited the expression of UCP-1 (uncoupling
protein 1) in adipocytes, inhibiting the transformation of adipose
tissue into brown adipose tissue (Tews et al., 2013). In line with this,
a risk variant of the human FTO gene has been associated with a cell-
autonomous shift from white adipocyte browning and
thermogenesis to lipid storage, resulting in increased fat stores
and body-weight gain (Claussnitzer et al., 2015). A recent study
revealed that loss of FTO in adipose tissue can increase the m6A
methylation ofHif1a (hypoxia-inducible factor 1 α) mRNA, which is
recognized by m6A-binding protein YTHDC2, which promotes its
translation resulting in increased protein abundance of HIF-1α. This
well-known transcription factor then activates the transcription of
thermogenic genes (Ppaggc1a, Prdm16, Pparg) and promotes Ucp1
expression and the browning process (Wu et al., 2021).

Under physiological conditions, skeletal muscles serve as the
main peripheral organs responsible for lipid utilization. Under
pathological conditions, lipid accumulation becomes excessive. It
has been suggested that AMPK (AMP-activated protein kinase)
negatively regulates skeletal muscle lipid accumulation through
FTO-dependent demethylation of m6A (Wu et al., 2017).
Mechanistically, AMPK decreased FTO protein levels in
C2C12 cells, therefore increasing m6A levels. A subsequent
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investigation revealed that m6A methylation upregulates skeletal
muscle lipid accumulation, likely through upregulation of lipid
synthase related genes and downregulation of lipolysis and
oxidation related genes (Wu et al., 2017).

In conclusion, the FTO gene plays a pivotal role in the regulation
of body weight and fat mass through complex mechanisms involving
appetite regulation, energy balance, and adipogenesis (Figure 2). The
intricate interplay between genetic variants of FTO, environmental
factors, and metabolic pathways underscores the significance of this
demethylase in the pathogenesis of obesity. Further research into the
molecular mechanisms and potential therapeutic targets related to
FTO could open new avenues for the prevention and treatment of
obesity and its associated metabolic disorders.

4 FTO in diabetes

Diabetes mellitus is a widespread chronic disease with an
increasing number of cases worldwide (WHO, 2022). It is well-
established that obesity is a major risk factor for type 2 diabetes
mellitus (T2DM), as excess adipose tissue promotes insulin
resistance through increased secretion of inflammatory cytokines,
free fatty acids, and other metabolic byproducts that disrupt insulin
signaling. Consequently, the risk of T2DM rises linearly with
increases in body mass index (Klein et al., 2022). T2DM exceeds
type 1 diabetes mellitus (T1DM) and gestational diabetes mellitus
(GDM) in frequency and accounts for approximately 90% of all
diabetes diagnoses (Goyal and Jialal, 2023; Babakhanian et al., 2022).
This heterogeneous systemic disease is mainly characterized by two
factors: insufficient insulin secretion by pancreatic β-cells and
insulin resistance of insulin-sensitive tissues (Galicia-Garcia et al.,
2020). Pancreatic β-cells are specialized cells within the islets of
Langerhans that play a central role in regulating blood glucose levels
by producing and secreting insulin. In response to rising blood
glucose levels, β-cells release insulin, a hormone essential for glucose
uptake by tissues and overall glucose homeostasis. This process is
finely tuned by various cellular mechanisms that detect glucose and
other metabolic cues to ensure timely insulin secretion. Disruptions
in β-cell function can lead to insufficient insulin production, a key
factor in the development of diabetes mellitus (Ashcroft and
Rorsman, 2012). The subsequent chronic hyperglycemia (a
characteristic feature of T2DM) damages glucose-sensitive organs
and leads to subsequent impairment of vital functions (Malone and
Hansen, 2019).

The progression from obesity to diabetes is linked to FTO’s dual
influence on energy balance and adipose tissue, where its regulatory
effects can contribute to systemic metabolic dysfunctions, such as
insulin resistance, that characterize diabetes. FTO’s influence on
adipogenesis, for example, may intensify lipid storage and impair
insulin sensitivity in peripheral tissues, laying the groundwork for β-
cell dysfunction and chronic hyperglycemia.

According to numerous studies, carriers of several SNPs in the
human FTO gene are genetically predisposed to T2DM, T1DM,
GDM, and chronic diabetic complications (Benak et al., 2023b;
Hubacek et al., 2018a; Younus et al., 2017; Hubacek et al., 2023;
Ghafarian-Alipour et al., 2018; Chaudhary et al., 2024; Mosaad et al.,
2024; Zhang et al., 2023; Amin et al., 2023; Amine Ikhanjal et al.,
2023; Zano and Baig, 2022). However, this association is still

controversial with significant interethnic differences (Younus
et al., 2017; Sabarneh et al., 2018; Sarkar et al., 2021; Bakhashab
et al., 2020; Bazzi et al., 2014; Nasser et al., 2019; Chauhan et al.,
2011; Bressler et al., 2010; Sanghera et al., 2008; Vasan et al., 2014;
Yajnik et al., 2009; Yu H. et al., 2023). Moreover, some variants were
found to be protective against diabetes (Bressler et al., 2010).

Gene expression analysis in pancreatic islets collected from
healthy individuals and T2DM patients discovered
downregulation of FTO in the diabetic group (De Jesus et al.,
2019; Taneera et al., 2018; Kirkpatrick et al., 2010; Taneera et al.,
2024). In contrast to these results, in vitro experiments revealed
that high glucose concentrations in Min6 cells (mouse β-cell line)
increased gene expression of Fto (Bornaque et al., 2022). Another
study showed that increased production of this demethylase in
Min6 cells promoted reactive oxygen species (ROS) generation
and led to NF-κB (nuclear factor kappa-light-chain-enhancer of
activated B cells) activation, which resulted in the inhibition of
insulin secretion (Fan et al., 2015). Impaired insulin release was
observed in INS-1 cells (rat insulinoma cell line) after Fto
silencing, however, ROS production rate was not affected in
this case (Taneera et al., 2024). On the contrary,
overexpression of FTO in human islets promoted insulin
secretion and increased protein levels of key β-cell proteins:
INS, PDX1, MAFA, and GLUT1 (Taneera et al., 2024) The
observed discrepancies between specific animal cell lines and
diverse human islets could be attributed to variations between
species or the inherent diversity within islet cell populations.

Besides the role of FTO in the diabetic islets of Langerhans, FTO
has been also regulated in many other diabetic tissues. In db/db
mice, which are used as a model of T2DM and diabetic
cardiomyopathy, downregulation of cardiac FTO on both gene
and protein levels was observed, resulting in elevated m6A levels
(Ju et al., 2021). FTO was described to promote the progression of
diabetic nephropathy (Sun et al., 2022), and several SNPs in the FTO
gene were associated with a significantly lower risk of nephropathy
in T2DM patients (Montesanto et al., 2018). FTO polymorphism
was also linked to a higher risk of diabetic retinopathy (Hsiao et al.,
2021). FTO expression was elevated in diabetic mice retinas and
systemic administration of FTO inhibitor FB23-2 exhibited
therapeutic efficacy in mice with diabetic retinopathy (Chen
et al., 2024).

Importantly, increased FTO levels were detected in the
peripheral blood of patients with T2DM (Shen et al., 2015;
Onalan et al., 2022). Furthermore, a connection between high
FTO levels and the severity of T2DM has been suggested
(Masoud Abd El Gayed et al., 2021). In white blood cells of
T2DM patients, a positive correlation between high FTO gene
expression and fasting glucose concentration was found (Yang
et al., 2019). Collectively, these findings suggest that FTO levels
in peripheral blood could potentially serve as a novel biomarker for
T2DM in the future.

In conclusion, FTO plays a critical role in the pathogenesis of
diabetes, influencing insulin secretion, insulin sensitivity, and the
development of diabetic complications through diverse
mechanisms. The association between genetic variants of FTO
and diabetes underscores the complexity of the disease and
highlights the potential of FTO as a biomarker and therapeutic
target in managing diabetes and its complications.
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5 FTO in cardiovascular diseases

CVDs are the leading cause of death worldwide, with obesity
significantly elevating risk through mechanisms like adipose tissue
accumulation in the myocardium, as well as promoting a pro-
inflammatory and prothrombotic state (Ashraf and Baweja, 2013).

Globally, CVDs contribute to approximately 18 million deaths each
year (WHO. Cardiovascular diseases, 2021). Current knowledge
suggests that FTO plays a comprehensive role in cardiovascular
health, impacting processes from the initial development of heart
tissue to heart disease progression, making FTO an intriguing
molecular target for potential clinical interventions.

FIGURE 2
The role of FTO in obesity in mice and men. The image shows that FTO influences body weight, fat mass, and hormone levels in both mice and
humans, with both species exhibiting increased obesity-related traits linked to FTO function. FTO – fat mass and obesity-associtated; GHRL – ghrelin;
HIF-1α – hypoxia-inducible factor 1 α.
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The growth, proliferation, and differentiation of cardiomyocytes are
critically dependent on the precise regulation of gene expression, with
epitranscriptomic modifications increasingly recognized as vital
contributors to these processes (Liu et al., 2023; Han et al., 2021;
Yang C. et al., 2021). Levels of FTO are regulated throughout the
development of the heart in a sex-dependent manner (Semenovykh
et al., 2022; Krejčí et al., 2023). Loss-of-functionmutation in the human
FTO gene was associated with a range of heart defects (ventricular septal
defect, atrioventricular defect, patent ductus arteriosus), as well as
hypertrophic cardiomyopathy (Boissel et al., 2009). Moreover,
variants of the FTO gene were linked with various CVDs, including
hypertension, myocardial infarction (MI), acute coronary syndrome,
and increased risk of rejection in heart transplant patients (Ahmad et al.,
2010; He et al., 2014; Liu et al., 2013; Doney et al., 2009; Hubacek et al.,
2016; Hubacek et al., 2010; Hubacek et al., 2018b). Regulation of FTO
levels was observed in MI and heart failure (HF) patients and
corresponding animal models (Mathiyalagan et al., 2019; Shi et al.,
2021; Zhang et al., 2021a; Zhang et al., 2021b; Hinger et al., 2021; Wen
et al., 2022; Wang X. et al., 2022; Vausort et al., 2022; Liu et al., 2022).
However, it’s important to note the possibility that the regulation of
FTO in the heart could vary with age: downregulation of FTO levels was
observed in response to acute myocardial ischemia-reperfusion injury
in elderly murine hearts but remained unaffected in young hearts (Su
et al., 2021).

FTO activity has been associated with cardiac hypertrophy.
Global Fto KO in mice resulted in cardiac hypertrophy
development (Carnevali et al., 2014). However, in vitro studies
showed that cardiomyocyte hypertrophy can be triggered also by
a leptin-induced increase in FTO levels, while FTO knockdown with
siRNA abolished this effect (Gan et al., 2013). Transverse aortic
constriction (TAC), an experimental model of pressure overload-
induced cardiac hypertrophy and HF, was associated with a
reduction of cardiac FTO levels, while FTO overexpression was
shown to attenuate the cardiac dysfunction following TAC (Zhang
et al., 2021a; Li W. et al., 2022), particularly by regulating glucose
uptake and glycolysis (Zhang et al., 2021a). Mice with a
cardiomyocyte-specific KO of Fto exhibited an impaired cardiac
function manifesting with a more severe reduction in ejection
fraction and a higher degree of left ventricular dilatation
compared to wild-type animals upon TAC (Berulava et al., 2020).
A recent study showed that the beneficial effects of cinnamic acid
treatment of hypertrophy and HF in TAC mice are at least partially
mediated by increasing FTO expression (Cui et al., 2023). In contrast
to these data, the negative role of FTO has been documented in mice
with HFpEF (heart failure with preserved ejection fraction), where
upregulated FTO levels were reduced by exercise training.
Overexpression of this demethylase then canceled the benefits of
exercise and promoted myocyte hypertrophy, apoptosis, and
myocardial fibrosis (Liu et al., 2022). The association of FTO and
myocardial fibrosis was also documented by other studies, albeit
with opposite results. In mouse models of MI, overexpression of Fto
resulted in the reduction of fibrosis (Mathiyalagan et al., 2019). A
recent study demonstrated that antifibrotic effects of leonurine in rat
cardiac fibroblasts are also mediated through upregulation of FTO,
which in turn leads to a reduction in m6A methylation levels (Meng
et al., 2024).

Loss of FTO has been linked with a proarrhythmic remodeling
of the heart. Global deficiency of this demethylase in mice resulted in

a phenotype characterized by higher heart rate and heart rate
variability, susceptibility to stress-induced tachyarrhythmias, and
altered ventricular repolarization (Carnevali et al., 2014). According
to a recent study, decreased FTO gene expression was an important
predictor of atrial fibrillation in patients with metabolic syndrome
(Rafaqat et al., 2024). Suppression of FTO was also linked to
myocardial inflammation and dysfunction in mice during
endotoxemia (Dubey et al., 2022). Furthermore, recent research
has highlighted the role of FTO in mitigating septic cardiomyopathy
through the suppression of ferroptosis, thereby alleviating heart
inflammation and dysfunction (Zeng et al., 2024). However, another
study demonstrated that inhibition of FTO using the LuHui
Derivative (LHD) compound alleviated the inflammatory
response and injury in hyperlipidemia-induced cardiomyopathy
in rats (Yu et al., 2021).

Mice on HFD exhibited decreased cardiac FTO levels, which
were reversed by long-lasting intermittent fasting, a well-known
cardioprotective intervention (Xu et al., 2022). Similarly, a recent
study demonstrated that FTO levels were elevated in the left
ventricles of rats after a 3-day fasting period. Subsequent in vitro
experiments revealed that cardiomyocytes isolated from fasted
animals exhibited reduced hypoxic tolerance after FTO inhibition
(Benak et al., 2024). Several other publications have described the
positive impact of FTO on the tolerance of cardiomyocytes to
hypoxia (Deng et al., 2021; Shen et al., 2021; Ke et al., 2022;
Hlavackova et al., 2018). A recent study demonstrated that FTO
targets sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a
(SERCA2a), leading to preservation of calcium homeostasis for
myocardial contractile function in MI (Yang H. et al., 2024).
FTO has also exhibited cardioprotective effects against the
cardiotoxic effects of different drugs, such as sunitinib or
doxorubicin (Ma et al., 2022; Yang Y. et al., 2024; Yu P. et al., 2023).

These data show that FTO exerts both beneficial and detrimental
effects on the heart, depending on the underlying conditions. Thus,
more studies are needed to elucidate the complex effects of FTO on
the biology of the cardiovascular system.

6 FTO in cancer

Obesity is associated with an increased risk for a range of
malignancies, largely due to altered fatty acid metabolism,
extracellular matrix remodeling, secretion of adipokines and
various hormones, immune dysregulation, and chronic
inflammation. Although these mechanisms contribute to cancer
development and recurrence, the exact relationship between
obesity and cancer risk remains incompletely understood (Pati
et al., 2023). According to the International Agency for Research
on Cancer Working Group, there is convincing evidence that high
body weight is linked to a higher risk for cancer of at least
13 anatomic sites, including endometrial, esophageal, renal and
pancreatic adenocarcinomas, gastric cardia cancer, meningioma,
multiple myeloma, colorectal, postmenopausal breast, ovarian,
gallbladder, and thyroid cancers (Avgerinos et al., 2019; Lauby-
Secretan et al., 2016). Given that FTO plays a crucial role in
metabolism and obesity, it is not surprising that FTO
dysregulation also significantly impacts tumorigenesis. Across a
broad spectrum of cancer types, FTO is commonly found to be
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upregulated, serving as a crucial promoter of tumor progression (Li
Y. et al., 2022). For instance, FTO has been reported as an oncogene
in metastatic endometrial carcinoma, gastric cancer, bladder cancer,
hepatocellular carcinoma, or acute myeloid leukemia; however, it
also acts as an anti-oncogene in gastric cancer (An and Duan, 2022;
Li et al., 2017).

Research into the relationship between FTO and cancer risk
began shortly after SNPs in the human FTO gene were linked to
obesity. However, establishing a straightforward link between
polymorphic variants of FTO and cancer has proven difficult
because many variables, such as ethnicity or the genetic origin of
the tumors being compared (e.g., spontaneous vs hereditary tumors)
(Azzam et al., 2022; Hernández-Caballero and Sierra-Ramírez,
2015). Despite this, several FTO SNPs were linked to higher or
lower risk of cancers. For instance, already in 2009, Brennan et al.
(Brennan et al., 2009) linked a variant of FTO gene to a lower risk of
lung cancer and a slightly increased risk for kidney cancer. Later
research associated FTO polymorphisms in some races with higher
risks of pancreatic cancer (Tang et al., 2011; Pierce et al., 2011),
endometrial and breast cancer (Delahanty et al., 2011; Lurie et al.,
2011; Kaklamani et al., 2011), melanoma (Iles et al., 2013), or
colorectal cancer (Gholamalizadeh et al., 2023).

The important hallmark of cancer is uncontrolled cell
proliferation due to changes in metabolism and signaling
pathways. These metabolic changes provide the energy and
materials needed for cell growth and adaptation to tumor
microenvironment. Recent studies showed that m6A modification
is widely involved in the metabolic recombination of tumor cells (An
and Duan, 2022). The mTOR (mammalian target of rapamycin)
signaling pathway is a key regulator of tumor metabolism (Mirabilii
et al., 2020). Several studies have already connected FTO to mTOR
signaling (Li et al., 2018; Wang et al., 2017). For instance,
stabilization of miR-139-5p by FTO supressed prostate cancer
cell malignancies by inactivating the PI3/Akt/mTOR signal
pathway (Azhati et al., 2023). Another recent study reported that
FTO-induced upregulation of flotillin-2 contributed to cancer
aggressivness in diffuse large B-cell lymphoma by activating
PI3K/Akt/mTOR pathway (Zhang et al., 2024). Thus, the role of
FTO in regulating the mTOR pathway is ambiguous, as it can lead to
both activation and inactivation, resulting in negative and positive
outcomes. FTO demethylates also the most important transcription
factor and extensive nuclear oncogene MYC (MYC proto-oncogene,
also named c-Myc). It has been reported that FTO can reduce the
methylation of MYC in gastric cancer cells and stabilize its
expression, ultimately resulting in augmented proliferation,
migration and invasion of gastric cancer cells in vitro (Yang Z.
et al., 2021). However, another study showed that MYC activated in
Epstein-Barr virus-associated gastric cancer elevated FTO
expression by binding to the FTO promoter. The increase in
FTO levels was then associated with depressed cell metastasis,
aggressiveness, and overall better clinical outcomes (Xu et al.,
2023). Evidently, FTO’s role in gastric cancer can be both
positive and negative, depending on the specific molecular and
pathological context. This duality underscores the importance of
context in understanding the function of molecular players in
cancer biology.

Additionally, FTO has been implicated in resistance to chemo-
radiotherapy. In cervical squamous cell carcinoma, FTO upregulates

β-catenin by reducing m6A modification, leading to enhanced
resistance to chemo-radiotherapy (Zhou et al., 2018). Similarly,
in neuroblastoma, FTO has been shown to influence sensitivity
to chemotherapeutic drugs, enhancing the response to paclitaxel
while reducing sensitivity to etoposide, indicating a drug-specific
role in chemotherapy resistance (Lin et al., 2024). This highlights the
critical role of the FTO inmodulating not just tumor growth but also
drug resistance, making it a potential target for improving cancer
therapy outcomes.

In conclusion, the role of FTO in cancer is multifaceted,
influencing not only tumor growth and progression through
metabolic reprogramming and m6A RNA modification but also
impacting treatment outcomes by contributing to resistance
mechanisms such as chemo-radiotherapy. Its involvement in key
pathways like PI3K/Akt/mTOR and its regulation of oncogenes such
as MYC and β-catenin further emphasize the importance of context
when evaluating FTO’s function in various cancer types. As research
continues to uncover the complexities of FTO’s role, it may offer
novel therapeutic opportunities to target cancer growth and
overcome treatment resistance.

7 FTO as a pharmacological target

Various inhibitors targeting FTO demethylase with a potential
to increase m6A and m6Am methylation are currently available.

Rhein, an anthraquinone compound derived from the rhubarb
plant (Rheum palmatum), was recognized as the first cell-active FTO
inhibitor in 2012 (Chen et al., 2012). However, rhein is not a specific
inhibitor as it acts also on other molecular targets (Henamayee et al.,
2020), e.g., histone deacetylases (Barbosa et al., 2020). This lack of
specificity exemplifies a central challenge in FTO inhibitor
development: achieving selectivity to avoid unwanted effects on
other enzymes and pathways.

Meclofenamic acid (MA), a well-recognized drug for its anti-
inflammatory properties via cyclooxygenase inhibition, has been
also described to inhibit the FTO enzyme (Huang et al., 2015).
Entacapone, a reversible catechol-O-methyltransferase inhibitor
used in the treatment of Parkinson’s disease, has been shown to
bind FTO and inhibit its activity as well (Peng et al., 2019).
While these compounds have shown efficacy in inhibiting FTO,
their primary pharmacological targets lie elsewhere,
highlighting the difficulty of repurposing drugs with
established indications.

Besides these non-specific drugs, the compound MO-I-500 was
introduced as a specific inhibitor of FTO (Zheng et al., 2014).
Fluorescein and its derivatives were presented as bifunctional
molecules for either inhibiting or labeling FTO (Wang et al.,
2015). Additionally, selective inhibition of FTO was also achieved
with other small molecule inhibitors, including FB23, FB23-2, CS1,
CS2, Dac51, LHD, FTO-02, FTO-04, N-phenyl-1H-indol-2-amine,
MU06, radicicol, CHTB, N-CDPCB, nafamostat mesilate, NOG,
PDCA, or saikosaponin D (Yu et al., 2021; Toh et al., 2015; He et al.,
2015; Svensen and Jaffrey, 2016; Huang et al., 2019; Su et al., 2020;
Huff et al., 2021; Qin et al., 2022; Liu et al., 2021; Padariya and
Kalathiya, 2016; Wang et al., 2018; Qiao et al., 2016; Han et al., 2019;
Aik et al., 2013; Sun et al., 2021; Qiu et al., 2023). Each of these
molecules showcases different approaches to enhancing selectivity
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through structural modifications, though issues such as off-target
binding and stability have limited their progression beyond
experimental stages. Developing compounds that specifically
target FTO in relevant disease tissues without systemic side
effects remains a critical goal for therapeutic applications.

Recent advances in structural biology have allowed for the
design of more selective FTO inhibitors based on its catalytic
domain, an approach that has improved specificity and facilitated
the development of promising drug candidates. Challenges like
ensuring high specificity without off-target effects, achieving
effective tissue targeting, and managing toxicity–as well as
optimizing bioavailability, half-life, and tissue localization–remain
critical hurdles for the clinical translation of these compounds.
Consequently, FTO inhibitors are mainly used in experimental
settings and have not advanced to clinical application, primarily
due to these specificity, pharmacokinetic, and localization
limitations (Huff et al., 2021). Notably, STC-15, an inhibitor of
the m6A writer METTL3, has recently become the first RNA-
modifying enzyme inhibitor to enter clinical trials
(NCT05584111) (Medicine, 2024). This milestone underscores

the growing potential of RNA-modifying enzyme inhibitors,
suggesting that the clinical advancement of FTO inhibitors may
soon follow.

In summary, while the development of FTO inhibitors holds
promise, the future identification of clinically effective and highly
selective, tissue-targeted FTO-targeting agents is critical. Success in
this area will be essential for creating novel treatments for various
diseases, requiring close integration of structural biology insights,
tissue-specific targeting strategies, and careful optimization to
ensure drug-like properties amenable to clinical use.

8 Conclusion and perspectives

This review thoroughly discusses the critical role of the FTO
protein in both health and disease, with a particular focus on its
involvement in obesity and related non-communicable diseases such
as diabetes, cardiovascular disease, and cancer. FTO, a key enzyme
in the regulation of RNA modifications, influences a variety of
physiological processes including RNA splicing, export, decay, and

FIGURE 3
The role of FTO in health and disease. The image illustrates the diverse roles of FTO, showing that altered FTO levels affect various physiological and
pathological processes, including energy balance and adipogenesis (e.g., through STAT3/ERK1/2 pathway or AMPK pathway regulation), diabetes (e.g.,
NF-κB pathway regulation), cardiovascular functions (e.g., SERCA2a regulation) and cancer (e.g., PI3K/Akt/mTOR pathway or MYC oncogene regulation),
demonstrating its broad impact across the metabolic functions. CM – cardiomyocytes; FTO – fat mass and obesity-associated; ROS – reactive
oxygen species.
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translation. Its dysregulation is linked to obesity through
mechanisms affecting energy balance, appetite, and adipogenesis.

The relationship between FTO and various diseases is complex.
In obesity, FTO is associated with increased food intake and reduced
satiety, contributing to higher BMI. It also plays a significant role in
adipogenesis and the regulation of thermogenesis, further
emphasizing its importance in metabolic disorders.

In diabetes, FTO influences insulin secretion and sensitivity,
with genetic variants linked to an increased risk of T2DM.
Additionally, FTO’s role in diabetic complications, such as
nephropathy and retinopathy, suggests it could serve as a
potential biomarker or therapeutic target.

FTO’s involvement in CVDs is multifaceted, with evidence
suggesting both protective and detrimental effects depending on
the context. It is implicated in cardiac hypertrophy, heart failure, and
myocardial ischemia-reperfusion injury, among other conditions.

Finally, FTO’s role in cancer is discussed, particularly its impact
on tumor metabolism and proliferation. While FTO is generally
upregulated in various cancers, contributing to tumor progression,
its effects can vary depending on the type and context of the cancer.
The role of FTO in CVDs and cancer exemplifies its broad influence
on shared mechanisms, including cell proliferation and metabolic
regulation, highlighting its specificity in disease manifestation while
underscoring its universal function across diverse cell types, from
cardiovascular to tumor cells.

Overall, this review underscores the importance of FTO as a
central player in the epitranscriptomic regulation of health and
disease (Figure 3). However, several challenges remain before
these research findings can be implemented in clinical settings.
A major obstacle in biomedical science is translating discoveries
from laboratory animals, such as mice and rats, to human
physiology. Substantial metabolic differences between rodents
and humans–such as a 6.4-fold higher metabolic rate and a 9.6-
fold faster protein turnover in rats (Agoston, 2017) – suggest
species-specific variations in FTO function, given its role as a
key metabolic regulator. These interspecies differences in FTO
biology remain insufficiently understood, highlighting the need
for further investigation to ensure the relevance of laboratory
findings for clinical applications. Given FTO’s broad impact on
physiology and pathophysiology, it remains a promising target
for therapeutic interventions across a range of conditions.
However, additional research is essential to fully elucidate its
complex mechanisms and to develop effective, selective
inhibitors that are suitable for clinical use. It is crucial that
such therapeutic strategies are designed with precision to ensure
that targeting FTO in one context does not disrupt its regulatory

functions in other tissues or processes, thus avoiding potential
adverse effects, such as treating CVDs at the risk of promoting
cancer or other pathologies.
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