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Interferon types-I/II (IFN-αβ/γ) secretions are well-established antiviral host
defenses. The human immunodeficiency virus (HIV) particles are known to
prevail following targeted cellular interferon secretion. CD4+ T-lymphocytes
are the primary receptor targets for HIV entry, but the virus has been
observed to hide (be latent) successfully in these cells through an alternate
entry route via interactions with LFA1. HIV facilitates its post-entry latency-
driven mode of hiding through these interactions to displace or inhibit
ISG15 by forming the HIV1-LFA1 complex in lieu of ISG15-LFA1, which would
at least transiently halt and bypass type-I IFN secretion. This could explain why the
elimination of HIV from cellular hideouts is difficult. Hence, HIV clearance needs
to be addressed to reverse its latency in LFA1+ T-lymphocytes andCD34+/CD133+

early progenitor stem cells. In the context of hematopoietic or endothelial stem-
progenitor cells (HSPC/ESPC), we discuss the potential role of LFA1 in HIV
permissiveness and latency in LFA1-CD34+/CD133+ versus LFA1+CD34+/
CD133+ HSPCs/ESPCs. In HIV latency, the viral particles may remain engaged
on the naïve-resting cells’ LFA1, which are then unable to accommodate the
ISG15 molecules owing to conformational changes induced upon occupation by
the virus at the ISG15-LFA1 binding or interaction sites through halting of the
subsequent downstream type-II IFN secretion. Viral binding to LFA1, including its
transfer through activated-naïve cell–cell contacts may be a key step that needs
to be addressed to prevent “transient or partial” virus-induced shutdown of type-I
IFN secretion. This process allows an alternate viral entry and hideout site via LFA1.
The subsequent administration of recombinant ISG15 may ensure sufficient type
I/II IFN release to promote, enhance, or sustain the innate immune responses.
Thus, combination antiviral therapies could potentially include exogenous
ISG15 to maintain or sustain biologically and clinically relevant ISG15-LFA1
interactions. In addition to alternating with co-challenges of PKC-pro-LRA-
drug modulators, this is administered post (antiretroviral therapy) and
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continued with periodic ART until permanent elimination of viral resurgence and
latency is achieved in patients with HIV/AIDS. This triple-combination drug regimen
is expected to pave the path for systemic virus clearance in vivo.
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interferon types-I/II, interferon stimulated gene-15, lymphocyte function-associated
antigen-1, endothelial stem-progenitor cells, hematopoietic stem-progenitor cells,
naïve/resting activated cell–cell contact, intercellular HIV transfer, HIV latency reversal

1 Introduction

Viruses, including the human immunodeficiency virus (HIV)-1,
often seem to find ways to overcome the host antiviral defenses of
cellular interferon secretions (García-Sastre, 2017), such as in
lymphocytic choriomeningitis virus (LCMV) infection (Perro
et al., 2020). Conventional antiretroviral therapy (ART) regimens
(Withers-Ward et al., 1997; Koka et al., 1998; Broder, 2010;
Volberding and Deeks, 2010; Liner et al., 2010) for containing or
eliminating HIV infection are inadequate for complete viral
clearance in infected individuals. The primary cause of this viral
elusiveness to ART is its ability to hide in the infected cells and
escape immune surveillance. Investigative efforts to eliminate the
viral particles from their cellular hideouts have shown increasing
efficacies. These latency-reversing agents (LRAs) are being
continuously “tailored” to achieve increasing risk-versus-benefit
intended for HIV/AIDS patients in ongoing sequential
experimental approaches using humanized mouse model systems
(Brooks et al., 2003; Mehla et al., 2010; Sloane et al., 2020; Marsden
et al., 2020; Chen et al., 2022; Dimapasoc et al., 2024; Ngo
et al., 2024).

Although CD4+ T-lymphocytes are the primary receptor targets
for HIV entry that ultimately lead to productive infection, the virus
has been shown to enter these targeted CD4+ T-cells through an
alternate route via interactions with the lymphocyte function-
associated antigen (LFA)-1 (Hioe et al., 2001; Beauséjour and
Tremblay, 2004; Tardif et al., 2009; Kondo and Melikyan, 2012).
Complexation of the virus with LFA1 suggestively impedes the
interferon stimulated gene (ISG)-15 from attaching to LFA1,
resulting in at least transient prevention of type-I IFN secretion
(Boasso, 2013; Swaim et al., 2017). This facilitates the virus as an
alternate route for its latency-producing entry and a mode to hide
primarily in naïve or resting T-cells or in early progenitor stem cells,
following which the virus also shuts-down, impedes, or interferes
with type-II IFN secretion (Swaim et al., 2017). Otherwise, if not
blocked by the virus, the human host can defensively counteract the
pathogen invasion by type-II IFN-mediated killing of the
productively HIV-infected cells along with simultaneous
elimination of the virus particles by host reaction-elicited effector
cell vesicles (Perng and Lenschow, 2018; Fernández et al., 2020;
Kespohl et al., 2020).

IFN secretions are influenced by ISG15-LFA1 interactions that
elicit innate immune responses through cytotoxic T-lymphocyte
(CTL) and natural killer (NK) effector cells. Modified Vaccinia virus
Ankara (MVA)-based recombinant vectors that express HIV1 Env/
Gag-Pol-Nef and ISG15 show that the Armenian hamster
ISG15 overexpression can increase type-I IFN production and
enhance HIV-specific immune responses, specifically by
enhancement of the HIV-restricted CTLs in immunized rodents

(Falqui et al., 2023; Gómez et al., 2020). These observations are
attributable to the difference in the ISGylation function of the
mutant ISG15 (negatively) compared to wild-type ISG15
(positively) and thus to the ISGylation-dependent activation of
LFA1. Other studies in mice unrelated to HIV have shown that
CTL responses were enhanced in consequence to the initial
ISG15 influences on NK cells (Iglesias-Guimarais et al., 2020;
Villarreal et al., 2015). This NK-CTL functional relationship is
relevant for its occurrence or dependency in the context of
ISG15-delivered innate immune responses. However, species-
specific molecular structures and ISGylation vis-à-vis immune
function differences in ISG15 may exhibit variable relevancy or
degree of innate immune response efficacy (Speer et al., 2016;
Krishna Priya et al., 2022). Extending the reach of this efficacy
may be inadequate to eliminate HIV from its latency hideouts since
the virus may seek refuge in LFA1 (the receptor of ISG15) to escape
immune surveillance.

Entry through LFA1 could be the reason why HIV is difficult to
be eliminated from its host cellular hideout, and immune
suppression or evasion is extended through the naïve or resting
host CD4+ T-cells (Platanias, 2005; Wang et al., 2009; Starling and
Jolly, 2016; Kondo et al., 2022; Shi and Shao, 2023). Thus, the latent
HIV must be cleared from LFA1-mediated binding to
T-lymphocytes ( Han et al., 2004; Dai et al., 2009; Ramakrishnan
et al., 2012; Wietgrefe et al., 2023) as well as from the virus-entry-
permissive early-differentiation-stage hematopoietic CD34+ or
CD133+ endothelial stem-progenitor cells (HSPCs/ESPCs) for
total virus clearance (McNamara et al., 2012, 2013).

We previously reported that these HSPCs are resistant to
productive direct HIV1 infection in vivo, and activation of viral
presence in the HSPCs results in their imminent apoptosis (Koka
et al., 1999; Padmanabhan et al., 2020; Koka and Ramdass, 2023,
2024). In the context of these HSPCs or ESPCs, we also discuss the
relevance of LFA1 in potential HIV permissiveness and latency in
LFA1-CD34+/CD133+ versus LFA1+CD34+/CD133+ HSPCs/ESPCs.

Cellular secretion of ISG15 from T-lymphocytes and certain
other cell types signal LFA1 in both an autocrine or a paracrine
manner (Swaim et al., 2020). We propose the blocking of viral
binding to LFA1 through restoration of ISG15-LFA1 complexation
as necessary until permanent viral clearance as a key step to
preventing viral interference in IFN secretions. In this context,
administration of exogenous recombinant ISG15 may ensure
type-II IFN (Zhao et al., 2005) and perforin (Spaner et al., 1998;
Kaser et al., 1999; Hersperger et al., 2010) secretions of lytic granules
release by the CTL and NK cells in innate immunity responses.
Thus, we propose that combination antiviral therapies include
exogenous recombinant ISG15 (Bogunovic et al., 2013)
administration post-ART to achieve minimal undetectable viral
loads, along with continued and periodically intermittent
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alternating ART challenges with the proposed protein kinase C
(PKC)-pro-LRA-drug modulators (Brooks et al., 2003; Mehla et al.,
2010; Sloane et al., 2020; Marsden et al., 2020; Chen et al., 2022;
Dimapasoc et al., 2024; Ngo et al., 2024) for complete HIV
clearance in vivo.

2 LFA1 as dual alternate cellular
receptor for HIV1 entry and
latency hideout

HIV1 enters the T-cells through dual routes comprising the
primary CD4 antigen and LFA1 interactions (Hioe et al., 2001).
Viral entry using the receptor CD4 antigen ensures productive
infection when the T-lymphocytes are activated (Wang et al.,
2009). We postulate that the dual entry modes of the virus,
which include LFA1 (Hioe et al., 2001; Beauséjour and Tremblay,
2004; Tardif et al., 2009; Kondo and Melikyan, 2012), provide the
pathogen a “home” within the same CD4 phenotypic receptor cells
to evade immune surveillance. However, latency may not be
maintainable or sustainable when the entry occurs solely through
the CD4 primary receptor of the virus when the cells are in an
activated state instead of the naïve resting state. LFA1 in the
“vacated” state unoccupied by ISG15 is seized by the virus to
facilitate its latency-driven mode of entry, enabling escape or
evasion of host immune surveillance by at least transient and
partial prevention of the outside-in signaling. This expectedly
occurs from the binding of type-I IFN to the interferon alpha

receptor (IFNAR) on the cell surface (Platanias, 2005; Swaim
et al., 2017). Consequently, downstream type-II IFN gamma
secretion is aborted, which would otherwise initiate the IFN-γ-
mediated release of extracellular vesicle granules to achieve perforin-
mediated killing of the productively infected activated CD4+ cells
(Spaner et al., 1998; Kaser et al., 1999; Hersperger et al., 2010)
(Figure 1). This is possible owing to the triggering of the ISG15-
induced innate immunity-directed vesicles released from the NK
cells or by the CTLs for their lytic action on the virus-replicating
CD4+ cells.

3 Expected LFA1 conformational
changes and cell activation state
facilitating HIV entry and latency

The coupled dual-strand CD11a/CD18 integrin LFA1 exists in
multiple conformations depending on the cellular naïve resting and
activation states (Wang et al., 2009). LFA1 has three different
conformations depending on the activation state of the CD4+

T-cells (Kondo et al., 2022). Activated T-cells require LFA1 to
attain or transition into the high-affinity extended-open
conformation following transition from the naïve resting state,
where the inactive conformational state of LFA1 exists in a low-
affinity bent-closed or an intermediate-affinity extended-closed
conformation (Wang et al., 2009; Kondo et al., 2022; Shi and
Shao, 2023). Expectedly, this cellular activation is incidental to
parallel LFA1 activation, or vice versa to the naïve or resting

FIGURE 1
Mechanisms of clearance of HIV latency in or fromCD4+ T-cells. The infection is ultimately eliminated by the IFN-γ-induced effector vesicles of the
cytotoxic T-lymphocytes (CTLs) and natural killer (NK) cells that attack and kill the HIV-replicating cells.
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states (Wang et al., 2009; Kondo et al., 2022). LFA1-activation-
related conformational changes also involve cell-surface molecular
interactions between the ligand, intercellular adhesion molecule-1
(ICAM1 or CD54) involved in leukocyte adhesion, and its receptor
LFA1 (αLβ2 or CD11a-CD18) (Long, 2011). Coincidental to the
conformational changes of LFA1, the involvement of ICAM1 and its
interactions with both the CD11a and CD18 strands of
LFA1 presumably promote the latency-driven intrusions by the
viral particles (Figure 2). Such facilitation of HIV entry can occur
independent of LFA1 when the virus latches onto CD4 or is
anchored onto the LFA1-ICAM1 complex from cell–cell contacts,
thereby stalling the ISG15 binding to LFA1 that would otherwise
signal IFN secretions to promote antiviral innate immune responses.

4 Importance of cell–cell contacts in
subsequent latency-driven HIV passage
from activated to naïve or resting
cells in the stromal microenvironment
in vivo

Intercellular contacts within the stromal microenvironment are
essential for transferring the virus from the infected and activated
cells harboring replicating viruses to naïve or resting cells to facilitate
induction and maintenance of latency (Evans et al., 2010; Bracq
et al., 2018; Walling and Kim, 2018). We postulate that this transfer
may occur through LFA1 when the naïve resting cells begin to
transition from a low-affinity bent-closed conformation to an
intermediate-affinity extended-closed LFA1 conformation,
preempting the ISG15 from occupying the different yet vacant

integrin sites or domains for virus transfer or docking.
Thereafter, during the resting–activated cell–cell contacts, both
the cells and LFA1 are transitioned into their activated states as
an interdependent requirement. The dual-activated high-affinity
cells and LFA1 facilitate the docking of the virus particles onto
the latency-supporting naïve resting T-cells, thereby blocking
ISG15-mediated LFA1 interactions and outside-in signaling that
would otherwise promote IFN-γ secretion required for antiviral
activity. This supports the assumption that the virus can pass from
the activated to naïve resting CD4+ T-cells, which may even have
greater plausibility of occurrence during the activated–naïve
intercellular contact in vivo.

Likewise, it is plausible that intercellular contacts between two
resting CD4+CD25− cells could induce LFA1 conformational
changes so as to transfer HIV between these cells, with the
caveat that a productive viral infection may occur in the resting
CD4+CD25− cells (Wietgrefe et al., 2023). This virus transfer is
reportedly due to the presence of a functional positive transcription
elongation factor b (P-TEFb) (Wietgrefe et al., 2023); P-TEFb is
composed of cyclins T1 or T2 and cyclin-dependent kinase 9 that
control or regulate the elongation phase of transcription by RNA
polymerase II (Fujinaga et al., 2023). This helps the potentially
smaller HIV transcripts become susceptible to full-fledged
transcription of the latent or truncated infectivity-prone virus
particles. The reported findings (Wietgrefe et al., 2023) lend
credence to our postulate herein that the resting/naïve–activated
intercellular contact is a prerequisite for HIV transfer across cells,
unless the circulating plasma virus particles directly enter the
primary cells via CD4, yet implausible via LFA1. However, such
an argument may not be sustainable. Should a non-LFA1-driven

FIGURE 2
Conformational changes of LFA1 due to outside-in and inside-out signaling and their projected influences upon interactions with HIV.
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CD4 virus entry mode from the activated to naïve/resting T-cells
occur during cell–cell contact, immediate latency may not be
prevented. However, viral replication is expected to resume post-
activation of the virus-hosting resting/naïve cells. In this context,
HIV entry via CD4 elicits ISG15-mediated innate immune responses
and susceptibility to ART to attain “undetectable” virus loads,
whereas virus entry via LFA1 halts or interrupts
ISG15 availability for targeted pathogen killing and requires the
action of LRAs. Furthermore, exogenous ISG15 supply to
compensate for the potentially evident exhaustion of the CTL
and NK effector cell potency levels is a necessary
consideration (Table 1).

5 Competition between HIV1 and
ISG15 to occupy the
LFA1–ICAM1 complex binding sites
or domains

HIV1 may compete with the type-I IFN signaling of ISG15 to
serve the dual purpose of its entry and hideout by utilizing the
receptor CD4 (with CCR5/3 or CXCR4 coreceptors) (Koka et al.,
1998; Zhang et al., 2010) and LFA1 (comprising
CD11a+CD18 strands) engaged on the cell surface to replicate
and hide, respectively (Wang et al., 2009; Kondo et al., 2022; Shi
and Shao, 2023). This implies that these naïve resting and activated
T-cells carry LFA1 in a particular conformation out of its three
different states classified as low (bent-closed), intermediate
(extended-closed), and high (extended-open) affinities (Wang
et al., 2009; Kondo et al., 2022). This asks the question of which
of these LFA1 conformations facilitates viral binding for entry and
hiding. The virus presumably has to “lock-in” or “latch-on” to
LFA1 when the head of this integrin molecule is available. This
suggests intermediate- or high-affinity extended-head integrin
conformation as suitable for initiating virus–LFA1 interactions
but not the low-affinity LFA1 with the presumptive unavailable
extracellular head (or domain) in the bent-closed conformation
(Wang et al., 2009; Kondo et al., 2022) (Figure 2). Some differing

reports exist in that the LFA1 ligand ICAM1 may play a role in the
cell–virus interactions in a stabilizing capacity (Tardif and
Tremblay, 2003; Kondo and Melikyan, 2012) that may favor
latency or syncytium formation (Yu et al., 2020) where the
replicative virus particles are released into the intercellular
environment. Cells involved in syncytia-induced fusions may
exist in the activated state of LFA1, promoting replication of the
released virus and thereby eliciting ISG15-mediated innate immune
responses. Syncytia-induced fusions that do not deliver latency are
expectedly different from the resting–activated cell–cell contacts
described herein that induce virus latency. Cell fusions of syncytia
formation are more possible for the CD4+ T-cells upon infection by
the CXCR4-tropic HIV strains but not for cells that do not support
productive infection of the replicating virus particles, such as the
stem-progenitor cells (Koka et al., 1998; Koka et al., 1999; Zhang
et al., 2010).

6 Permissiveness of HIV in the
productive-infection-resistant CD34+/
CD133+ stem-progenitor cells

HIV latency in the stem-progenitor cells was reported previously
(McNamara et al., 2012, 2013). In this regard, the purportedly
implicated CD34+ HSPCs or CD133+ ESPCs (Gunji et al., 1992;
Torensma et al., 1996) do not survive and presumably undergo rapid
apoptosis upon viral entry or transfer into these cells (Koka et al.,
1999; Zeng et al., 2006), as depicted in Figure 3. Hence, the virus is
expected to enter the HSPCs/ESPCs via LFA1 as the early or
primitive progenitor LFA1-CD34+/CD133+ (or even LFA1-CD34-/
CD133+) cells differentiate into the LFA1+CD34+/CD133+ cells even
as the “silent-intrinsic” lineage commitment is not expressed
phenotypically (Gunji et al., 1992; Torensma et al., 1996). This
further suggests that these cells may not have acquired the CD4+

T-cell lineage commitment without explicit expression of this
phenotype, an argument that supports the reported virus latency
in these stem-progenitor cells independent of P-TEFb (McNamara
et al., 2012, 2013). The cellular receptor scenarios for virus entry are

TABLE 1 Projected combination antiretroviral therapy (ART) regimen for complete systemic eradication of HIV infection in patients. The efficacy of the
proposed inclusion of recombinant ISG15 with PKC modulators (PKCM) to release the latent virus and attack the pathogen through immune responses
simultaneously is reflected in the IFN-γ levels. Furthermore, alternating cycles of ISG15+PKCM treatment with ART to nullify viral replication should lead to
eventual viral clearance even beyond the latent minimal undetectable viral load to zero non-recurring infection level so that further LRA-PKCM is not
required.

Event sequence Therapy agent Viral load IFN-ƴ level Infection status

1 ART Minimal Subnormal
Suboptimal

Latent

2 PKCM + ISG15 Increase Increase Partial release + Latent

3 ART Minimal Subnormal
Suboptimal

Neutralized + Latent

4 PKCM + ISG15 Increase Increase Partial release + Latent

5 ART Minimal Subnormal
Suboptimal

Neutralized + Latent

6 PKCM + ISG15 Increase Increase Release complete

7 ART Zero Normal
Optimal

Neutralized - Zero latency
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different in the CD34+ HSPCs and CD133+ ESPCs than in the
CD4+ T-cells, which comprise both the viral primary cellular
receptor CD4 antigen and alternate latency-driven secondary
LFA1 integrin. However, LFA1 on the non-committed stem-
progenitor cells, despite expressing only a coreceptor CXCR4 or
CCR5 for virus entry, may also provide a refuge for the virus in the
latency-driven hideout mechanism. The actual mode of latency-
driven virus entry from the activated T-cells into naïve resting
T-cells or into CD4 receptor-lacking HSPCs or ESPCs through
LFA1 may or may not be different. The primary structural
differences at the amino-acid level between different
LFA1 molecules are expected to be remote even though the cell
types involved in intercellular contacts are not the same.
Furthermore, stem-progenitor cells are replete with multiple
differentiation stages that are not possessed by terminally
differentiated T-cells. Hence, differences between these cell types,
including the expression levels of various transcription factors of the
CD34+ stem-progenitor cells (Kim et al., 2009; Bai et al., 2010;
Gomes et al., 2002; Hughes et al., 2020; Sonoda, 2021), can influence
cell fate, lineage commitment, or differentiation stage at the onset of
viral entry and latency deliverance. Moreover, transcription factors
other than P-TEFb may be involved in the susceptibility to shelter
latency. These occurrences, in turn, have consequences on the
susceptibility of the stem-progenitor cells to ISG15-LFA1-
mediated antiviral activity. This is because these cells do not
harbor a productive HIV1 infection but are expected to undergo
rapid apoptosis upon any intracellular virus release even prior to
CTL or NK cell effector activity. Herein, LRA action on the stem-
progenitor cells is expected to enable latent virus release, such that

the cycles of ART and ISG15+PKCM may be utilized as
proposed (Table 1).

7 Different events related to cell–cell
contact for LFA1-mediated HIV entry
into the stem-progenitor cells

Although naïve resting T-cells already express the CD4 virus
receptor CD4+CD25− phenotype, the CD34+/CD133+ early or
primitive stem-progenitor cells do not have such a primary
cellular mechanistic entry route even when the virus coreceptors
CCR5 or CXCR4 have been implicated (Carter et al., 2010, 2011;
Sebastian et al., 2017; Zaikos et al., 2018). These cells exist in multiple
stages of differentiation, including primitive, lineage-committed,
mature, and activated states, with LFA1 in the low-affinity bent-
closed, intermediate-affinity extended-closed, high-affinity
extended-open, and potentially apoptotic correlating roles (Gunji
et al., 1992; Torensma et al., 1996; Zeng et al., 2006), similar to the T-
cells but with exception of apoptotic events from intracellular
mechanistic conditions (Wang et al., 2009; Kondo et al., 2022).
Hence, the virus could have a time-delayed latency-driven entry into
the stem-progenitor cells after coming into contact with the T-cells
since the differentiation stages of these cells need to be considered
(Gunji et al., 1992; Torensma et al., 1996). Whether a purported
CD4-anchorage-independent virus entry into the progenitor cells is
plausible, and if so the differentiation stage at which such entry can
occur is further complicated by the occurrence of multiple
differentiation stage phenotypes for cell lineage vis-à-vis virus

FIGURE 3
Mechanisms of clearance of HIV latency in or from CD34+ or CD133+ stem-progenitor cells. Since these cells do not sustain a productive HIV
infection, latency reversal within the cells ultimately terminates through IFN-γ-induced apoptotic self-lysis.
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permissiveness. The virus remains dormant or latent during these
differentiation stages of the stem-progenitor cells before cell
maturation, and simultaneous LFA1 activation leads to imminent
cellular apoptosis (Figure 3). This mechanism is different from the
activation of the effector function induced by the virus in the CD4+

T-cells, thereby releasing lytic granules (Figure 1). The reason for
this variation in infected cell killing or death is that the replicative
potential of the virus in the infected thymocytes potentiates an
effector influence (Hersperger et al., 2010), whereas the inability of
the virus to replicate in the CD34+ HSPCs or CD133+ ESPCs (Koka
et al., 1999; Padmanabhan et al., 2020; Koka and Ramdass, 2023,
2024) elicits a suicidal apoptotic influence (Zeng et al., 2006).
Sustained effector functions are important for virus clearance
when innate immunity is elicited in the replicating mode through
the influence of ISG15, but this is unlikely with regard to replication-
resistant stem-progenitor cells where apoptosis is the likely event
(Figure 3). Virus replication may resume when these cells acquire
mature cell phenotypes or become LFA1 activated upon
differentiation. In the unlikely event that the terminally
differentiated stem-progenitor cells acquire a CD4+ T-cell
phenotype prior to apoptosis, then the effector function may be
invoked at that stage. However, LRA action may preempt apoptosis,
at which time the cycles of viral release and killing by ART and
ISG15 treatments emerge as necessary options (Table 1).

8 Transient or partial blocking of ISG15-
mediated interferon secretions by the
virus entry to perpetuate pathogen
survival and latency

The usurpation of LFA1 sites by HIV may effectively block the
legitimate binding of ISG15 or ICAM1 to the integrin and promote
pathogen entry (Figure 2) by downregulating both type-I IFN and
subsequent downstream end type-II IFN secretions that block
normal outside-in signaling mechanisms (Figure 1). These
antiviral responses are requisites in their intrinsic innate immune
responses and effector functions of human host cells in vivo. The
most resistive influence of HIV is two-pronged: first, the virus evades
humoral antiviral immunity through excessive and rapid multiple
replicative strain elicitation potential; second, the virus has
conceived or envisaged an efficient latency mechanism to hide
from the CTL and NK cell effector functions by entering through
LFA1. ISG15 binding to LFA1 is necessary for inducing the innate
immunity of the effector CTL and NK cells to kill the infected cells.
Hence, an efficient type-I/II IFN-α/β/γ secretion process needs to be
sustained for virus clearance, for which the binding of ISG15 to
LFA1 is required or the requisite ISG15–LFA1 interactions must be
maintained.

9 Recombinant ISG15 inclusion as part
of combination therapy for
virus clearance

Complementation of the exogenous recombinant ISG15 post-
ART induced undetectable viral loads in the human host,
together with the PKC-agonist LRAs (Tanaka et al., 2022;

Grau-Expósito et al., 2019; Ait-Ammar et al., 2020; Spivak and
Planelles, 2018; Rodari et al., 2021; Debrabander et al., 2023) is
worthy of investigation as proposed (Table 1). Periodically
repeated treatments with these PKC modulators (PKCMs)
(Fine et al., 1996; Lim et al., 2015) can help with PKCM-
induced latent virus release for concomitant administration of
exogenous recombinant ISG15 (Table 1). Intermittent or
periodic recombinant ISG15 in combination with the LRA-
prodrug PKCMs (e.g., bryostatin-1 or prostratin) (Sloane
et al., 2020; Marsden et al., 2020; Dimapasoc et al., 2024) can
be administered until complete viral clearance. Class-I selective
histone deacetylase inhibitors were also suggested or utilized for
HIV latency reversal in stem-progenitor cells (Painter et al., 2017;
Zaikos et al., 2018). Since ISG15 reportedly blocks viral release
late in the budding process (Pincetic et al., 2010), fully functional
and efficacious LRA action may be achieved by alternating co-
challenge of ISG15 + LRA-prodrug with ART in HIV-infected
patients. A sequential PKCM immediately followed by
ISG15 administration cannot be ruled out completely, but it
may not prevent the virus from reinfecting the neighboring
cells during the lag time without the suggested alternating
treatment with ART. Furthermore, rejuvenation of impaired
IFN-γ secretion by CTL and NK cells with exogenous
ISG15 supply is an important consideration for preventing the
exhaustion of these effector cells for maintaining lytic granule
exocytosis and mediating perforin-induced killing of the virus-
infected cells. Such a recharge potential may be achieved through
periodic intermittent ISG15 challenges to sustain the IFN-γ
induced exocytosis of the vesicles carrying the lytic granules,
so that the spurts of LRA-prodrug mediated release of latent
virus-carrying cells can be attacked and neutralized through co-
regimen ISG15. This can be followed by ART to eliminate
recurring viral replication and achieve eventual prevention of
pathogen resurgence for complete viral clearance in HIV-
infected patients in vivo.

10 Discussion

Cell–cell contacts between infected activated CD4+ cells and
uninfected naïve resting or early differentiation CD4+CD25−,
CD34+CD38−, or CD133+CD45− expressing cells may allow (the
passage of) HIV to become latent in these yet-to-be activated naïve
or resting cells. Such virus entry is dependent on the permissive cell
surface, intracellular and extracellular LFA1 conformational
changes (Figures 1–3). Viral replication in the activated naïve
cells may be required for IFN-γ secretion to elicit innate
immunity such that the secreted CTL/NK effector vesicles can
target and eliminate the infected cells. Here, the exogenously
replenished ISG15 can kill the latency-reversed virus-harboring
cells through effector-cell-mediated enhanced efficiency (Table 1).
In the event of weakened or exhausted ISG15 potency, renewed viral
replication in the LRA-reactivated cells can occur, including
reinfections of the neighboring cells. Hence, periodically
administered steady ISG15 levels may prevent reattachment of
the latency-reversed virus to the LFA1 integrins of neighboring
naïve or resting cells to reestablish latency via cell–cell contacts in
the stromal microenvironment in vivo. Concomitant and
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coordinated PKC-prodrug activation of the latently infected cells
that upregulate or become positive for CD69, together with
exogenous recombinant ISG15 and alternating with ART may aid
in efficient elimination of the infected cells that are conducive to
renewal of replicative virus particles. This is indicated by the
cessation of any positive reoccurrence of virus detection to
achieve complete virus clearance in patients with HIV/AIDS.

The “chicken-and-egg” issue in the initial HIV1 infection of
resting or activated CD4+ cells in humans in vivo may be
considered herein. One can question whether LFA1 of the
resting CD4+CD25− cells preempts the activated CD4+CD25+

cells to receive this virus at the very first contact in vivo in the
absence of an activated–resting intercellular contact since
LFA1 also provides an entry mode for the virus. The viral
entry via CD4 into the yet-to-be activated resting T-cells can
reportedly lead to productive infection with replication cycles
with the caveat that functional P-TEFb expression is a
requirement in these CD4+CD25− cells (Wietgrefe et al., 2023).

HIV latency most likely occurs via LFA1 in the CD34+/CD133+

early progenitor stem cells (that are yet to acquire a mature
CD4 T-cell phenotype) when naïve CD34+/CD133+ cells come
into contact with activated T-cells carrying the replicating virus,
when both cell types are in contact within the stromal niches in vivo.
Direct LFA1-mediated viral entry into these primitive or early yet-
to-mature stem-progenitor cells is even less plausible because of the
bent-closed LFA1 conformation, where access to the virus occurs
even in the absence of such cell–cell contacts between two primitive-
differentiation-stage progenitor cells. Similar to the adult stem cells,
it may be possible for the stem-progenitor cells to engage in global
suppression of transcription (Freter et al., 2010). This may occur in
the progenitor cells at a more primitive stage than a mature
differentiation stage while still lacking the CD4 phenotypic cell
subpopulation. The bent-closed LFA1 conformation in the primitive
cells could at least partially open up in the run-up to mature cells to
allow HIV entry into the intrinsically non-phenotypic lineage-
committed or mature progenitors where LFA1 acquires a virus-
entry-supportive conformation.

HIV1 LRAs prostratin and bryostatin-1 have been reported to
adversely affect the blood–brain barrier (BBB) (Dental et al., 2017). The
colony stimulating factor-1 receptor (CSF1R) inhibitor, BLZ945, was
found to mostly eradicate simian immunodeficiency virus infection of
the non-human primate rhesus macaque brain CD163 and
CD206 expressing perivascular macrophages (Bohannon et al.,
2024), leaving the largely uninfected but required microglia
preservation (Pasciuto et al., 2020) mostly intact. Moreover, since
then, improved LRA-prodrugs are synthesized (Sloane et al., 2020)
that are also useful for such patients suffering from HIV infection of
their brains. Hence, additional drugs such as BLZ945 as necessary, be
included as part of the ART as suggested (Table 1) to clear the presence
and detection of otherwise systemic LRA-evasive virus particles from
across the BBB. Such co-regimen with ART has potential applications
for virus elimination systemically from different infected cells including
macrophages.

In conclusion, although we can argue that excessive IFN-γ
secretion in HIV infection is proinflammatory and undesirable,
optimal levels are required to maintain antiviral responses for
sustained efficacy of the effector cells (Table 1). Hence, in
addition to and in conjunction with ISG15, periodic intermittent

challenges with appropriate LRAs should be considered for
complete clearance of the latent virus.

The question arises whether the addition of ISG15 in the
combination ISG15 + LRA therapy can suffice or be effectively
efficacious for permanent virus clearance in HIV-infected patients.
In general, therapies for clinical conditions are invariably fraught
with adverse side-effects. We suggest that clinical trials be conducted
with HIV/AIDS patients to achieve post-ART-mediated minimal
detectable virus loads in vivo and subsequent administration of
ISG15 in combination with LRA-prodrug PKCMs alternating with
ART. Appropriate recombinant ISG15 infusions are expected to
maintain the innate immunity relatively free from exhaustion and
weakening of CTL + NK effector cells and strengthen their
responses. Thus, an intermittent periodic LRA/PKCM +
ISG15 combination mediated intracellular release alternated with
ART is suggested to prevent intercellular spread and renewal of the
released latent virus replication. ART efficacy may also be synergized
with ISG15-mediated enhanced dual-mode killing of the infected
cells through ISG15-enhanced IFN-γ and perforin secretion by the
vesicles released by the rejuvenated effector cells.
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