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Chronic kidney disease (CKD) is the progressive loss of kidney function/structure
over a period of at least 3 months. It is characterised histologically by the triad of
cell loss, inflammation and fibrosis. This literature review focuses on the forms of
cell death that trigger downstream inflammation and fibrosis, collectively called
regulated cell death (RCD) pathways. Discrete forms of RCD have emerged as
central mediators of CKD pathology. In particular, pathways of regulated necrosis
– including mitochondrial permeability transition pore (mPTP)-mediated
necrosis, necroptosis, ferroptosis and pyroptosis – have been shown to
mediate kidney pathology directly or through the release of danger signals
that trigger a pro-inflammatory response, further amplifying tissue injury in a
cellular process called necroinflammation. Despite accumulating evidence in
pre-clinical models, no clinical studies have yet targeted these RCD modes in
human CKD. The review summarizes recent advances in our understanding of
RCD pathways in CKD, looks at inter-relations between the pathways (with the
emphasis on propagation of death signals) and the evidence for therapeutic
targeting of molecules in the RCD pathways to prevent or treat CKD.
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Introduction

Chronic kidney disease (CKD) is a worldwide public health burden characterised by a
progressive decline in kidney function. The burden of CKD continues to rise, with global
prevalence increasing by ~25% in the decade 2007-2017 (Xie et al., 2018). The trends
underscore fundamental knowledge gaps, starting with the ill-defined pathophysiology of
this complex disease. Its pathophysiology is a multi-hit model, with an initial insult
triggering pathways of tubular loss/death that activate further hits in inflammatory and
fibrosis pathways and, if not switched off, progression to kidney failure (KF) (Yu and
Bonventre, 2020; Anders, 2014; Ferenbach and Bonventre, 2015). Newer drugs that slow the
progression of CKD have reduced residual risk of KF but by how much is not yet certain -
not all people respond to these drugs and none of these agents cure CKD. Innovative
strategies that focus on effective targeted treatment of CKD remain a health priority. Here,
we review current knowledge of the key cell death pathways in the pathogenesis of CKD,
relating functional evidence from studies of experimental animal models to observations
made in humans and identifying potential novel therapeutic targets for future clinical
management of CKD.
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Chronic inflammation and
interstitial fibrosis

Multiple genetic and environmental factors program the kidneys
for CKD, including advancing age, uncontrolled hypertension,
ethnicity, diabetes, obesity and prior episodes of acute kidney
injury (AKI) (Kazancioğlu, 2011). CKD is defined as
“abnormalities of kidney structure or function, present for a

minimum of 3 months” (KDIGO, 2024). Morphologically, CKD is
characterised by the histological triad of loss of specialised kidney
cells with infiltration of inflammatory cells and fibrosis within the
tubulointerstitial compartment, the interstitial tissue adjoining the
kidney tubules (Anders, 2014; Haase, 2015; Venkatachalam et al.,
2015; Rockey et al., 2015; Nangaku, 2006). The initial insult that
causes kidney cell loss/death is usually time-limited. However, where
there is a legacy of hypoxia in the environmental niches of these cells,

FIGURE 1
Signalling cascades of discrete modes of RCD. Apoptosis: (1a) The extrinsic apoptosis pathway is initiated following activation of death ligands [e.g.,
tumour necrosis factor receptor (TNFR) or TNF-related apoptosis-inducing ligand receptors (TRAILR)] by their respective ligands, which in turn triggers
(1b) proteolytic cleavage of cysteine proteases, named caspases, culminating in the maturation of caspase-7 (CASP7) and caspase-3 (CASP3). (1c) Active
caspase-3 proteolytically cleaves a range of targets, including (1d) ROCK1 which triggers membrane “blebbing” (1e) and apoptotic cell death. (1f)
Additionally, active caspase-3 mediates the cleavage of “flippases”, thus permitting phosphatidylserine presentation on the cell membrane outer leaf. (1g)
Active caspase-3 also interferes with anti-apoptotic signalling through cleavage of the p65 subunit of nuclear factor-κB (NF-κB). Mitochondrial
permeability transition pore (mPTP)-necrosis: (2a) An accumulation of mitochondrial reactive oxygen species (ROS; e.g., ↑O2

·) and calcium (Ca2+) trigger
the opening of themPTP. (2b) The F1F0 subunit of ATP synthase forms part of the innermitochondrial membrane pore as a component of a “synthasome”
complex, consisting of PPIF/cyclophilin D (CypD), ANT and PiC. (2c) The BAX and BAK proteins which accumulate in regions surrounding the mPTP are
hypothesised to form part of the outer pore on the cytosolic leaf of the mitochondrial membrane. (2d) Once formed, the mPTP facilitates the release of
protons (H+) and cytochrome c (CytoC) from the mitochondrial matrix into the cell. Proton release depolarizes the mitochondrial membrane (↓ΔΨmt),
preventing further ATP and NAD+ biosynthesis. (2e) The combination of these leads to failed homeostasis and necrotic cell death. Necroptosis: (3a)
Activation of TNFR, TRAILR and/or type I interferon receptors (IFNR) mediate the phosphorylation of RIPK-1 and -3, which in turn accumulate into
structures called “necrosomes” (3b). (3c-d) Alternative pathways of RIPK3 activation are also identified, including binding to TRIF in response to pattern
recognition receptor (PRR) engagement and Z-DNA-binding protein 1 (ZBP1) activated by viral or cellular RNA. (3e) Phosphorylated-RIPK3, in turn,
mediates the phosphorylation of MLKL (pMLKL). (3f) pMLKL accumulates on the inner leaf of the cell membrane near Zonula Occludens-1 (ZO-1). (3g)
These “hotspots” of pMLKL are hypothesised to overcome a physical membranolytic threshold, which causesmembrane blow-out and the lytic release of
the cytosol to the extracellular space. (3h) Phosphorylated RIPK3 also interacts with NF-κB signalling components to drive pro-inflammatory cytokine
release. Ferroptosis: (4a) The accumulation of free iron (Fe2+) and ROS (e.g., from the mitochondria) drives the oxidation of phospholipids and the
formation of phospholipid peroxyl radicals (PLOO·) (4b). These lipid peroxyl radicals propagate the oxidation of additional phospholipids, which, if not
terminated or repaired, will ultimately cause the loss of cell membrane integrity (4c). Repair of oxidised phospholipids may occur via two pathways: the
first (4d) involves ferroptosis suppressor protein 1 (FSP1) converting phospholipid peroxyl radicals (PLOO·) to phospholipid hydroperoxides (PLOOH). (4e)
The second pathway of lipid repair involves glutathione peroxidase 4 (GPX4) reducing in a glutathione (GSH)-dependent reaction phospholipid
hydroperoxides (PLOOH) to phospholipid alcohols (PLOH) (4f). (4g) System Xc− consists of a heavy chain component, 4F2hc (SLC3A2) and a transport
module, xCT (SLC7A11), and functions as a dedicated cysteine import system, which is an important precursor of glutathione.
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their signalling skews towards pro-inflammatory and fibrotic
pathways and further propagation of kidney cell death
(Kawakami et al., 2014). Kidney proximal tubular epithelial cells
(PTECs) are particularly susceptible to hypoxic dysfunction and cell
death in CKD because they rely on mitochondrial fatty acid
oxidation as a preferred energy source (Kang et al., 2015).
Identifying the specific kidney cell population/s and their
regulated cell death (RCD) pathway/s in the inflammatory/
fibrotic tubulointerstitium are essential pre-steps in identifying
new classes of therapeutics targeting the cell death pathways
driving progression of CKD.

Regulated cell death in CKD

Early descriptions of RCD date from the mid-19th century
(Clarke and Clarke, 1996). These early studies were the first to
describe the “blebbing” of dying cells which are now termed
apoptotic bodies (Clarke and Clarke, 1996). The term “apoptosis”
to describe RCD was first introduced by Kerr, Wyllie and Currie in
their seminal 1972 paper (Kerr et al., 1972). The field has grown
rapidly with distinct molecular processes and multiple pathways of
RCD identified {reviewed by [(Tang et al., 2019), (Galluzzi
et al., 2018a)]}.

The Nomenclature Committee on Cell Death (NCCD) defines
RCD as cell death processes that “rely on dedicated molecular
machinery” which, importantly, can be “modulated” through
either intrinsic-cellular processes (e.g., genetic) or extrinsic
factors (e.g., pharmacological) (Galluzzi et al., 2018a). The NCCD
distinguishes RCD from accidental cell death, which is the exposure
of a cell to mechanical, chemical or physical insults that rupture the
cell membrane causing a loss of cell integrity (Galluzzi et al., 2018a).
Cell death in CKD can be caused by both RCD and accidental cell
death (i.e., nephrotoxic) mechanisms. This review focuses on
pathways of RCD in CKD: (i) weakly immunogenic apoptotic
cell death; and (ii) immunogenic/pro-inflammatory necrotic cell
death pathways (summarized in Figures 1, 2).

Apoptosis

Apoptotic cell death occurs in response to either extrinsic or
intrinsic factors {reviewed by [(Tang et al., 2019), (Galluzzi et al.,
2018a)]}. Despite differences in extrinsic (e.g., death ligand binding
to death receptors) versus intrinsic [e.g., B-cell lymphoma (BCL)-2-
family proteins] activation pathways, both coalesce at the place of
autolytic cleavage of cysteine proteases, named caspases -
i.e., caspase-8 (extrinsic) or caspase-9 (intrinsic) (Galluzzi et al.,

FIGURE 2
NLRP3 inflammasome priming and activation. (A) Signal 1: Priming - Activation of membrane-bound and cytosolic pattern recognition receptors
[toll-like receptors (TLRs) by DAMPs/PAMPs (e.g., lipopolysaccharide; LPS), interleukin-1 receptors (IL-1R) by IL-1β, or tumour necrosis factor (TNF)
receptors by TNF cytokines] triggers a nuclear factor-κB (NF-κB) signalling cascade, which promotes the transcription of inflammasome components,
including NLRP3 and the pro-inflammatory IL-1 family cytokines, IL-1β and IL-18. (B) Signal 2: Activation - PAMP and/or DAMP [e.g., extracellular
ATP, pore-forming toxins (nigericin), or particular matter] trigger intracellular pathways (mitochondrial dysfunction, oxidative stress) that “activate” the
formation of the NLRP3 inflammasome “disk”, a multimeric oligomeric signalling platform, facilitated by the accessory NIMA-related kinase 7 (NEK7)
protein. The adaptor protein ASC [apoptosis-like speck-domain containing a caspase activation and recruitment domain (CARD)] is recruited to the
inflammasome, and, in-turn, interacts with caspase-1 through homodimeric interactions. Recruitment of caspase-1 to the inflammasome complex
mediates the dimerization, autolytic cleavage and activation of caspase-1. Once activated, caspase-1 cleaves pore-forming protein, gasdermin D
(GSDMD), and the proinflammatory cytokines, IL-1β and IL-18. Cleaved-GSDMD and active IL-1β/IL-18 accumulate at the cell membrane, where GSDMD
forms pores in the cell membrane that facilitate cell lysis/pyroptosis and IL-1β/IL-18 release. (C) Caspase-8 activation can also cause pyroptosis either
directly through its recruitment into the inflammasome complex or via its cleavage of GSDMDor indirectly by activation of caspase-3 to cleave gasdermin
E (GSDME).
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2018a). Activation of these caspases drives the maturation of both
caspase-3 and -7, which trigger the terminal cascade of signals
resulting in apoptotic cell death (Walsh et al., 2008; McComb
et al., 2019). A component of the active caspase-3/-7 signalling
cascade is the cleavage/inactivation of “flippases”, which leads to
exposure of phosphatidylserines and phosphatidylethanolamines on
the outer cell membrane (Kagan et al., 2002; Nagata et al., 2016;
Segawa et al., 2018; Segawa et al., 2014). Exposure of these
phospholipids to the extracellular environment tags the cell for
autophagy and cell death (Kagan et al., 2002). Caspase-3 activity also
triggers the characteristic “blebbing” or apoptotic bodies observed in
apoptosis (Sebbagh et al., 2001; Aoki et al., 2020). These apoptotic
bodies are classically considered non-inflammatory (Savill and
Fadok, 2000; Caruso and Poon, 2018). However, in the presence
of cellular stress, apoptotic bodies may contain pro-inflammatory
damage-associated molecular patterns (DAMPs), including high
mobility group box 1 (HMGB1) (Schiller et al., 2013) and
interleukin (IL)-1α (Berda-Haddad et al., 2011). These DAMPs
are major drivers of sterile inflammatory responses {reviewed by
[(Galluzzi et al., 2018a), (Yang et al., 2020), (Belavgeni et al., 2020)]}
and thus, may function as potential mediators of CKD progression.

Apoptosis in CKD

Caspase-3 is identified as a driver of fibrogenesis and long-term
kidney dysfunction in a mouse model of acute ischemia-reperfusion
injury (IRI), a model of AKI-to-CKD transition (Lan et al., 2021).
Despite these findings, this immunologically silent form of RCD is
considered a minor pathobiological player in the inflammatory/
fibrotic CKD environment (Pefanis et al., 2019; Chen et al., 2018),
with evidence that apoptosis may in fact have a more reparative
function by clearing excess proliferative myofibroblasts and tubular
cells following kidney injury (Chou et al., 2020; Shimizu and
Yamanaka, 1993; Sanz et al., 2023). The primary functional role
of apoptosis-related molecules in CKD may, in fact, be mediated
through their interactions with other regulated necrosis pathways,
with activation of caspase-8 during apoptosis shown to inhibit
necroptosis, but also trigger pyroptosis (Pang and Vince, 2023;
Oberst et al., 2011) (outlined in more detail in subsequent sections).

Mitochondrial permeability transition
pore (mPTP)-mediated necrosis

The mitochondrial permeability transition pore (mPTP) was
first described by Haworth and Hunter in 1979 (Haworth and
Hunter, 1979). They showed high levels of calcium trigger a non-
specific increase in permeability of the inner mitochondrial
membrane. Subsequent molecular studies identified elevated
inorganic phosphate (Pi) and oxidative stress, particularly under
ischemic or hypoxic conditions (Assaly et al., 2012), as other triggers
of mPTP opening and subsequent cell death (Halestrap et al., 2004;
Bauer and Murphy, 2020). The discovery that cyclosporin A (CsA)
could block the Ca2+-dependent pore of the inner membrane
responsible for mitochondrial permeability transition was pivotal
in identifying a key mPTP-regulating protein: peptidylprolyl cis-
trans isomerase F (PPIF) (also known as cyclophilin D) (Crompton

and Costi, 1988). Emerging data show the partially disassembled
c-subunit ring of F1F0-ATP synthase (mitochondrial complex V) is
part of the core mPTP on the inner mitochondrial membrane
(Alavian et al., 2014; Beutner et al., 2017; Mnatsakanyan et al.,
2022). These c-subunit rings associate in “synthasome” complexes
consisting of PPIF, adenine nucleotide translocase (ANT),
phosphate carrier (PiC) and voltage-dependent anion carrier
(VDAC) at the inner membrane side of the mPTP and facilitate
mitochondrial membrane depolarization (↓ΔΨmt) and necrotic cell
death (Beutner et al., 2017).

mPTP-mediated necrosis in CKD

Mulay et al. (2019) report that Ppif deletion or cyclosporin A
treatment reduce tubular injury in a small animal model of oxalate-
induced AKI. Using electron microscopy, the authors show that
oxalate crystals are phagocytosed by tubular epithelial cells (TECs)
and associate with disrupted mitochondria (Mulay et al., 2019). In
addition, gene ablation of Ppif protects mice in an experimental
model of IRI-induced AKI (Devalaraja-Narashimha et al., 2009). In
AKI models, mPTP-mediated necrosis is identified as an
independent RCD pathway that co-exists with other modes of
regulated necrosis (i.e., necroptosis) (Mulay et al., 2019;
Linkermann et al., 2013a). Although this pathophysiological
concept is yet to be extended to CKD, it highlights the potential
clinical importance of combination therapies targeting multiple,
distinct pathways of RCD for the treatment of kidney diseases.

mPTP-mediated tubular necrosis is reported in a mouse model
of unilateral ureteral obstruction (UUO)-induced inflammation and
kidney fibrosis/CKD (Leong et al., 2020). Furthermore, Shah et al
show that apoliprotein (APOL1) risk variants associated with CKD
(termed G1 and G2) induce mPTP-mediated necrosis in vitro (Shah
et al., 2019). The binding of aggregated APOL1 risk variants to
mPTP constituents, F1F0-ATP synthase and ANT, is shown to
activate pore opening, mitochondrial dysfunction and cell death
(Shah et al., 2019). Despite encouraging data from these in vivo and
in vitro studies, mPTP-mediated necrosis has yet to be demonstrated
in kidney tissue from CKD patients. Pharmacological inhibition of
mPTP-mediated necrosis using cyclosporin A has been evaluated in
myocardial infarction clinical trials (CIRCUS: NCT01502774; and
CYCLE: NCT01650662) - although no improvement in patient
outcomes were reported (Hausenloy and Yellon, 2015; Monassier
et al., 2016; Ottani et al., 2016). Despite the availability of safe
therapeutics, confirmation of the physiological relevance of mPTP-
mediated necrosis in human CKD is necessary to justify and guide
future clinical targeting.

Necroptosis

Necroptotic cell death occurs in response to homeostatic
perturbations, detected by tumour necrosis factor (TNF)
receptors (Siegmund et al., 2016), TNF-related apoptosis-
inducing ligand receptors (Jouan-Lanhouet et al., 2012) and type
I interferon (IFN) receptors (Brault et al., 2018). Activation of these
death receptors located on the cell surface phosphorylates
cytoplasmic receptor-interacting serine/threonine-protein kinase
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(RIPK)-1 and −3 (Laurien et al., 2020; Rodriguez et al., 2016), which
self-assemble into functional amyloid signalling complexes termed
“necrosomes” (Li et al., 2012; Samson et al., 2020). The formation of
RIPK1-RIPK3 complexes occurs under conditions that prevent
caspase-8-mediated activation – thus, promoting necroptosis over
apoptosis (Pang and Vince, 2023). Alternative non-RIPK1-mediated
pathways of RIPK3 activation are also identified, including binding
to TIR-domain-containing adaptor-inducing interferon-β (TRIF)
following triggering of toll-like receptors (TLRs) (Kaiser et al., 2013)
or engagement with Z-DNA-binding protein 1 (ZBP1), a sensor of
viral or endogenous Z-nucleic acids (Guerrero-Mauvecin
et al., 2024).

Activated RIPK3 subsequently phosphorylates mixed lineage
kinase domain-like protein (pMLKL) (Monassier et al., 2016), which
then oligomerizes and translocates to the inner surface of the cell
membrane (Samson et al., 2020). pMLKL at the cell membrane
interacts with phosphatidylserine residues (Zargarian et al., 2017)
and, in epithelial cells, Zonula Occludens-1 (ZO-1), a tight-junction
protein (Samson et al., 2020). The final molecular events in the
necroptosis pathway remain unclear (Galluzzi et al., 2018a;
Belavgeni et al., 2020). However, Samson et al report that
pMLKL accumulates into irregularly-shaped “hot-spots” and
propose that these MLKL aggregates may overwhelm the cell’s
membranolytic threshold to mediate cell death (Samson et al., 2020).

Necroptosis in CKD

Necroptotic cell death is reported in experimental AKImodels of
crystal nephropathy (Mulay et al., 2019; Mulay et al., 2016), IRI
(Linkermann et al., 2012) and contrast-induced nephropathy
(Linkermann et al., 2013b), with administration of necrostatin-1,
a RIPK1 inhibitor (Degterev et al., 2005), limiting tubular pathology
and restoring kidney function (Linkermann et al., 2012; Linkermann
et al., 2013b; Martin-Sanchez et al., 2018). In human
rhabdomyolysis-induced AKI kidney tissue, our group has shown
increased pMLKL expression localised to sites of tubular injury and
adjacent to tubulointerstitial inflammation (TNF-α) and immune
cell infiltration (i.e., macrophages, dendritic cells (DCs) and T
lymphocytes) (Grivei et al., 2020).

RIPK3-MLKL-mediated tubular loss and necroinflammation
also contribute to CKD progression in rats that have undergone
subtotal nephrectomy (Zhu et al., 2016) and AKI-to-CKD transition
in a mouse IRI model (Chen et al., 2018). In particular, Chen et al
(Chen et al., 2018) show gene deletion of Ripk3 or Mlkl ameliorates
kidney tubular cell necroptosis, macrophage infiltration/activation
and, in the long-term, tubulointerstitial fibrogenesis after IRI. Ripk3
knockout also reduces kidney fibrosis in mouse models of adenine-
induced CKD, UUO and diabetic nephropathy (Imamura et al.,
2018; Shi et al., 2020). In human kidney biopsies from CKD patients
with diabetic nephropathy and histological evidence of
tubulointerstitial fibrosis, RIPK3 expression is increased
compared with control kidney tissue (Imamura et al., 2018).
Further interrogation of RIPK3 function in CKD is needed,
including: (i) the role of the caspase-8/RIPK3 signalling axis in
regulating the delicate balance between non-inflammatory apoptosis
and pro-inflammatory necroptosis (Xu and Huang, 2022); (ii)
ZBP1 function in RIPK3 activation during viral-associated

nephropathies; and (iii) how RIPK3 may trigger inflammation,
independently of necroptosis – i.e., through activation of nuclear
factor-κB (NF-κB) or the inflammasome (Moriwaki et al., 2017).

Ferroptosis

The NCCD defines ferroptosis as “a form of RCD initiated
by. . .severe lipid peroxidation, which relies on reactive oxygen
species generation and iron availability” (Galluzzi et al., 2018a).
Ferroptotic death occurs when free radicals (e.g., reactive oxygen
species; ROS), generated either via the ferrous (Fe2+) iron-dependent
Fenton reaction or via the mitochondrial respiratory chain, attack
and oxidize cell membrane phospholipids (Galluzzi et al., 2018a).
The accumulation of toxic lipid peroxides and their breakdown
products (e.g., 4-hydroxynonenal (4-HNE) and malondialdehyde
(MDA)) disrupt cell membrane integrity, leading to lytic cell death
and release of inflammatory DAMPs (Chen et al., 2024). Oxidized
phospholipids are repaired through two pathways, with: (i)
ferroptosis suppressor protein 1 (FSP1) reducing coenzyme Q10,
which, in turn, acts as a lipophilic radical-trapping antioxidant to
halt the propagation of lipid peroxides (Bersuker et al., 2019); or (ii)
glutathione peroxidase 4 (GPX4) reducing phospholipid
hydroperoxides to non-toxic phospholipid alcohols using
glutathione (GSH) as a co-substrate (Berndt et al., 2024).
SLC7A11 (commonly known as xCT) is an important regulator
of this second pathway, importing cysteine for glutathione
biosynthesis (Koppula et al., 2021). Biomarkers of ferroptotic cell
death therefore include reduced expression of FSP1, GPX4 and
SLC7A11 (Berndt et al., 2024). Ferroptosis is distinguished
biologically from other RCD modes by two features: (i) it lacks a
terminal executioner protein (Galluzzi et al., 2018b); and (ii) spreads
through organised cell populations in a non-random, wave-like
pattern (Linkermann et al., 2014; Kim et al., 2016; Riegman
et al., 2020; Katikaneni et al., 2020).

Ferroptosis in CKD

Ferroptotic tubular cell death has been reported in mouse AKI
models of calcium oxalate nephropathy (Linkermann et al., 2014),
folic acid-induced AKI (Martin-Sanchez et al., 2017), IRI
(Linkermann et al., 2014; Su et al., 2019), cisplatin-induced
nephropathy (Deng et al., 2019) and rhabdomyolysis (Guerrero-
Hue et al., 2019). In humans, in situ immunolabelling of diagnostic
biopsies reported as AKI found elevated tubular ferroptosis to be
restricted to patients in whom the AKI progressed clinically to CKD
(i.e., where patients undergo AKI-to-CKD transition) (Wang
et al., 2024).

Kidney tubular ferroptosis has also been demonstrated in
murine models of diabetic nephropathy (Kim et al., 2021), UUO-
induced kidney fibrosis (Zhang B. et al., 2021) and adenine-induced
CKD (Khan et al., 2022), with amelioration of tubular injury/
interstitial fibrosis in animals treated with the ferroptosis
inhibitors, ferrostatin-1, liproxstatin-1 and XJB-5-131 (Kim et al.,
2021; Zhang B. et al., 2021; Zhao et al., 2020). Ferroptosis has been
reported in human PTECs (↓GPX4, ↑4-HNE) in an in vitro hypoxic
model of human CKD and in situ within human fibrotic kidney
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tissue (Giuliani et al., 2022). The Linkermann group proposed
successive ferroptotic “waves of death” are the drivers of CKD
progression (Belavgeni et al., 2020; Maremonti et al., 2022).
Recent publications propose that a ferroptotic ‘wave of tubular
death’ may be propagated to neighbouring cells via: (i) cell-cell
contacts (Roeck et al., 2023); (ii) an osmotic mechanism
independently of cell rupture (Riegman et al., 2020); (iii) small
extracellular vesicles (Wang et al., 2024); or (iv) a redox imbalance in
the local micro-environment (Belavgeni et al., 2020; Maremonti
et al., 2022). The mechanism/s by which ferroptotic cell death is
transmitted along the tubular compartment in CKD remains an
intense area of research investigation.

Pyroptosis

In contrast to these previously defined forms of RCD, pyroptosis
is strongly associated with the innate immune system - e.g.,
neutrophils, monocytes/macrophages, DCs (Liu et al., 2023).
Pyroptosis is triggered in response to pathogens (i.e., pathogen-
associated molecular patterns; PAMPs) and/or tissue damage
(i.e., DAMPs), which drive the formation of multi-protein
signalling platforms termed “inflammasomes” and result in
caspase-1 activation (Monteleone et al., 2018; Broz and Dixit,
2016; Anders, 2016). Active caspase-1 cleaves pro-inflammatory
cytokines, IL-1β and IL-18, and pore-forming protein, gasdermin D
(GSDMD), into their mature forms (Boucher et al., 2018; Vijayaraj
et al., 2021; Liu et al., 2020; Xia et al., 2021). Cleaved GSDMD
accumulates on the inner leaf of the cell membrane where it self-
oligomerizes into a size and charge exclusive pore, resulting in
plasma membrane rupture, cell lysis and the release of the
mature IL-1β/IL-18 (Xia et al., 2021; Liu et al., 2016). Further
highlighting the complex molecular links between apoptosis and
other discrete forms of regulated necrosis, caspase-8 activation can
also trigger pyroptosis either directly via its recruitment into the
inflammasome complex or through its cleavage of GSDMD or
indirectly by activating caspase-3 to cleave gasdermin E
(GSDME) (Pang and Vince, 2023). The NLRP3 (NACHT,
leucine-rich-repeat (LRR), and pyrin domain (PYD)-containing
protein 3) inflammasome is the most extensively characterised of
the inflammasome family {reviewed by [(Swanson et al., 2019),
(Broz and Dixit, 2016)]}. Canonical NLRP3 inflammasome
activation by danger signals (PAMPs and/or DAMPs) involves
both priming and activation steps (summarized in Figure 2).
NLRP3 inflammasome activation is implicated in an array of
inflammatory pathobiologies {reviewed in [(Coll et al., 2022),
(Hutton et al., 2016)]}, including Alzheimer’s disease (Saresella
et al., 2016; Heneka et al., 2013; Venegas et al., 2017), cryopyrin-
associated periodic syndrome (Leslie et al., 2006; Lachmann et al.,
2009), type 2 diabetes (Masters et al., 2010; Lei et al., 2019), and both
acute and chronic kidney diseases (Lei et al., 2019; Vilaysane et al.,
2010; Ludwig-Portugall et al., 2016).

Pyroptosis in CKD

The pro-fibrotic role of inflammasome activation and
downstream pyroptotic cell death is established in experimental

CKD models. NLRP3 inflammasome activation is a critical driver of
kidney fibrosis in murine models of diabetic nephropathy (Wang
MZ. et al., 2022), oxalate nephropathy (Ludwig-Portugall et al.,
2016), adenine-induced CKD (Ludwig-Portugall et al., 2016) and
UUO (Seo et al., 2019), while Gsdmd deletion is shown to alleviate
fibrosis in experimental models of obstructive nephropathy (Wang
Y. et al., 2022) and APOL1-associated podocytopathy (Wu J. et al.,
2021). Inflammasome activation in murine models of kidney fibrosis
is predominantly restricted to inflammatory cells (i.e., neutrophils,
macrophages, DCs) (Ludwig-Portugall et al., 2016; Wang Y. et al.,
2022; Chi et al., 2017). However, evidence in kidney parenchymal
cells (i.e., TECs) is also reported (Chi et al., 2017), including a non-
canonical pathway of caspase-3/GSDME-mediated pyroptosis in
TECs, but not haematopoietic cells, promoting inflammation
(i.e., macrophage activation) and fibrosis in mouse UUO models
(Li et al., 2021). Notably, deletion of Gsdme also attenuates kidney
fibrosis after UUO or subtotal nephrectomy (Li et al., 2021; Wu M.
et al., 2021). It remains to be established if these alternative pathways
of caspase-3 and/or caspase-8-mediated pyroptosis play a dominant
pathophysiological role or ‘back-up’ function in CKD.

In humans, the NLRP3 inflammasome has been strongly
associated with tubulointerstitial injury/fibrosis and CKD
progression (Vilaysane et al., 2010; Ermer et al., 2016; Darisipudi
and Knauf, 2016; Shahzad et al., 2015; Anders and Muruve, 2011;
Granata et al., 2015). Elevated levels of IL-1β and IL-18 are also
reported in human fibrotic kidney tissue (Law et al., 2019), with
downstream stimulation of human TECs with IL-1β inducing
pathways of oxidative stress and fibrogenesis (Vesey et al., 2002;
Vesey et al., 2005). However, the cellular origin of inflammasome
activation and pyroptosis in human CKD (i.e., the respective
contribution of inflammatory vs. parenchymal cells) is
controversial. Our group has identified tubulointerstitial CD1c+

DC as a key immunological source of inflammasome activation
within human fibrotic kidney tissue (Giuliani et al., 2022). In
contrast, while human kidney tubular epithelial cells express
components of the inflammasome machinery (Kim et al., 2018),
whether they can form active inflammasome complexes and
undergo pyroptosis is yet to be unequivocally established.
Moreover, pre-clinical studies are required to determine whether
gasdermin/pyroptosis inhibitors with demonstrated efficacy in
UUO murine models (e.g., disulfiram) (Zhang Y. et al., 2021) are
of therapeutic benefit in treating human kidney fibrosis.

Future directions and conclusions

With an ageing population and increasing global prevalence of
diabetes and hypertension, the burden of CKD is predicted to rise to
the fifth most common cause of death by 2040 (Foreman et al.,
2018). Novel therapeutic strategies that target the pathobiological
pathways underpinning the development of tubulointerstitial
inflammation and fibrosis are a health priority in CKD
management. Accumulating evidence from experimental murine
models and human pre-clinical studies identify discrete forms of
RCD as central pro-inflammatory/fibrotic drivers of CKD. However,
answers to key and unresolved questions in this field of RCD
research are still required to support precision targeting in the
clinical setting:
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1. Are distinct kidney parenchymal cell types more susceptible to
a particular mode of RCD in CKD? Our group identify
ferroptosis (↓GPX4, ↑4-HNE) as the primary form of RCD
in human PTECs under hypoxic CKD conditions, with no
evidence of apoptosis (cleaved caspase-3), mPTP-mediated
necrosis (PPIF) or necroptosis (pMLKL) (Giuliani et al.,
2022). Is this selective induction of a discrete RCD mode in
PTECs also applicable to cells upstream (i.e., within the
glomerular compartment) and downstream of the kidney
proximal tubules (i.e., within other tubular segments - loop
of Henle, distal tubules)?

2. Is cross-talk between different RCD pathways important in
CKD progression? RCD machinery exhibits surprising
flexibility, capable of non-canonical functional roles and
triggering cross-talk between different cell death modes
{also reviewed by [(Sanz et al., 2023)]}. For example, a
convergence of pyroptosis, apoptosis and necroptosis termed
PANoptosis has been recently identified, with cross-talk
between these individual RCD pathways mediated through
the generation of a multi-protein PANoptosome complex that
includes caspases, RIPK1, RIPK3 and ZBP1 (Pandian and
Kanneganti, 2022). Although PANoptosis of kidney vascular
endothelial cells is reported in mice with trichloroethylene-
induced AKI (Xie et al., 2024), translation of this work to CKD
models is necessary to establish the pathobiological relevance
of this complex inflammatory cell death pathway in
fibrogenesis.

3. What are the mechanism/s that propagate RCD within the
CKD micro-environment? Does transmission of RCD through
the kidney occur: (i) in a random manner; (ii) in a
synchronised, wave-like form restricted to a specific RCD
mode (i.e., a ferroptotic “wave of death”) (Belavgeni et al.,
2020; Maremonti et al., 2022); (iii) via a process of
necroinflammation, where regulated necrosis triggers an
inflammatory response and downstream secondary necrosis
(i.e., ferroptotic PTECs induce inflammasome activation/
pyroptosis in tubulointerstitial DCs) (Giuliani et al., 2022);
or (iv) via a combination of all events.

4. Which RCD inhibitors have clinical potential as CKD
therapeutics? Although several inhibitors of RCD have been
evaluated for their anti-fibrotic effects in both in vitro and
in vivomodels of CKD, their suitability for clinical applications
is unclear. Ferrostatin-1, a potent small-molecule compound
that blocks lipid peroxidation (Skouta et al., 2014), is the gold-
standard ferroptosis inhibitor in pre-clinical CKD studies
(Khan et al., 2022; Giuliani et al., 2022). However, the
clinical translatability of ferrostatin-1 is limited by its poor
in vivo metabolic stability (Devisscher et al., 2018). Similarly,
NLRP3 inflammasome inhibitor, MCC950, attenuates kidney

fibrosis in mouse models of crystal nephropathy (Ludwig-
Portugall et al., 2016). However, a phase II rheumatoid
arthritis clinical trial evaluating MCC950 efficacy was
suspended due to off-target liver toxicity in patients
(Mullard, 2019). Further evaluation of the mechanisms that
regulate RCD in fibrotic kidneys will enable the discovery of
novel targeted inhibitors or repurposing of established (FDA-
approved) drugs for the treatment of patients with CKD.
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