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The spindle assembly checkpoint (SAC) is a surveillancemechanism that prevents
uneven segregation of sister chromatids between daughter cells during
anaphase. This essential regulatory checkpoint prevents aneuploidy which can
lead to various congenital defects observed in newborns. Many studies have been
carried out to elucidate the role of proteins involved in the SAC as well as the
function of the checkpoint during gametogenesis and embryogenesis. In this
review, we discuss the role of SAC proteins in regulating both meiotic andmitotic
cell division along with several factors that influence the SAC strength in various
species. Finally, we outline the role of SAC proteins and the consequences of their
absence or insufficiency on proper gametogenesis and embryogenesis in vivo.
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1 Introduction

Cell division is a critical feature of embryonic development (Kumar et al., 2015).
Fertilization of a secondary oocyte, a haploid cell arrested in metaphase II of meiosis, by a
spermatozoon results in a diploid zygote, which then divides into 2 cells through the process
of mitosis (Yeste et al., 2017). This is followed by extensive cell division, which combined
with various cellular signaling and morphogenic events promotes embryogenesis including
blastulation, gastrulation, neurulation, and organ development (Zhai et al., 2022). Cell
division during embryonic development must be carefully monitored since error prone
division produces aneuploidy that has severe consequences for fecundity (Jia et al., 2015).
The eukaryotic cell cycle consists of interphase (comprising the G1, S, and G2 phases) and
mitosis, with each phase orchestrated by regulatory checkpoints mediated by cyclins and
cyclin-dependent kinases (CDKs) (Wang, 2021). During the G1 phase, the restriction
checkpoint ensures the cell is prepared to enter the cell cycle by ensuring any DNA damage
is properly repaired and the cell is receiving the appropriate growth signals before
committing to division (Bertoli et al., 2013). Cyclin D-CDK4/6 complexes drive
progression through G1 by phosphorylating the retinoblastoma (Rb) protein, releasing
E2F transcription factors to activate genes necessary for the transition into S phase and
carrying out DNA synthesis (Bertoli et al., 2013; Topacio et al., 2019). During the G1/S
phase transition, Cyclin E-CDK2 initiates DNA replication by activating origins of
replication. During S phase, Cyclin A replaces Cyclin E, terminating DNA synthesis
and facilitating the transition into the G2 phase (Ding et al., 2020). The G2 phase is
regulated by the G2/M checkpoint, which ensures the integrity of replicated DNA before
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mitotic entry (Krempler et al., 2007; Kousholt et al., 2012). Cyclin
A-CDK1 activity orchestrates the preparatory events for mitosis by
promoting the nuclear translocation of Cyclin B1-CDK1 (Gong
et al., 2007; Gong and Ferrell, 2010). Once in the nucleus, Cyclin A
and Cyclin B1-CDK1 collaborate to drive key mitotic processes,
including chromosome condensation and nuclear envelope
breakdown (Petrone et al., 2016; Enserink and Kolodner, 2010;
Gong and Ferrell, 2010). To ensure fidelity in chromosome
segregation and prevent aneuploidy, the spindle assembly
checkpoint (SAC) operates during M phase, monitoring the
attachment of chromosomes to the spindle apparatus to
guarantee proper segregation between daughter cells (Lara-
Gonzalez et al., 2012; Lara-Gonzalez et al., 2021b). A variety of
studies have been published over the last decade that have produced
intriguing insights into the role of the SAC, and the factors that
regulate SAC function, in gametogenesis and embryogenesis. In this
review, we will explore the role of SAC proteins during these crucial
biological processes.

2 The spindle assembly
checkpoint (SAC)

Segregation of genetic material between daughter cells begins
during the anaphase stage of mitosis (Musacchio and Desai, 2017).
However, the mechanisms that ensure each daughter cell receives an
equal and full complement of DNA, begin earlier in the cell division
process. During S phase, cells fully duplicate each chromosome
(Musacchio and Desai, 2017). Additionally, centrosome duplication
also occurs during S phase (Tsou and Stearns, 2006; Holland et al.,
2010) and errors in centrosome duplication can cause chromosome
missegregation leading to aneuploid daughter cells (Silkworth et al.,
2009; Ganem et al., 2009). During prometaphase of mitosis, a
complex of proteins called the kinetochore assembles at the
centromere of each chromosome, serving as the attachment site
for microtubules from the mitotic spindle (Musacchio and Desai,
2017). Kinetochore associated proteins regulate the movement of
each sister chromatid in opposing directions along spindle fiber
microtubules during anaphase (Musacchio and Desai, 2017).
Therefore, it is imperative for microtubules from the bipolar
spindle to attach to kinetochores of both chromatids (amphitelic
attachment) for the divergent movement and even distribution of
chromosomes to each daughter cell (Lampson and Grishchuk,
2017). However, various challenges can compromise the fidelity
of chromosome segregation, such as syntelic attachment where both
sister chromatids connect to the same spindle pole, merotelic
attachment in which a single chromatid or kinetochore attaches
to both spindle poles, or monotelic attachment in which only one
sister chromatid is attached to spindle microtubules (Lampson and
Grishchuk, 2017; Khodjakov and Pines, 2010; Taylor et al., 2004). If
these issues are not resolved, they can lead to chromosome
missegregation (Lampson and Grishchuk, 2017). While the SAC
monitors unattached kinetochores, it does not reliably detect all
attachment errors, such as merotelic and syntelic attachments
(Cimini et al., 2001; Jin et al., 2012). Loss or gain of
chromosomes, termed aneuploidy, results in severe consequences
such as developmental defects and cancer (Shahbazi et al., 2020;
Boveri, 2008). Trisomy 21 is one such instance in which an extra

copy of chromosome 21 is acquired during abnormal cell division
leading to Down’s syndrome (Roizen and Patterson, 2003).
Therefore, each sister chromatid must bi-orient and attach to
microtubules during metaphase before anaphase initiates. The
SAC, also known as the mitotic checkpoint, fulfills this need as a
surveillance mechanism to confirm all chromosomes are properly
aligned and bound by bipolar spindles to ensure anaphase fidelity
(Lara-Gonzalez et al., 2012).

2.1 Activation of the SAC

The SAC prevents the progression to anaphase until all
chromosomes are properly attached to the mitotic spindle via
their kinetochores (Musacchio, 2015b; London and Biggins, 2014;
Cheeseman, 2014). The SAC is activated by unattached or
improperly attached kinetochores, which generate a ‘wait’ signal
that halts anaphase progression. This signal prevents the activation
of the anaphase-promoting complex/cyclosome (APC/C), ensuring
that cells do not prematurely segregate their chromosomes
(McAinsh and Kops, 2023). A multitude of studies have been
carried out to decipher what exactly the SAC senses leading to its
activation (McVey et al., 2021; Khodjakov and Pines, 2010).
Traditionally, it is believed that the SAC acts as a quality control
mechanism, preventing the cell from segregating its chromosomes
(progressing from metaphase to anaphase) if there are errors in
chromosome attachment to the bipolar spindle (Rieder et al., 1995).
According to this view, the SAC is primarily concerned with whether
the chromosomes are correctly attached to the spindle microtubules.
This suggests that the SAC is unable to monitor for proper
orientation of the chromatids. For instance, chromatids can be
mono-oriented or bi-oriented regardless of proper kinetochore
attachment (amphitelic) (Khodjakov and Pines, 2010). This view
is supported by studies using laser beam-mediated ablation of
unattached kinetochore on a monotelic chromosome that
resulted in a normal progression of mitosis suggesting that the
SAC only detects the presence or absence of microtubule attachment
on the kinetochores (Rieder et al., 1995). Another mechanistic
explanation behind SAC activation that has been extensively
studied is based on the lack of tension across unattached
kinetochores (Mukherjee et al., 2019; Chen et al., 2021). For
instance, applying tension to an unattached kinetochore through
a micromanipulation needle releases cells from metaphase and they
progress into anaphase suggesting that tension between
kinetochores of sister chromatids regulates SAC activation (Li
and Nicklas, 1995; Nicklas and Koch, 1969). Moreover, there is a
correlation between the level of tension and metaphase delay time
suggesting that the cell is highly sensitive to tension levels, which
may serve as a critical signal to prevent chromosome segregation
errors during mitosis (Mukherjee et al., 2019). Hence, the SAC is
thought to sense either the presence of unattached kinetochores or
the lack of tension across the kinetochores of sister chromatids.
Although strong evidence exist for both explanations, the ability of
the kinase Aurora B to contribute to both mechanisms may connect
these mechanisms together (McVey et al., 2021). Aurora B has been
proposed to sense the lack of tension in the kinetochores and
translate this into a biochemical signal by phosphorylating
members of the kinetochore such as Knl1 and Mis12 that belong
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FIGURE 1
Spindle assembly checkpoint activation and deactivation. (A) SAC activation: When kinetochores are unattached to microtubules, the SAC is
activated. Aurora B recruits Mps1 that binds to the Ndc80 complex and phosphorylates the MELT repeats present on the Knl1 complex. Once
phosphorylated, the MELT repeats recruit the SAC protein Bub3 which further recruits BubR1 and Bub1. Aurora B also phosphorylates the RVSF and SILK
domains preventing the phosphatase PP1 from binding to Knl1 complex. (B) SAC maintenance: Bub1 interacts with Cdc20 and the Mad1:
Mad2 complex bringing Mad2 and Cdc20 in close proximity to form a subcomplex inhibiting the interactions between APC/C and Cdc20. The assembled
MCC now consists of the Bub3:BubR1 and Mad2:Cdc20 subcomplexes. (C) SAC deactivation: Once microtubules attach to the Ndc80 complex, Mps1 is

(Continued )
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to the KMN network (Akiyoshi et al., 2010; Welburn et al., 2010;
Cheeseman et al., 2002). Another study suggests that Aurora B
activity is not directly regulated by tension (Liu et al., 2009). Instead,
phosphorylation depends on the spatial proximity of substrates to
Aurora B at the inner centromere. This proximity or distance, is
affected by tension which indirectly affects the phosphorylation of
the substrates by Aurora B (Liu et al., 2009). Such a spatial model
underscores a nuanced mechanism by which Aurora B may
modulate kinetochore signaling.

The KMN network is a large assembly of proteins composed of
three main subcomplexes, namely, the Mis12 complex, the
Ndc80 complex, and the Knl1 complex (Varma and Salmon,
2012). The Mis12 complex, consisting of four proteins (Dsn1,
Mis12, Nnf1, and Nsl1), is responsible for the assembly of the
Ndc80 and Knl1 complexes along the outer kinetochore and has
been described as a protein interaction hub for outer kinetochore
assembly (Cheeseman and Desai, 2008; Maskell et al., 2010; Petrovic
et al., 2010). The Knl1 and Ndc80 complexes are tethered by
Nsl1 aiding in their recruitment to the kinetochore (Petrovic
et al., 2010). The Ndc80 complex has four subunits (Hec1, Nuf2,
Spc24, and Spc25) in a coiled coil fashion and is responsible for
bridging the KMN network to microtubules (Cheeseman and Desai,
2008; Ciferri et al., 2008; Wei et al., 2007). The Ndc80 complex
provides a docking site for the N-terminal region of the SAC protein
Mps1 (Kemmler et al., 2009; Nijenhuis et al., 2013). Studies have
shown that the Mps1 and microtubules compete against each other
to bind to Ndc80 (Pleuger et al., 2024). According to this
competition model, Mps1 directly interacts with the
HEC1 domain of the NDC80 complex and initiates the SAC
(Pleuger et al., 2024; Ji et al., 2015). However, the presence of
end-on microtubule attachment to the NDC80 complex disrupts
this interaction (Pleuger et al., 2024). This competitive binding
mechanism serves as a direct sensor for kinetochore-microtubule
attachment status, regulating SAC signaling (Ji et al., 2015; Pleuger
et al., 2024). However, recent findings challenge this direct
competition model showing that Mps1 autophosphorylation is
responsible for its release from kinetochores at least in the
context of native kinetochores isolated from yeast (Koch et al.,
2019). These findings suggest that while direct competition between
Mps1 and microtubules for Ndc80 binding may contribute to SAC
regulation, Mps1 autophosphorylation likely plays a key role in
modulating its kinetochore association.

Once docked onNdc80, Mps1 phosphorylates Knl1 which is one
of the two subunits of the Knl1 complex, the other being Zwint1.
Phosphorylation of Knl1 occurs on threonine residues present on its
MELT repeats, triggering Knl1 to act as a docking site for SAC
proteins BubR1, Bub1, and Bub3 (London et al., 2012; Shepperd
et al., 2012; Yamagishi et al., 2012; Krenn et al., 2014; Overlack et al.,
2015; Vleugel et al., 2013; Zhang et al., 2014). The
dephosphorylation of Knl1 is prevented by Aurora B which

phosphorylates the SILK and RVSF motifs at the N-terminus of
Knl1 (Agarwal and Varma, 2015). These phosphorylation events
prevent protein phosphatase 1 (PP1) from binding to Knl1. It has
also been speculated that Aurora B promotes the recruitment of
Mps1 to the KMN network (Figure 1) (Agarwal and Varma, 2015).
The coordinated assembly and regulation of the KMN network,
particularly through the actions of key protein complexes such as
Mis12, Ndc80, and Knl1, are crucial for the proper activation of the
SAC (Agarwal and Varma, 2015). These interactions ensure accurate
chromosome segregation by tightly controlling kinetochore-
microtubule attachments and signaling pathways, highlighting the
intricate molecular mechanisms that maintain genomic stability
during mitosis (Figure 1A).

2.2 The mitotic checkpoint complex (MCC)

The SAC ensures accurate chromosome segregation by
preventing anaphase onset until all kinetochores are properly
attached to spindle microtubules and tension is generated across
sister chromatids. Upon detecting unattached kinetochores, the SAC
activates and assembles a complex of proteins collectively known as
the mitotic checkpoint complex (MCC) (Lara-Gonzalez et al., 2012;
Jia et al., 2013; Musacchio, 2015b; Musacchio and Desai, 2017). The
MCC consists of four proteins, Mad2, BubR1, Bub3, and Cdc20
(Chao et al., 2012; Hardwick et al., 2000; Sudakin et al., 2001; Tang
et al., 2001). The primary function of the MCC is to inhibit the
activation of the APC/C, an E3 ubiquitin ligase responsible for
initiating anaphase (Lara-Gonzalez et al., 2021b; Barford, 2020).
Several proteins aid in the assembly of the MCC complex such as
Bub1, Mad1, and Mps1 (London and Biggins, 2014; Fischer et al.,
2021; Kulukian et al., 2009; Hewitt et al., 2010; Abrieu et al., 2001).
The process begins with Mps1 kinase phosphorylating the MELT
repeats of the kinetochore protein Knl1 followed by recruitment of
Bub1 and Bub3 to the kinetochores (London et al., 2012; Shepperd
et al., 2012; Yamagishi et al., 2012). Bub1-Bub3 binding increases the
affinity of Bub3 towards the phosphorylated MELT repeats
(Primorac et al., 2013). Bub3 also interacts with BubR1 which
leads to the formation of a heterotetrametric complex containing
Bub1-Bub3 and BubR1-Bub3 dimers present on the kinetochores
(Overlack et al., 2015; Zhang et al., 2015). While BubR1 also
interacts with Bub1, studies have shown that the recruitment of
BubR1 to the kinetochores by Bub1 is dispensable for SAC activation
(Vleugel et al., 2015). The recruitment of the other two MCC
proteins, Mad2 and Cdc20, occurs through the interaction of
multiple proteins (Ge et al., 2009). Bub1 recruits and stabilizes
the Mad1-Mad2 complex at unattached kinetochores. This occurs
via Bub1s CM1 motif, which binds the RLK motif of Mad1 (London
and Biggins, 2014; Zhang et al., 2017; Lara-Gonzalez et al., 2021b;
Klebig et al., 2009). Simultaneously, ABBA motif of Bub1 interacts

FIGURE 1 (Continued)

displaced from the Ndc80 complex, Aurora B activates Plk1 which stimulates the binding of PP2A to BubR1 by phosphorylating BubR1. PP2A
dephosphorylates the RVSF and SILK domains allowing for PP1 to bind to Knl1 where it dephosphorylates the MELT repeats. This causes the release of
MCC components which are stripped away from the Knl1 complex by dynein proteins. Hence, the SAC is deactivated and the binding of APC/C to
Cdc20 occurs to allow for the metaphase-to-anaphase transition.
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with the WD40 domain of Cdc20 (Piano et al., 2021; Lara-Gonzalez
et al., 2021b). These events bring Mad2 and Cdc20 in close
proximity (Piano et al., 2021; Lara-Gonzalez et al., 2021a). Mad1,
when phosphorylated by Mps1 on its RWD domain, also interacts
with Cdc20 which exposes the Mad2 binding motif present within
the Cdc20 N-terminus (Faesen et al., 2017; Ji et al., 2017; Lara-
Gonzalez et al., 2021a; Piano et al., 2021). BubR1 also interacts with
Cdc20 through its KEN box (K1), ABBA motif, and D box (D2)
domains (Burton and Solomon, 2007; King et al., 2007; Lara-
Gonzalez et al., 2011). Together, these events bring Mad2,
BubR1, Bub3, and Cdc20 into close proximity, culminating in the
formation of a complete MCC complex (Figure 1B).

A primary function of the MCC is to inhibit APC/C activation
by sequestering its coactivator, Cdc20. Without APC/C activity, key
substrates such as Securin and Cyclin B1 remain stabilized (Barford,
2020). The APC/C ubiquitinates Securin and Cyclin B1, marking
them for proteasome-dependent degradation (Barford, 2020).
Securin inhibits Separase, an enzyme required for cleaving the
cohesin subunit RAD21, which holds sister chromatids together
(Anderson et al., 2002; Haering et al., 2002). Cyclin B1, on the other
hand, is the regulatory subunit of the mitotic kinase CDK1 which is
critical for the G2 to M phase transition (Zur and Brandeis, 2002).
During anaphase, APC/C-mediated ubiquitination of Cyclin
B1 marks it for degradation, leading to the inactivation of CDK1
(Zur and Brandeis, 2002). This inactivation is crucial for reversing
key mitotic processes including nuclear envelope breakdown (NEB)
and chromosome condensation (Malumbres, 2014; Qian et al.,
2015). Thus, inhibition of the APC/C by the MCC prevents the
degradation of its substrates, Securin and Cyclin B1, until the SAC is
satisfied, ensuring proper chromosome alignment and attachment
to bipolar spindles prior to anaphase onset.

2.3 The MCC:APC/C:Cdc20 complex

It has long been accepted that the primary function of the MCC
is to prevent the formation of the APC/CCdc20 complex by binding to
Cdc20 (Sudakin et al., 2001). This implies that the MCC competes
with the APC/C for available Cdc20. Recent observations have
forced revisions to this model and have provided an elegant
explanation for how the MCC inhibits the activity of APC/C
(Herzog et al., 2009; Alfieri et al., 2016; Yamaguchi et al., 2016;
Kelly et al., 2014). First, the MCC consists of BubR1:Bub3:Cdc20:
Mad2 in a 1:1:1:1 stoichiometric ratio (Sudakin et al., 2001; Alfieri
et al., 2016; Yamaguchi et al., 2016; Izawa and Pines, 2015). One
Cdc20 is associated with theMCC (Cdc20M). It is bound to theMCC
through its interaction with BubR1 by binding to the KEN box, TPR
motifs, ABBA motifs, and the D box that Cdc20M recognizes within
BubR1 (Di Fiore et al., 2015; Diaz-Martinez et al., 2015; Lischetti
et al., 2014). Cdc20M also binds to the MCC through interactions
with Mad2 and Mad3 (Izawa and Pines, 2015; Yamaguchi et al.,
2016). Second, BubR1 consists of a second set of KEN box (K2),
ABBAmotifs (A1), and the D box (D1) that is recognized by another
Cdc20 which is associated with the APC/C and is termed Cdc20A
(Alfieri et al., 2016; Yamaguchi et al., 2016). Recent studies have
demonstrated a direct interaction between Cdc20A and Cdc20M
(Zhang et al., 2024). The CRY box, an unconventional degron motif
within Cdc20, plays a critical role in this interaction. Electrostatic

interactions are present between the CRY box residues (R162, K163)
of Cdc20M and acidic residues (E180, D203) of Cdc20A (Zhang et al.,
2024). Mutations in the CRY box, such as R162E/K163E or E180R/
D203R, disrupt these interactions, abolishing SAC function and
accelerating mitosis. Additionally, the CRY box in Cdc20M interacts
with the KNOT domain of BubR1, consisting of a D-box pseudo-
degron sequence (residues 224–232) and a hydrophobic loop,
further stabilizing the MCC. Mutations that unfold the KNOT
domain lead to SAC defects as well (Zhang et al., 2024). These
findings suggest the functional implications of a Cdc20A and
Cdc20M interaction for SAC function.

The interaction of Cdc20A with BubR1 shifts it away from the
D-box receptor, which is formed by Cdc20A and APC10 within the
APC/C (Izawa and Pines, 2015; Alfieri et al., 2016; Yamaguchi et al.,
2016). Cdc20A and APC10 together recognize APC/C substrates and
target them for ubiquitination (Buschhorn et al., 2011; da Fonseca
et al., 2011). Therefore, preventing the interaction of Cdc20A and
APC10 prevents substrate recognition. An additional mechanism by
which BubR1 in the MCC prevents APC/C activity is through
blocking recruitment of ubiquitination machinery. Since APC/C
is an E3 ubiquitin ligase, it requires an E2 ubiquitin conjugating
enzyme to add ubiquitin to substrates (Yang et al., 2021). The APC/
C recruits two E2s, namely, UbcH10 (also known as UBE2C) and
UBE2S, to its catalytic core composed of APC2 and APC11 (Brown
et al., 2016; Brown et al., 2014). BubR1 utilizes its TPR binding
motifs to interact with APC2 and sterically hinder UbcH10 from
binding to the catalytic subunit on APC/C (Yamaguchi et al., 2016).
Hence, the MCC functions to inhibit the APC/C via multiple
mechanisms during the SAC.

2.4 SAC deactivation

Once bipolar microtubules attach to kinetochores of all
chromosomes, the SAC must be silenced which involves multiple
mechanisms. Three major processes have been characterized that
silence the SAC.

1) Cdc20 ubiquitination: Since the MCC inhibits the APC/C, its
disassembly is necessary to initiate anaphase. Specifically,
Cdc20 that is a part of the MCC, Cdc20M, is ubiquitinated
by the APC/C itself (Nilsson et al., 2008). Recent studies have
clarified how Cdc20M gets ubiquitinated by the APC/C and is
preferred over Cdc20A (Alfieri et al., 2016; Yamaguchi et al.,
2016). The catalytic core of the APC/C consists of APC2,
which contains a Cullin domain, and APC11, which has a
RING domain involved in recruiting the two E2 ubiquitin-
conjugating enzymes, UBE2C and UBE2S (Yamaguchi et al.,
2016). UBE2C is essential for substrate ubiquitination, while
UBE2S is required for ubiquitin chain elongation (Yamaguchi
et al., 2016). The MCC inhibits the recruitment of these
E2 enzymes by binding to APC2 and APC11. Specifically,
BubR1 binds to the WHB domain of APC2 and the RING
domain of APC11 (Yamaguchi et al., 2016). This represents the
closed state of the APC/C, where its catalytic cavity is blocked.
In its open conformation, the MCC complex shifts away from
the catalytic cavity, allowing UBE2C to bind to the WHB
domain of APC2 and the RING domain of APC11 (Alfieri
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et al., 2016; Yamaguchi et al., 2016). This positioning places
Cdc20M near the APC2-APC11 Cullin-RING complex,
activated by UBE2C, which then ubiquitinates Cdc20M
(Alfieri et al., 2016; Yamaguchi et al., 2016). This is
supported by the observation that deletion of APC15,
another component of the APC/C, enhances the MCC:
APC/C interaction and reduces Cdc20M ubiquitination
suggesting the presence of complexes within the APC/C
that target Cdc20M (Foster and Morgan, 2012). Overall,
Cdc20M ubiquitination releases it from the MCC (Alfieri
et al., 2016; Yamaguchi et al., 2016). However, whether it is
degraded or not remains unclear. This also leads to the proper
interaction between Cdc20A and APC10 which allows for
APC/C to interact with its substrates, including Securin and
Cyclin B1, for ubiquitination and subsequent degradation
(Alfieri et al., 2016; Yamaguchi et al., 2016).

2) Mad2:Cdc20 disassembly: Like the MCC:APC/C:Cdc20 super
complex, Mad2 exists in either an open or closed conformation
(Habu et al., 2002). In its closed form, Mad2 interacts with
Mad1 and Cdc20 to participate in theMCC (Habu et al., 2002).
Therefore, it is vital to reestablish Mad2 in its open
conformation to silence the SAC. TRIP13, an AAA-ATPase,
uses an adaptor protein termed p31comet to promote the
conversion of the closed Mad2 to an open conformation
(Wang et al., 2014; Eytan et al., 2014; Ye et al., 2015;
Musacchio, 2015a). Interestingly, the reestablished open
form of Mad2 is also essential for SAC activation since
TRIP13-deficient cells, which contain only the closed form
of Mad2, cannot undergo SAC activation (Ma and
Poon, 2018).

3) Phosphatases: Phosphorylation plays a key role in the
initiation of the SAC. The phosphorylation of Knl1 at the
MELT repeats by Mps1 initiates SAC signaling (Zhang et al.,
2014). Knl1 is also phosphorylated at the SILK and RVSF
motifs by Aurora B which abrogates the recruitment of
phosphatases preventing SAC silencing (Nasa et al., 2018;
Caldas and DeLuca, 2014). Once kinetochores are attached
to microtubules on Ndc80, this dislodges Mps1 from
kinetochores (Ji et al., 2015; Ji et al., 2017). While
phosphorylation events initiate SAC assembly,
dephosphorylation is crucial for SAC silencing. Two
phosphatases, PP2A and PP1, are key players in this
process (Foley et al., 2011; Liu et al., 2010; Posch et al.,
2010). Plk1 triggers the binding of PP2A to BubR1 by
further phosphorylating Serine-676 and Threonine-680
residues present on the kinetochore attachment regulatory
domain (KARD) motif of BubR1 (Elowe et al., 2007;
Suijkerbuijk et al., 2012; Kruse et al., 2013; Wang et al.,
2016a; Wang et al., 2016b). The regulatory subunit of
PP2A, B56, binds to BubR1 on its phosphorylated KARD
domain (Suijkerbuijk et al., 2012; Ghongane et al., 2014). PP2A
then dephosphorylates the SILK and RVSF motifs of Knl1
(Espert et al., 2014). This dephosphorylation counters the
kinase activity of Aurora B allowing access for the
phosphatase PP1 to dock on Knl1 and dephosphorylate the
MELT repeats (Nijenhuis et al., 2014). Recent studies have
further elucidated the role of PP2A/B56 in dephosphorylation
processes critical for SAC signaling. PP2A/B56 directly targets

the MELT repeats of Knl1, as demonstrated by the
dephosphorylation of Knl1 at Threonine-875, a conserved
Mps1 phosphorylation site (Espert et al., 2014). Loss of
PP2A/B56 activity results in increased Threonine-875
phosphorylation (Espert et al., 2014). Additionally, PP2A/
B56 bound to BubR1 can dephosphorylate Bub1 at
Threonine-461 (Wang et al., 2023). This residue is
phosphorylated by Mps1 creating a binding site for
Mad1 on Bub1 which is crucial for SAC signaling (Zhang
et al., 2017). Therefore, dephosphorylation events by these
phosphatases initiate SAC silencing leading to the disassembly
of the MCC from the kinetochore. In order to remove the
MCC proteins, the microtubule motor dynein recognizes
Mad1–Mad2 at the kinetochore as cargoes and transports
them away from the kinetochores towards the spindle poles
along microtubules (Gassmann et al., 2010; Howell et al., 2001;
Ide et al., 2023; Buffin et al., 2005). Although Bub1, BubR1, and
Bub3 have been previously confirmed as dynein cargoes, a
recent study suggests that SAC proteins maybe evicted from
kinetochores due to dephosphorylation of kinases such as
Mps1 rather than through motor activity of dynein (Ide
et al., 2023) (Figure 1C). Overall, SAC signaling is a
complex process involving multiple kinases and
phosphatases tightly regulated to ensure an even separation
of sister chromatids during mitosis.

3 SAC in gametogenesis

Gametogenesis is defined as the process by which mature
haploid gametes develop from precursor cells known as
primordial germ cells. This process involves a series of mitotic
and meiotic cell divisions, followed by cell differentiation to form
gametes (Larose et al., 2019). Gametogenesis occurs in the testes in
males and is termed spermatogenesis during which spermatozoa are
produced while females undergo oogenesis in the ovaries to produce
oocytes (Larose et al., 2019). It has been observed that defective
meiotic cell division during gametogenesis can lead to aneuploid
embryos and embryonic lethality (Syrjanen et al., 2014). For
instance, female mice lacking synaptonemal complex protein 3
(Sycp3) have aneuploid oocytes due to meiotic non-disjunction
events (Syrjanen et al., 2014). The synaptonemal complex is
active during prophase of meiosis-I during which homologous
chromosomes are brought into proximity for synapsis and
homologous recombination (Kouznetsova et al., 2005;
Westergaard and von Wettstein, 1972). Deletion of Sycp3 in
mice triggers a sexually dimorphic phenotype where males are
infertile while the females are sub fertile and produce a high
number of aneuploid secondary oocytes (Yuan et al., 2002).
Despite a similar rate of fertilization, the Sycp3 null oocytes
display a significantly higher level of embryonic lethality
(Lightfoot et al., 2006). While these chromosomally abnormal
embryos are able to implant into the uterine lining and undergo
gastrulation, they fail to develop beyond E8.0. Cytological analysis
show that about 57% of E3.5 blastocyst cells derived from Sycp3 null
females are aneuploid with 91% of those displaying mosaic
aneuploid karyotypes (Yuan et al., 2002). Histological analysis of
the E7.0 aneuploid embryos have pycnotic bodies in the ectodermal
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layer. Pycnotic bodies show as darkly stained nuclei due to nuclear
condensation during cell death (Magrassi and Graziadei, 1995). At
E8.0, aneuploid embryos are severely disordered and have higher
levels of pycnotic bodies (Yuan et al., 2002). TUNEL staining show
that aneuploid embryos are eliminated through apoptosis. However,
loss of p53 does not rescue embryonic lethality in Sycp3 null females
suggesting that apoptosis occurs through a p53-independent
mechanism (Lightfoot et al., 2006; Yuan et al., 2002).
Furthermore, apoptosis is not due to unfaithful chromosomal
segregation during mitosis as both wild-type and Sycp3 null
embryos contain an equal number of cells at different stages of
mitosis suggesting that mitosis is unaffected in the mosaic aneuploid
cells (Yuan et al., 2002). Therefore, faithful chromosomal
segregation is integral to meiosis.

The spindle assembly checkpoint is active during meiosis in
mouse oocytes as demonstrated by microtubule disruption studies
using nocodazole (Eichenlaub-Ritter and Boll, 1989). Treatment of
metaphase I oocytes with nocodazole causes microtubule
depolymerization, leading to spindle disassembly and loss of
equatorial chromosome alignment. Upon recovery from
nocodazole treatment, oocytes proceed successfully through
meiosis I, indicating that SAC activation delays anaphase onset
in response to spindle disruption (Eichenlaub-Ritter and Boll, 1989).
Further support for SAC functionality comes from studies
examining the SAC protein Bub1. In mouse oocytes,
Bub1 localizes to kinetochores and undergoes phosphorylation
during anaphase I and II (Brunet et al., 2003). This
phosphorylation is crucial for SAC activity and is consistent with
observations in Xenopus oocytes, where Bub1 is also phosphorylated
and localized to kinetochores (Schwab et al., 2001). However, in
contrast to Bub1 in Xenopus oocytes, Bub1 in mouse oocytes is not
dependent on the MAPK-Rsk pathway (Schwab et al., 2001). The
MAPK pathway has been previously implicated in SAC regulation,
as its activity is required for nocodazole-induced metaphase arrest in
Xenopus egg extracts (Minshull et al., 1994; Takenaka et al., 1997;
Wang et al., 1997). In mammalian cells, active MAPK localizes to
spindle poles and kinetochores during mitosis (Zecevic et al., 1998).
In Xenopus oocytes, MAPK-Rsk directly phosphorylates Bub1,
enabling its kinetochore localization and interaction with other
SAC proteins, which is essential for checkpoint activation and
metaphase arrest (Schwab et al., 2001). Furthermore, Rsk
activation alone has been shown to directly phosphorylate
Bub1 both in vitro and in vivo in Xenopus oocytes (Schwab et al.,
2001). Another key SAC protein, Mad2, is recruited to kinetochores
during early metaphase I in mammalian oocytes (Schwab et al.,
2001). Functional studies with dominant-negative Mad2 mutants
reveal that disrupting Mad2 activity prevents metaphase I arrest
upon nocodazole treatment, underscoring its role in SAC-mediated
checkpoint enforcement (Schwab et al., 2001). Taken together, these
studies demonstrate that the SAC, including key proteins such as
Bub1 and Mad2, is functional during gametogenesis.

3.1 SAC in oocytes versus spermatocytes

Interestingly, the strength of SAC signaling appears to be
stronger in male spermatocytes compared to female oocytes. In
female oocytes, treatment with low concentrations of nocodazole

(0.01–0.1 µM) induces spindle abnormalities and aneuploidy
without significantly arresting meiosis I, suggesting weaker SAC
activation (Everett and Searle, 1995). Intermediate concentrations of
nocodazole (0.2–2 µM) induces a robust SAC response, resulting in
meiosis I arrest in approximately 90% of oocytes (Everett and Searle,
1995). High concentrations of nocodazole (≥10 µM) completely
depolymerizes microtubules, causing chromosome scattering and a
total disruption of spindle integrity (Eichenlaub-Ritter and Boll,
1989). These results suggest that lower nocodazole concentrations
may cause only partial destabilization or mild spindle abnormalities,
without fully disassembling microtubules. Furthermore, when
oocytes treated with high nocodazole treatments are allowed to
recover, they reestablish the spindle apparatus and proceed through
anaphase. However, this recovery process is highly error-prone and
leads to a dramatic increase in aneuploidy (Eichenlaub-Ritter and
Boll, 1989), suggesting a compromised or weaker SAC function in
oocytes. Interestingly, there are insufficient studies carried out with
respect to nocodazole effects in spermatocytes to make direct
comparisons with the oocyte data described above, and future
studies in this area could help to define differences between
oocytes and spermatocytes with regard to SAC response.

Oocytes derived from an XOmouse model of monosomy, which
lack second sex chromosome, proceed through meiosis I even in the
presence of an unpaired X chromosome (LeMaire-Adkins et al.,
1997). In contrast, XO spermatocytes elicit a strong meiotic arrest
during metaphase I leading to apoptosis (de Boer et al., 1991;
Sutcliffe et al., 1991). Similar sex differences in SAC function are
observed inMlh1 knockout models.Mlh1 is a mismatch repair gene
essential for proper DNA replication prior to cell division in meiosis
I, and mutantMlh1 leads to univalent chromosomes during meiosis
(LeMaire-Adkins et al., 1997). Male spermatocytes that are Mlh1-
null halt meiosis. In contrast, Mlh-1 null female oocytes proceed
throughmeiosis even in the presence of univalent chromosomes and
initiate anaphase (Gorbsky, 2015). This suggests that mammalian
oocytes require stable bipolar attachment of some, but not all,
chromosomes which increases aneuploidy and errors in female
oogenesis (Nagaoka et al., 2011).

However, conclusions from these observations regarding the
differential strength of SAC signaling between male spermatocytes
and female oocytes is challenged by another study which utilized
spermatocytes from Robertsonian centric fusion heterozygous mice
(Eaker et al., 2001). Robertsonian translocations involve
Robertsonian (ROB) chromosomes that are acrocentric with
centromeres located towards the chromosomal ends. Individuals
who are heterozygous for Robertsonian chromosomes have a higher
chance of producing aneuploid gametes during meiosis I due to
unbalanced segregation (Yip, 2014). Spermatocytes from
Robertsonian heterozygous chromosomes display an increased
level of apoptosis in meiosis I suggesting that abnormal
spermatocytes are eliminated (Eaker et al., 2001). Interestingly,
staining for centromeric proteins CENP-E and CENP-F in
Robertsonian heterozygous spermatocytes revealed an increase in
fluorescence intensity at the kinetochores of lagging or malattached
chromosomes (Eaker et al., 2001). CENP-E and CENP-F facilitate
the attachment of spindle microtubules to the kinetochores and
interact with BubR1 and Bub1 (Ciossani et al., 2018). However, this
SAC signaling is not entirely infallible, as it fails to eliminate all
aneuploid gametes efficiently, leading to the production of abnormal
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gametes (Ciossani et al., 2018). Nevertheless, all evidence points to
the fact that the SAC is active during gamete formation to ensure
proper meiosis although differences in SAC strength are present
in oogenesis and spermatogenesis (Vogt et al., 2008). SAC
proteins and their localization dynamics differ between
spermatocytes and oocytes. In oocytes undergoing meiosis I,
Mad2 localizes to unattached kinetochores and dissipates once
proper kinetochore-microtubule attachments are formed, similar
to its behavior in mitotic cells (Kallio et al., 2000). In contrast, in
spermatocytes, immunofluorescence studies on rats and mice
reveal that Mad2 remains localized to kinetochores throughout
meiosis I (Kallio et al., 2000). Despite these differences in
Mad2 dynamics, its depletion has significant consequences in
both cell types. In oocytes, reduced Mad2 levels accelerate
meiosis I and lead to chromosomal missegregation, whereas
Mad2 insufficiency in spermatocytes results in aneuploidy
(Niault et al., 2007; Lane and Jones, 2017). The benefits
behind altered SAC protein dynamics in spermatocytes is yet
to be made clear.

3.2 SAC in meiosis versus mitosis

The SAC plays a pivotal role in ensuring accurate chromosome
segregation during mitosis. However, its role in meiosis is
comparatively less well understood. What is evident is that SAC
proteins are both present and functionally relevant in meiosis.
Mammalian oocytes, for example, express key SAC components,
including MAD1, MAD2, BubR1, Bub1, Bub3, Mps1, and Aurora B
(Zhang et al., 2005; Homer et al., 2005; Tsurumi et al., 2004;
McGuinness et al., 2009; Li et al., 2009b; Hached et al., 2011;
Lane et al., 2010; Yang et al., 2010). These SAC proteins execute
similar roles in meiosis as they do in mitosis. For instance,
Mad2 depletion in mouse oocytes accelerates the degradation of
Securin and Cyclin B1, increases aneuploidy rates, and shortens the
duration of meiosis I (Homer et al., 2005). This outcome parallels
observations in mitotic cells, where Mad2 depletion in HeLa cells
leads to a similar reduction in mitotic duration (Meraldi et al., 2004;
Michel et al., 2001). Likewise, depletion of Bub1 in oocytes speeds up
meiosis I and results in chromosome segregation errors, a phenotype
mirrored in HeLa cells with Bub1 depletion, which experience
significant sister chromatid segregation errors (McGuinness et al.,
2009; Tang et al., 2004b). Despite these functional similarities,
notable differences exist between SAC function in mitosis and
meiosis. One key distinction is that the SAC response is weaker
or less sensitive during meiosis. This is evident frommultiple studies
showing that manipulations causing chromosome misalignment in
oocytes often fail to halt anaphase onset (Gui and Homer, 2012;
Kolano et al., 2012; Lane and Jones, 2017; Sebestova et al., 2012;
Kyogoku and Kitajima, 2017). Therefore, mammalian oocytes are
prone to chromosomal segregation errors (Bennabi et al., 2016). In
meiosis I, homologous chromosomes pair and recombine to form
bivalents, which are held together by chiasmata. Non-aligned
bivalents, which fail to properly position at the metaphase plate,
risk missegregation (Lane et al., 2012). However, the presence of
such non-aligned bivalents often fails to maintain SAC activation in
oocytes, allowing the APC/C to remain active leading to
nondisjunction (Lane et al., 2012).

The reduced SAC sensitivity in meiosis I is further exemplified
by studies on NuMA (nuclear mitotic apparatus protein), which
anchors microtubules to spindle poles in acentrosomal oocytes.
NuMA deletion disrupts spindle assembly and chromosome
alignment, yet the SAC remains silent, permitting oocytes to
proceed through anaphase I despite severe defects, leading to
aneuploid oocytes and infertility (Kolano et al., 2012). Similarly,
in meiosis II, misaligned chromosomes fail to trigger SAC activation,
allowing oocytes to progress through anaphase II resulting in further
aneuploidy (Mihajlovic et al., 2023). Another significant difference is
the timing and duration of SAC activity. Mitosis is a relatively fast
process, lasting minutes to a few hours in human somatic cells
(Rieder and Maiato, 2004; Herbert et al., 2015). Consequently, SAC
activation and silencing occur rapidly, ensuring efficient progression
through mitosis. In contrast, meiosis is a prolonged process that can
span hours to days leading to delayed SAC activation and silencing
(Musacchio and Salmon, 2007; Homer et al., 2009; Gui and Homer,
2012; McGuinness et al., 2009). This delayed SAC response in
meiosis may allow oocytes more time to correct alignment errors
and promote the production of high-quality gametes (Lane et al.,
2012). In summary, while SAC proteins share conserved roles in
mitosis and meiosis, key differences in SAC sensitivity, timing, and
response exist.

4 SAC in embryogenesis

Embryogenesis is a dynamic intricate process that encapsulates a
multitude of temporal and spatial changes across the entire embryo
for proper differentiation and maturation (Zhai et al., 2022). It
occurs in all species and has been studied extensively in model
organisms such as roundworms, fruit flies, frogs, fish, mice, and
humans, although the process varies depending on the species
(D’Costa and Shepherd, 2009; Technau, 1987). Cell division plays
a critical role in embryogenesis as the zygote begins as a unicellular
organism which undergoes multiple rounds of mitosis to promote
multicellularity (Cinalli et al., 2008). Faithful segregation of
chromosomes is equally essential during mitosis as it is during
meiosis where aneuploid oocytes can lead to an increase in
embryonic lethality as described above (Pan and Li, 2019; Jia
et al., 2015). Interestingly, some organisms such as the fruit fly
Drosophila melanogaster can tolerate aneuploidy. The loss of a copy
of chromosome 4 is not lethal to Drosophila embryos, but results in
smaller body size compared to wild-type flies (Bridges, 1921).
Similarly, unicellular organisms like the fungus Batrachochytrium
dendrobatidis exhibit extensive aneuploidy, suggesting that
tolerance to aneuploidy varies across different organisms
(Rosenblum et al., 2013). In contrast, mammals generally display
lower tolerance towards aneuploidy, such as mosaic aneuploidy,
where some cells in the body have an abnormal number of
chromosomes (Garcia-Castillo et al., 2008). In mouse embryos,
mosaic aneuploidy promotes embryo lethality by E8.0 through a
p53-independent apoptotic mechanism (Lightfoot et al., 2006).
Therefore, proteins that ensure proper chromosomal segregation
during mitosis are essential for successful embryogenesis.

Once the male and female germ cells have fertilized, this
produces a unicellular zygote which undergoes several rounds of
cleavage to reach an 8-cell stage followed by an apical-basal
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polarization that allows for the segregation of distinct cell lineages
(Zhu et al., 2021). Asymmetric cell divisions and the process of
cavitation give rise to the blastocyst which then hatches from the
zona pellucida and implants itself in the uterine lining (Zhu et al.,
2021; Dey et al., 2004). In humans, this preimplantation
development prior to hatching occurs within 5 days post
fertilization (Dey et al., 2004). The SAC is active during
preimplantation development (Wei et al., 2011). For instance,
simultaneous overexpression of three SAC proteins (Bub3,
BubR1, and Mad2) in one-cell embryos leads to inhibition of the
metaphase to anaphase transition (Wei et al., 2011). Co-localization
studies further revealed that all three SAC proteins are localized at
the kinetochores. Conversely, RNAi-mediated depletion of Bub3,
BubR1, or Mad2 disrupts the SAC and leads to anaphase onset with
no apparent metaphase stage (Wei et al., 2011). The bypass of the
SAC is further evidenced by the ability of RNAi-depleted embryos to
progress to the two-cell stage despite nocodazole treatment, which
normally arrests control embryos at the one-cell stage. These data
indicate that SAC proteins are necessary for mitotic arrest in
embryos (Wei et al., 2011). Karyotyping of embryos depleted of
these SAC factors show a heightened level of aneuploidy and an
accumulation of micronuclei. When these embryos are implanted in
the uterine horn of mice, their viability are similar to control
embryos (Wei et al., 2011). However, a substantially higher
percentage of SAC depleted embryos display delayed
development as compared to control embryos, demonstrating
that the SAC is critical for mitotic progression and
preimplantation development during embryogenesis (Wei
et al., 2011).

4.1 SAC response across various species
during embryogenesis

SAC strength and response has been shown to vary between
species which became apparent when assessing responses of 2-cell
stage embryos from nine different species, including both chordates
and non-chordates, to nocodazole treatment (Chenevert et al.,
2020). The chordates (Phallusia mammillata) continue to carry
out mitosis even in the presence of nocodazole as suggested by
oscillations in phosphorylated-Histone H3 levels (Chenevert et al.,
2020). Whereas nocodazole induces a significant delay in mitotic
progression in all other species that were either echinoderms or
mollusks which was shown to be mediated by the SAC kinase Mps1
(Chenevert et al., 2020). Further examination of chordate embryos
using live microscopy showed no difference in the duration of
mitosis between control and nocodazole treated embryos
(Chenevert et al., 2020). Since the chordate group continue to
progress through mitosis even in the presence of spindle
disruption, it indicates that the SAC is not efficient or active
during the early embryonic developmental phase in chordates.
Similar results were also observed in other species, including the
invertebrates Ciona intestinalis and Branchiostoma lanceolatum
(Chenevert et al., 2020). It is plausible to hypothesize that SAC
kinases are not expressed during the early embryonic development
which leads to a lack of SAC activity or mitotic delay in response to
nocodazole treatment. However, the SAC proteins Mad1, Mad2,
Bub1, Bub3, andMps1 are all detected at the mRNA level during and

after fertilization in Phallusia mammillata (Chenevert et al., 2020).
Interestingly, fluorescence imaging revealed that Mps1, Mad1, and
Mad2 are not recruited to unattached kinetochores in P.
mammillata 2-cell embryos treated with nocodazole, suggesting
that SAC assembly at the kinetochore is prevented during early
embryonic development in chordates (Chenevert et al., 2020). It is
important to note that BubR1 was not assessed in this study, leaving
its role in this process unclear.

There are various hypotheses that have been proposed to address
the differential SAC activity between various species. The first
hypothesis postulates that the SAC response is dependent on cell
size (Galli and Morgan, 2016). Evidence for this comes from a study
conducted in Caenorhabditis elegans where the duration of mitotic
arrests following nocodazole treatment was longer after each
embryonic cell division from the 2-cell stage to 8-cell stage which
correlates with a decline in the cell volume (Galli andMorgan, 2016).
Interestingly, there was also a strong correlation between time from
nuclear envelope breakdown to nuclear envelope reformation and
cell size (Galli and Morgan, 2016). As the cell volume reduced with
each consecutive division, SAC mediated mitotic delay became
longer. Depletion of ani-2, an anillin homolog, produces C.
elegans embryos of various sizes (Galli and Morgan, 2016). When
ani-2 was depleted alongside zyg-1, the Plk4 homolog that causes
monopolar spindles, mitotic delays were longer in smaller size
embryos further supporting the hypothesis that cell size may
influence SAC activity. Along these same lines, since the ratio of
unattached kinetochores to cytoplasmic volume increases as cell size
decreases, it is possible that this kinetochore-to-cytoplasm ratio
determines the strength of the SAC response (Galli and Morgan,
2016). In C. elegans heterozygous for rec-8(ok978), which produces
triploid embryos with 50% more kinetochores than wild-type
diploid embryos, the SAC signal was found to be stronger than
in control diploid embryos of the same size. These results suggest
that the kinetochore-to-cytoplasm ratio may influence the SAC
response strength. However, this hypothesis is not supported by
observations in other species (Vazquez-Diez et al., 2019). Live
imaging studies of mouse embryos in the presence of nocodazole
showed that the SAC was more efficient in the much larger 2-cell
stage blastocyst than in smaller 4- or 8-cell stage morulae.
Furthermore, when 40% of cytoplasm was removed to alter cell
volume, nocodazole prolonged mitotic arrest in the 2-cell stage but
did not extend the arrest in 4-cell stage (Vazquez-Diez et al., 2019).
Similarly, this lack of correlation is evident in studies where SAC
response and cell size were compared between species that produce
embryos of various sizes. For instance, the blastomere of P.
mammilata is 130 µm while a blastomere of Drosophila is
500 µm. Upon nocodazole treatment, the latter delays mitotic
progression suggesting an efficient SAC response while the
former fails to do so even with its smaller size (Chenevert et al.,
2020). To rationalize these contradicting observations, it was
proposed that the spindle architectural features should be
considered along with cell size to explain mitotic timing and
SAC efficiency (Bloomfield et al., 2020). Cytokinesis failure was
induced in human diploid colon cancer DLD-1 cells to produce
tetraploid cells of both small and large sizes. Smaller size 4N clones
had longer mitotic arrest although the arrest time varied between the
smaller size clones indicating that cell size itself may not be the
primary factor (Bloomfield et al., 2020). Furthermore, the spindle
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pole size, spindle height, and spindle microtubule density were
considered alongside cell size with results showing that all these
factors influence SAC timing to various extents and thus may
together control SAC efficiency (Bloomfield et al., 2020).

Another hypothesis that has been recently postulated asserts
that the difference between SAC acquisition and SAC modulation is
what influences SAC efficiency (Roca et al., 2023). Embryos from P.
mammillata, which show weak SAC activity in the presence of
nocodazole, exhibit similar mitotic duration up until the 7th cell
cycle between control and nocodazole treated embryos (Roca et al.,
2023). However, nocodazole treatment induced a prolonged mitotic
delay from the 8th cycle onward suggesting that the SAC initiates at
the 8th cycle (Roca et al., 2023). A dominant negative
Mad2 hampered this SAC initiation at the 8th cycle while it had
no effect prior to the 8th cycle. While Mad1 expression is similar
throughout development, immunofluorescence staining revealed
that it does not accumulate on the mitotic chromosomes during
the 4- to 32-cell embryos (Roca et al., 2023). However, Mad1 starts
accumulating on the mitotic chromosomes during the 128- and 256-
cell stage (Roca et al., 2023). This suggests that proper localization of
SAC factors may define SAC proficiency in these embryos indicating
that there may be an initial SAC-deficient phase followed by a later
SAC-proficient phase during early embryonic development (Roca
et al., 2023). The evolutionary benefit, if any, of the lack of SAC
activity during early cell divisions remains to be determined.

Since embryogenesis leads to the development of various tissues,
it is plausible that SAC efficiency could be influenced by different cell
fates (Gerhold et al., 2018). This is supported by the observation that
the anterior and posterior ventral ectodermal cells of P. mammillata
embryos vary in their SAC strength (Roca et al., 2023). Moreover,
cells within these two different regions are of the same size
suggesting that the differences in SAC strength could be due to
the different cell fates rather than cell size (Roca et al., 2023). The
anterior cells can be induced to acquire posterior cell like identity
through the inhibition of glycogen synthase kinase-3 (GSK3)
(Feinberg et al., 2019). Interestingly, posterization of the anterior
cells by GSK3 inhibition leads to a significant reduction in SAC
efficiency in the presence of nocodazole (Roca et al., 2023). Similarly,
posterior cells can be induced to undergo anterior fate by injecting
the transcription factor Ci-FoxA-a (Lamy et al., 2006). Upon
nocodazole treatment, the mitotic delay in Ci-FoxA-a injected
posterior cells is 2.4-fold longer, further supporting the notion
that cell fate may play a crucial part in regulating SAC strength
(Roca et al., 2023). The relationship between cell fate and SAC
efficiency has also been observed in C. elegans where germline fated
cells display longer mitotic delays compared to somatic fated cells
when spindle formation is perturbed in blastomeres with nocodazole
(Gerhold et al., 2018). When germline and somatic cells of
comparable sizes are treated with nocodazole, the germline cells
still display a significantly longer mitotic delay suggesting that
germline fated cells have a stronger SAC response (Gerhold
et al., 2018). While the contribution of cell size cannot be
completely eliminated in this model organism since the SAC
strength increases as the blastomere undergoes cleavage and the
cell size decreases, cell fate may have a greater role in governing SAC
strength (Gerhold et al., 2018).

The SAC response might also be influenced by whether cells are
undergoing constant division, as seen in rapidly dividing cells during

early embryogenesis, or whether they are in a differentiated state
with limited or no division. In early embryogenesis, rapidly dividing
cells exhibit a more error-prone and less robust SAC response
(Horakova et al., 2024). Potential reasons for this could be the
rapid pace of division and incomplete checkpoint maturation. Early
embryonic cells, particularly those undergoing cleavage divisions,
lack cell cycle phases associated with interphase such as G1 and
G2 that provide checkpoints to monitor and rectify DNA damage
(Kumar et al., 2015). These cells undergo rapid cycling, often
without sufficient time for quality control, leading to a higher
incidence of aneuploidy (Horakova et al., 2024). For instance,
aneuploidy rates are extremely high in oocytes and embryos
compared to somatic cells (Vazquez-Diez and FitzHarris, 2018;
Horakova et al., 2024). The cell cycle phases also vary
significantly in Xenopus, Drosophila, and C. elegans embryos
(Masui and Wang, 1998; Foe and Alberts, 1983; Edgar and
McGhee, 1988). The durations of these phases lengthen as
development progresses due to the acquisition of the G1 and
G2 phases. Since the SAC operates during the mitotic phase,
determining the duration of mitosis during development is of
particular interest. A study on Helobdella triserialis embryos
suggests that the duration of the mitotic phase remains constant
during development, indicating that the SAC has sufficient time to
function despite changes in other cell cycle phases (Bissen and
Weisblat, 1989). In contrast, differentiated cells such as neurons do
not undergo cell division, which might suggest that the SAC is
inactive in these cells (Aranda-Anzaldo and Dent, 2017). However,
SAC proteins such as Bub1 and Mad2 are present in neurons and
influence microtubule dynamics suggesting that SAC proteins may
functions beyond mitosis (Hertzler et al., 2020; Zhao et al., 2019;
Cheerambathur et al., 2019). More research is needed to elucidate
the roles of SAC proteins in embryonic versus differentiated cells
and their potential non-mitotic functions in differentiated tissues.

Another intriguing perspective on SAC response is through the
lens of evolution. Across eukaryotes, many species have retained
SAC proteins and their conserved functions, such as Saccharomyces
cerevisiae and Homo sapiens (Rudner and Murray, 1996). However,
there are notable exceptions, including Trypanosoma brucei, which
lacks a BubR1/Mad3 homolog, and Giardia intestinalis, which has
lost the APC/C at some point in its evolutionary history (Akiyoshi
and Gull, 2013; Gourguechon et al., 2013; van Hooff et al., 2017). In
T. brucei, spindle assembly perturbation does not trigger a SAC
response, as the cells proceed to cytokinesis despite the disruption,
suggesting that the absence of key SAC components compromises
SAC proficiency (Ploubidou et al., 1999; Akiyoshi and Gull, 2013).
Interestingly, while such observations suggest a correlation between
the presence of SAC proteins and SAC strength, there are
exceptions. For example, the flatworm Schmidtea mediterranea,
which lacks Mad2, BubR1/Mad3, and Bub1, still exhibits a delay
in G2/M progression in response to nocodazole, implying the
existence of alternative mechanisms to ensure chromosomal
fidelity (Grohme et al., 2018). In addition, species such as G.
intestinalis rely on Cyclin B degradation for cell cycle
progression; however, unlike most organisms, the degradation of
Cyclin B in G. intestinalis is not mediated by the APC/C. Instead,
degradation is regulated through phosphorylation by unidentified
upstreammechanisms, as G. intestinalis lacks the APC/C machinery
(Gourguechon et al., 2013). Interestingly, ubiquitin ligases beyond

Frontiers in Cell and Developmental Biology frontiersin.org10

Pun and North 10.3389/fcell.2024.1491394

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1491394


APC/C have been identified as regulators of Cyclin B1 degradation,
including CRL2ZYG-11 (Balachandran et al., 2016). This ligase, also
found in C. elegans and human cells, operates redundantly with
APC/C in targeting Cyclin B1 (Balachandran et al., 2016). Under
normal conditions, when the APC/C is active, CRL2ZYG-11

inactivation has minimal effects. However, in the absence of
APC/C activity, CRL2ZYG-11 compensates by degrading Cyclin B1,
facilitating normal progression through metaphase (Balachandran
et al., 2016). Cyclin B1 is essential for SAC function, as it serves as a
scaffold for Mad1, anchoring it to the kinetochore corona. This
localization enables Mps1 to phosphorylate Mad1 on its C-terminus
(Allan et al., 2020). Once proper kinetochore-microtubule
attachments are formed, Cyclin B1 is degraded by the APC/C to
allow anaphase progression (Allan et al., 2020). However, in
scenarios of sustained mitotic arrest, such as during nocodazole
treatment, cells may bypass the SAC and exit mitosis via a process
called mitotic slippage (Brito and Rieder, 2006). The mechanisms
behind mitotic slippage have been debated, with evidence pointing
to a gradual weakening of SAC signaling due to the loss of Mad2 at
kinetochores (Lok et al., 2020). The discovery of CRL2ZYG-11 as a
redundant Cyclin B1 regulator provides further insight into this
phenomenon. Notably, depletion of CRL2ZYG-11 significantly reduces
mitotic slippage in human cells, even under nocodazole treatment
(Balachandran et al., 2016). Future studies exploring whether other
species possess mechanisms beyond APC/C to degrade Cyclin
B could shed light on the evolutionary diversity of SAC
regulation and its implications for SAC proficiency.

The evolutionary origins of SAC components are particularly
intriguing, as their presence across diverse eukaryotic species
suggests that they likely originated in a common ancestor or the
last eukaryotic common ancestor (LECA) (Kops et al., 2020). A
recent review provides a comprehensive overview of the
evolutionary branches emanating from the LECA and highlights
how SAC components have diverged across eukaryotic lineages
(Kops et al., 2020). Understanding the diversity of SAC

components and their structural domains across species could
shed light on the broad spectrum of SAC proficiency observed
today. Such studies could offer valuable insights into the
evolutionary adaptations that shape mitotic regulation
across species.

Overall, the efficiency of the SAC during development is dictated
by various factors whose level of contribution varies among species.
It has also been speculated that SAC silencing is a by-product of
changes that occur in reproductive regulation (Chenevert et al.,
2020). It remains to be determined what exactly causes SAC function
in the initial stages of embryonic development and what are the
evolutionary benefits of the varied SAC activity in different species
during early embryogenesis (Table 1).

5 SAC proteins in gametogenesis and
embryogenesis

The proteins involved in the SAC are broadly categorized into
two groups: sensor and signal transducer proteins. Sensor proteins
consist of Bub1, Mad1, and Mps1 while signal transducer proteins
consist of the MCC proteins BubR1, Bub3, Mad2, and Cdc20
(Peters, 2006). The remainder of this review will discuss each of
these SAC proteins and their role in gametogenesis and
embryogenesis.

5.1 Bub1

Bub1 (budding uninhibited by benzimidazoles 1) is a serine/
threonine kinase that is recruited to unattached kinetochores where
it plays a crucial role in the assembly of the signal transducers (Kim
and Gartner, 2021). Bub1 is recruited to the kinetochore by Bub3,
along with BubR1. Both Bub1 and BubR1 also bind to the KI1 and
KI2 motifs of Knl1, respectively (Kiyomitsu et al., 2007; Kiyomitsu

TABLE 1 Relative SAC proficiency across different phyla and species.

Phylum Species SAC Competency Literature

Chordates Phallusia mammillata - Chenevert et al. (2020)

Ciona intestinalis - Chenevert et al. (2020)

Branchiostoma lanceolatum - Chenevert et al. (2020)

Xenopus laevis - Gerhart et al. (1984)

Danio rerio - Ikegami et al. (1997)

Nematodes Caenorhabditis elegans + Encalada et al. (2005)

Arthropods Drosophila melanogaster + Perez-Mongiovi et al. (2005)

Mollusks Mytilus galloprovincialis + Milani et al. (1990)

Spisula solidissima + Evans et al. (1983)

Cnidarians Clytia hemisphaerica + Chenevert et al. (2020)

Echinoderms Hacelia attenuata + Chenevert et al. (2020)

Paracentrotus lividus + Chenevert et al. (2020)

Arbacia lixula + Chenevert et al. (2020)
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et al., 2011; Krenn et al., 2012). Bub1 is one of the first proteins that
arrives at unattached kinetochores where it activates the SAC by
recruiting the Mad1-Mad2 complex (Kim and Gartner, 2021; Tang
et al., 2004a). Therefore, Bub1 is vital for proper SAC function. The
importance of Bub1 in embryogenesis and tissue homeostasis has
been highlighted through the use of Bub1 knockout mouse models
(Perera et al., 2007). Homozygous Bub1 null mice are embryonic
lethal suggesting that Bub1 is essential for embryogenesis (Perera
et al., 2007). Bub1 null embryos die between E3.5 and E8.5 (Perera
et al., 2007). Mouse embryonic fibroblasts with inactivated
Bub1 display reduced proliferation, improper chromosome
alignment, and aberrant mitosis, suggesting that Bub1 is essential
for maintaining proper mitosis in developing embryos (Perera et al.,
2007). E7.5 Bub1 deficient embryos also have reduced
phosphorylated-histone H3 positive cells and mature spermatids
in their seminiferous tubules (Perera et al., 2007). Deletion of
Bub1 in post implantation embryos at E10.5 also leads to an
arrested development within 48 h which indicates that Bub1 is
essential to organogenesis (Perera et al., 2007; Tilston et al., 2009).
Histological analysis of these embryos revealed an extensive
hemorrhaging within the brain and the body cavity (Tilston
et al., 2009). At a cellular level, Bub1 deleted embryos have a
heightened level of apoptosis and a reduction in the number of
miotic cells as demonstrated by reduced phosphorylated-histone
H3 positive cells (Tilston et al., 2009). Overall, Bub1 is indispensable
for normal embryogenesis.

In humans, studies of spontaneous miscarriages carried out in
patients from Chongqing Medical University Affiliated Hospitals
showed that almost half of embryos had reduced levels of Bub1 and
aneuploidy (Shi et al., 2011). RNAi-mediated depletion of Bub1 in
primary embryonic villus cells suppresses cell proliferation and
increases aneuploidy (Shi et al., 2011). Biallelic germline
mutations in Bub1 that leads to a reduction in the total protein
level and kinase activity have been identified in two patients
(Carvalhal et al., 2022). These patients suffer from microcephaly,
growth retardation, and cardiovascular defects, and impaired
mitotic fidelity (Carvalhal et al., 2022). Overall, these studies
suggest that Bub1 is essential for both embryogenesis and
organogenesis.

5.2 Mad1 and Mad2

Mad1 is an adaptor protein that plays crucial role in the
assembly of the MCC by recruiting Mad2 (Devigne and Bhalla,
2021). Mad2 is in an inactive (or open conformation) as it is
recruited to the kinetochore (Musacchio, 2015a; Luo et al., 2018).
Once it binds to Cdc20, Mad2 changes its conformation to its closed,
active, conformation. This complex then functions with other SAC
proteins to inhibit the APC/C (Luo et al., 2018). Mad1 knockout
embryos do not survive embryogenesis while overexpression of
Mad1 correlates with an increased frequency of early-lethality
related to aneuploidy (Iwanaga et al., 2007; Zhao et al., 2021).
This suggests that Mad1 expression needs to be finely tuned for
effective SAC function during embryogenesis. Mad1 heterozygous
knockout animals show a higher incidence of tumors such as
melanoma, rhabdomyosarcoma, and osteosarcoma along with
aneuploidy (Iwanaga et al., 2007). Factors that regulate

Mad1 levels include miR-125b that binds to the 3′UTR region of
Mad1 and negatively regulates Mad1 expression levels (Zhao et al.,
2021). Aneuploid embryos that undergo miscarriages have higher
expression of Mad1 and a downregulation of miR-125b, suggesting
that upstream regulators of Mad1 are essential for effective SAC
response and prevention of aneuploidy (Zhao et al., 2021).
Interestingly, the same study noted a decrease in expression of
Bub3 protein which is another essential player of the SAC (Zhao
et al., 2021).

Mad2 knockout mice were utilized to study its role during
embryogenesis (Dobles et al., 2000). When Mad2 heterozygous
mice were mated, no Mad2 homozygous null pups were born
suggesting that Mad2 is embryonic lethal and essential for
embryogenesis (Dobles et al., 2000). Histological analysis of
E7.5 Mad2 null embryos revealed that they were smaller in size
and had abnormal gross morphology compared to wild-type
embryos (Dobles et al., 2000). TUNEL staining indicated that
these embryos show enhanced apoptosis between E6.5-E7.5. They
also displayed aberrant mitosis as demonstrated by reduced mitotic
cells and a higher number of cells with abnormal anaphases (Dobles
et al., 2000). Mad2 null E5.5 embryos cultured in vitro also failed to
arrest in mitosis in response to nocodazole treatment (Dobles et al.,
2000). Overall, Mad2 is essential for embryonic viability and is
required for proper chromosomal segregation in mice (Dobles et al.,
2000). In humans, similar to Bub1, reduced levels of Mad2 are
observed in cases of spontaneous miscarriages (Shi et al., 2011).
Depleting Mad2 in embryonic villus cells leads to a higher
percentage of cells with abnormal chromosomes and reduces cell
proliferation (Shi et al., 2011).

Mad2 overexpression has also been studied extensively in mice
as Mad2 is overexpressed in many different tumor types such as
Burkitt lymphomas and Plasmacytomas (Sotillo et al., 2007). Mouse
embryonic fibroblasts (MEFs) that overexpress Mad2 show reduced
proliferation and display tetraploidy with a higher incidence of
apoptosis compared to control cells (Sotillo et al., 2007). Therefore,
chromosomal instability is observed both when Mad2 is lost or
overexpressed suggesting that its level must be precisely regulated
for accurate cell division.

Since loss of Mad2 leads to embryonic lethality, conditional
Mad2 knockout mice were used to assess Mad2 deletion in adult
mice (Schukken et al., 2021). Systemic knockout of Mad2 in 9–10-
week-old mice leads to atrophy in the intestines specifically in the
jejunum and ileum, coinciding with an increase in apoptosis and
mitotic abnormalities such as lagging chromosomes and anaphase
bridges (Schukken et al., 2021). Interestingly, other organs including
the lung, liver, and kidneys do not display any phenotype in
response to systemic loss of Mad2 (Schukken et al., 2021). This
suggests that various cell and tissue types respond differently to loss
of SAC proteins, potentially due to differences in the frequency or
rate of cell division in different organs. Tissues with higher rates of
cell turnover, such as the intestine, may be more susceptible to
mitotic defects caused by the loss of SAC proteins such as Mad2,
while other organs with relatively slower or less frequent cell division
may tolerate SAC protein loss. Therefore, Mad2 expression is crucial
post embryogenesis especially in tissues that divide rapidly.

The interaction of Mad1 and Mad2 is also essential in
gametogenesis specifically during synapsis which is the crossover
between homologous chromosomes (Devigne and Bhalla, 2021). For
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instance, mutations that prevent Mad1:Mad2 interaction delays
synapsis formation and abolishes the synapsis checkpoint in C.
elegans (Devigne and Bhalla, 2021). Similarly, vertebrate oocytes
require Mad1 and Mad2 for metaphase arrest during meiosis II
(Tunquist et al., 2003). Overall, Mad1 and Mad2 are essential
proteins whose precise regulation is critical for maintaining
chromosomal stability during gametogenesis and embryogenesis.
Their roles in the spindle assembly checkpoint are vital, with
dysregulation leading to deleterious consequences, including
aneuploidy and embryonic lethality.

5.3 Mps1

The kinase Mps1 is responsible for the initiation of the SAC
and promoting MCC assembly (Lara-Gonzalez et al., 2021a;
Fischer et al., 2021; Ji et al., 2017). Through its
phosphorylation of Knl1, it provides a docking site for the
SAC proteins at unattached kinetochores to successfully
inhibit the activation of the APC/C (Ji et al., 2017).
Mps1 activity is essential in both oogenesis and
spermatogenesis. Mps1 deletion in Drosophila causes
chromosomal segregation errors (Gilliland et al., 2007).
Similarly, oocyte specific deletion of Mps1 impairs the
segregation of chromosome in oocytes during meiosis I and
negatively impacts the fertility of mice. In male mice, germ
cell specific deletion of Mps1 depletes spermatocytes and
causes infertility suggesting that Mps1 is essential for
spermatogenesis (Fang et al., 2021). Mps1 is also crucial in
embryogenesis. For instance, inhibition of Mps1 during the
preimplantation stage of mouse embryos significantly disturbs
the development of embryos from the 2-cell stage to the
blastocyst stage (Ju et al., 2021). These embryos display
misaligned chromosomes and an absence of kinetochore-
microtubule attachment along with DNA damage and an
increase in oxidative stress followed by heightened apoptosis
(Ju et al., 2021). Overall, Mps1 is crucial for gametogenesis and
embryogenesis which underscores the importance of Mps1 in
ensuring accurate cell division and chromosomal stability during
these processes.

5.4 BubR1

Budding uninhibited by benzimidazole-related 1 (BubR1),
encoded by the Bub1b gene, is a component of the MCC along
with Bub3, Mad2, and Cdc20 (Bolanos-Garcia and Blundell,
2011). The MCC blocks the activation of the APC/C complex
thereby preventing ubiquitination and degradation of key
anaphase onset substrates such as Securin and Cyclin B1
(Sudakin et al., 2001; Reddy et al., 2007). Homozygous
BubR1 knockout embryos fail to survive beyond E6.5 in utero
(Wang et al., 2004). Blastocysts from wild-type and heterozygous
knockout mice are able to hatch from the zona pellucida, attach
to culture plates, and proliferate by E6.5 (Wang et al., 2004).
BubR1 knockout embryos also display slower proliferation and
atrophy by E6.5 with heightened levels of cells undergoing
apoptosis as revealed by TUNEL staining (Wang et al., 2004)

Adult BubR1+/− mice also show splenomegaly and extramedullary
megakaryopoiesis (Wang et al., 2004). Aneuploidy was not
examined in the knockout embryos although it can be
speculated that the higher level of cell death may be due to
chromosomal instability in the BubR1 knockout embryos (Wang
et al., 2004). BubR1 also plays a crucial role in regulating
kinetochore-microtubule attachments. Cells depleted of
BubR1 fail to form stable microtubule attachments to
kinetochores (Lampson and Kapoor, 2005). Similarly,
depletion of Bub1 also disrupts these attachments, suggesting
that the deletion of either Bub1 or BubR1 contributes to
aneuploidy not only by impairing SAC function but also by
causing unstable kinetochore-microtubule interactions
(Lampson and Kapoor, 2005).

Mammalian oocytes undergo two phases of meiosis to produce
secondary oocytes that can fertilize with a mature spermatozoon
(MacLennan et al., 2015). Oocytes depleted of BubR1 cannot carry
out prophase I arrest during meiosis I and undergo germinal vesicle
breakdown (MacLennan et al., 2015). BubR1 depletion in oocytes
leads to a significant reduction in CDH1, a co-activator of APC/C,
which is required for APC/C led arrest during prophase I (Homer
et al., 2009). Interestingly, these BubR1 depleted oocytes become
arrested before the completion of meiosis I and fail to produce polar
bodies (Homer et al., 2009). In contrast, another study demonstrated
that BubR1 depleted oocytes do not undergo cell cycle arrest even in
the presence of nocodazole and successfully produce polar bodies,
which might be attributed to various degrees of BubR1 depletion
achieved in these contradictory studies (Wei et al., 2010). Using
mouse oocytes completely devoid of BubR1 revealed that BubR1 is
not required for prophase I arrest during meiosis (Touati et al.,
2015). As a result, BubR1 knockout oocytes undergo germinal
vesicle breakdown and readily carry out meiosis I in an
accelerated manner suggesting that SAC function is impaired in
the absence of BubR1 (Touati et al., 2015). Kinetochore-microtubule
interactions that are resistant to depolymerization when exposed to
cold temperatures are absent in BubR1 deleted oocytes indicating
that BubR1 loss reduces stability of spindle fibers in oocytes (Touati
et al., 2015). Furthermore, BubR1 depleted oocytes that complete
meiosis I and II are found to be aneuploid (Touati et al., 2015).
Overall, these studies indicate that BubR1 is essential for regulating
the timing of oogenesis and the production of healthy oocytes.

To study the role of BubR1 in adult mice, BubR1 hypomorphic
mice expressing approximately 10% of BubR1 protein found in wild
type mice were engineered (Baker et al., 2004). BubR1 hypomorphic
mice display severe phenotypes including aneuploidy and premature
aging phenotypes such as growth retardation, cataracts, sarcopenia,
and lordokyphosis (Baker et al., 2004). BubR1 hypomorphic mice
also exhibit cardiac anomalies, including prolonged QT syndrome,
decreased tolerance to cardiac stress following injection with the β-
adrenergic agonist isoproterenol, and a tendency to die in a manner
reminiscent of sudden cardiac death (Baker et al., 2004; Baker et al.,
2013; North et al., 2014). Mutation of BubR1 in humans leads to
Mosaic Variegated Aneuploidy (MVA) syndrome, which is
characterized by increased incidences of tumorigenesis, and
progeroid traits such as shortened lifespan, cataracts, congenital
heart defects, and facial dysmorphism (Suijkerbuijk et al., 2010).
Overall, these studies indicate that BubR1 is essential for oogenesis,
embryogenesis, and maintenance of tissue/organs in adulthood.
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5.5 Bub3 and Rae1

Budding uninhibited by benomyl (Bub3) is a component of
the MCC complex along with BubR1, Cdc20, and Mad2. Bub3 is a
crucial component of the SAC since it binds to phosphorylated
MELT repeats on the outer kinetochore subunit Knl1 that leads to
the recruitment of Bub1 and BubR1 to kinetochores (Kiyomitsu
et al., 2007; Krenn et al., 2012; Yamagishi et al., 2012; Primorac
et al., 2013). Bub3 binds to Bub1 and BubR1 through their GLEBS
motifs (Taylor et al., 1998). Mice that harbor Bub3 null alleles
were generated, and similar to other MCC components, they are
embryonic lethal and die between E6.5-E7.5 (Kalitsis et al., 2000).
Blastocysts obtained at day E3.5 were cultured in vitro and
examined for morphological abnormalities (Kalitsis et al.,
2000). While control embryos rapidly divided and increased
their inner cell mass, Bub3 null embryos remained smaller in
size and degenerated, suggesting they are alive at E3.5 but
eventually die (Kalitsis et al., 2000). These embryos were also
found to be resorbed prior to E8.5 in utero (Kalitsis et al., 2000).
Furthermore, mitotic abnormalities are present in the Bub3 null
embryos starting at E3.5 and as the embryos progress, they
accumulate more mitotic abnormalities including the
formation of micronuclei, nuclear bridging, and abnormal
nuclei (Kalitsis et al., 2000). These data suggest that Bub3 is
required for proper early embryogenesis.

Bub3 shares extensive sequence homology with Rae1 (Babu
et al., 2003). Rae1, although not a well-characterized SAC
component, has been implicated in processes that influence
mitotic progression and checkpoint functions (Martinez-
Exposito et al., 1999; Taylor et al., 1998; Babu et al., 2003).
Rae1 was originally found to be involved in mRNA export during
interphase where Rae1 binds to the GLEBS motif of the
nucleoporin Nup98 (Brown et al., 1995; Wang et al., 2001).
Similar to Bub3, Rae1 also binds to the GLEBS domain in
both Bub1 and BubR1 to regulate the SAC complex (Wang
et al., 2001). Rae1 null embryos die by E8.5 (Babu et al.,
2003). At E3.5, Rae1 null embryos are morphologically
indistinguishable from wild type and heterozygous littermates
(Babu et al., 2003). Blastocysts harvested at E3.5 continue to
hatch from the zona pellucida, but Rae1 null embryos fail to
divide their inner cell mass and degenerate by E8.5 (Babu et al.,
2003). Interestingly, Rae1 null embryos are able to carry out
nuclear mRNA export suggesting that failure to export nuclear
mRNA due to loss of Rae1 is not responsible for the observed
embryonic lethality (Babu et al., 2003). WhenMEFs isolated from
heterozygous Rae1 null embryos were challenged with
nocodazole to examine the effect of Rae1 loss on the response
to spindle damage, Rae1 haploinsufficient cells were unable to
arrest in mitosis and showed significantly higher levels of
chromosomal missegregation (Babu et al., 2003). Similarly,
Bub3 haploinsufficiency also leads to failure in mitotic
checkpoint arrest and errors in chromosome segregation when
treated with nocodazole (Babu et al., 2003). When Rae1 and
Bub3 haploinsufficiency are combined, an increase in aneuploidy
both in vitro and in vivo was observed (Babu et al., 2003).
Interestingly, Rae1 overexpression reduces the mitotic
checkpoint defects observed in Bub3 haploinsufficient MEFs
suggesting that Rae1 can compensate for the reduction of

Bub3 with respect to SAC function (Babu et al., 2003).
Furthermore, combined haploinsufficiency of Rae1 and
Bub3 leads to increased tumorigenesis in mice due to an
increase in chromosomal instability (Babu et al., 2003). Taken
together, these findings suggest that both Bub3 and Rae1 are
essential for SAC function during embryogenesis.

5.6 Cdc20

Cdc20 is another member of the MCC complex and also serves
as a substrate recognition subunit of the E3 ubiquitin ligase APC/C
promoting ubiquitination of its substrates (Qiao et al., 2016). The
phosphorylation of the APC/C by CDK1 promotes the binding of
Cdc20 to the APC/C (Golan et al., 2002; Kramer et al., 2000). The
formation of APC/C-Cdc20 complex allows for the recognition of
APC/C substrates important for the metaphase-to-anaphase
transition. The WD-40 domain in Cdc20 recognizes degron
motifs in substrate proteins allowing for their recruitment to the
APC/C and subsequent ubiquitination (Kraft et al., 2005; Glotzer
et al., 1991). Cdc20 is essential for successful embryogenesis, as its
deletion in mouse embryos leads to embryonic lethality. Analysis of
Cdc20 deleted embryos showed that these embryos arrest at E3.5 at
the two-cell stage (Li et al., 2007). When E1.5 embryos were
harvested and cultured in vitro, the Cdc20 null embryos failed to
progress from the 2-cell stage to the 4-cell stage (Li et al., 2007).
Cdc20 bound to the APC/C mediates the ubiquitination of Securin
and Cyclin B1 followed by the activation of Separase and the onset of
anaphase (Li et al., 2007). Cdc20 null embryos at E1.5 demonstrate a
high level of Cyclin B1 and Securin suggesting that Cdc20 null
embryos fail to transition to anaphase causing metaphase arrest (Li
et al., 2007). Meanwhile, Cdc20 and Securin double mutants were
unable to maintain the metaphase arrest suggesting that Securin is
important for the metaphase arrest caused by Cdc20 deletion (Li
et al., 2007). Homozygous mutant embryos that have Cdc20 lacking
the Mad2 binding domain are also not viable and die before E14.5
(Li et al., 2009a). Morphologically, the mutant embryos are smaller
and suffer from massive apoptosis (Li et al., 2009a). Upon
nocodazole treatment, mutant cells fail to undergo mitotic arrest
(Li et al., 2009a). Moreover, reduction in Cdc20 activity, using
heterozygous Cdc20 mice, leads to chromosomal instability and
an increase in tumorigenesis (Li et al., 2009a).

In humans, mutations in Cdc20 were identified in a cohort of
infertile individuals who displayed oocyte maturation arrest,
fertilization failure, and early embryonic arrest (Zhao et al.,
2020). These mutations included a missense mutation c.965G >
A (p. Arg322Gln) and nonsense or frameshift mutations (c.544C > T
[p.Arg182*], c.813_814ins AGTG [p.Gly272Serfs*24], and c.1176_
1179del TCTG [p.Cys392*]) (Zhao et al., 2020). The missense
mutation (p.Arg322Gln) showed normal kinetochore localization
of Cdc20 in oocytes, similar to the wild type protein (Zhao et al.,
2020). However, the frameshift and nonsense mutations (p.Arg182*,
p.Gly272Serfs*24, and p.Cys392*) caused defective kinetochore
localization, leading to a loss-of-function phenotype (Zhao et al.,
2020). In transfected chinese hamster ovary (CHO) cells, these
mutations resulted in reduced Cdc20 protein levels or truncated
Cdc20 proteins. Additionally, these mutations caused a decrease in
Cyclin B1 degradation, which is a critical function of Cdc20 during
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TABLE 2 Lethality age and phenotypes displayed by various in vivo and in vitro models of SAC proteins.

SAC
Protein

Model Lethality Age Phenotypes Literature

Bub1 BUB1 null, BUB1Δ/Δ E3.5- E8.5 - Hemorrhaging within the periphery of the embryo, the
brain and body cavity

- Increase in apoptosis
- Reduced number of mitotic cells
- Abnormal seminiferous tubules
- Infertility in males

Tilston et al. (2009), Perera
et al. (2007)

BUB1F/Δ MEFs; ERT-Cre NA - Reduced viability and proliferation Perera et al. (2007)

Mad1 Mad1−/− NA - Embryonic lethal Iwanaga et al. (2007)

Mad1−/+ NA - Increase tumor incidence
- Aneuploidy
- Attenuated SAC response

Iwanaga et al. (2007)

Mad2 Mad2−/− E6.5–E7.5 - Increase in apoptosis Dobles et al. (2000)

Mad2−/− embryonic cells cultured
in vitro

NA - SAC deficient in response to nocodazole treatment
- High rate of chromosomal missegregation

Dobles et al. (2000)

Mad2lfl/fl; Cre-ERT2 2–3 weeks post knockout
initiation

- Significant loss of weight
- Rapid atrophy in jejunum/ileum
- Increase in apoptosis cells
- Mitotic abnormalities in intestine

Schukken et al. (2021)

Mps1 Mps1 specific inhibitor (Mps1-
1N-1)

N/A - Arrested progression from 2-cell stage to blastocysts
- Kinetochore-microtubule attachment defects
- DNA damage and oxidative stress in mouse embryos
- Increase apoptosis and autophagy

Ju et al. (2021)

BubR1 BUBR1−/− E5.5-E7.5 - Increase in apoptosis
- Splenomegaly
- Extramedullary megakaryopoiesis

Wang et al. (2004)

BUBR1−/+ MEFs N/A - Increase in polyploidy
- Defective SAC control

Wang et al. (2004)

Bub1bH/H ~ 6 months - Shortened lifespan
- Cachectic dwarfism
- Lordokyphosis
- Cataracts
- Impaired wound healing

Baker et al. (2004)

Bub1bH/H MEFs N/A - Defects in Mitotic checkpoint
- Heightened senescence

Baker et al. (2004)

Bub3 Bub3−/− E6.5-E7.5 - Incompetent SAC
- Formation of micronuclei
- Lagging chromosome
- Irregular nuclear morphology

Kalitsis et al. (2000)

Bub3+/− MEFs N/A - Reduced mitotic index
- Increase in chromosomal instability

Babu et al. (2003)

Rae1 Rae1−/− E3.5-E8.5 - Embryonic lethal Babu et al. (2003)

Rae1+/− MEFs N/A - Defective mitotic checkpoint
- Increased chromosomal instability

Babu et al. (2003)

Cdc20 Cdc20gt/gt null embryos Two-cell stage - Arrested in metaphase
- High levels of Cyclin B1

Li et al. (2007)

Cdc20AAA/AAA E12.5-E14.5 - Compromised SAC Li et al. (2009a)

Cdc20AAA/AAA MEFs N/A - Reduced mitotic index
- Lower cell number
- Aneuploidy
- Higher incidences of spontaneous tumorigenesis in
Cdc20AAA/+ mice

Li et al. (2009a)
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the metaphase-to-anaphase transition (Zhao et al., 2020). The
mutations also resulted in reduced mRNA expression of
Cdc20 further indicating that these mutations lead to unstable
Cdc20 protein and degraded mRNA. Injection of Cdc20 cRNA
rescued these phenotypes in the mutated oocytes indicating that
Cdc20 is essential for proper oocyte development and fertility in
humans (Zhao et al., 2020). Furthermore, treatment with the
Cdc20 inhibitor Apcin interfered with embryo implantation in
mice (Guo et al., 2020). Cdc20 expression reaches its peak during
the estrus phase of menstrual cycle in mouse endometrial tissue and
during the mid-secretory phase in human endometrial tissue (Guo
et al., 2020). Apcin treatment reduced the proliferation and adhesion
rate of human uterine epithelial cells lines HEC-1A and RL95-2, and
significantly reduced the number of implanted embryos as
compared to control groups (Guo et al., 2020). Taken together,
Cdc20 appears to be essential for embryogenesis, embryo
implantation, and fertility in mammals.

6 Conclusion

In summary, SAC proteins play a vital role in gametogenesis
and embryogenesis. Knocking out most SAC proteins leads to
embryonic lethality while inducible systemic knockout in adult
animals negatively impacts the functions of various organs
(Table 2). SAC function and efficiency seem to vary between
species and are affected by different factors including cell fate,
cell size, and kinetochore-to-cytoplasm ratio. The molecular
basis and functional consequences of this species variation in
SAC function should be studied in more depth to decipher what
factors regulate SAC efficiency during embryogenesis. Moreover,
cellular pathways that regulate the activity level of SAC is a
substantial gap in knowledge that is yet to be explored in detail
which is imperative since SAC response appears to undergo a
period of silencing during the initial period of embryogenesis in
some organisms. Such analysis may also shed light on the
potential evolutionary benefit of regulating SAC activity in
some species that holds potential for clinical therapy such as
in aneuploidy and cancer that arise as a result of chromosomal
instability.
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