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Cells contain a plethora of structurally diverse lipid species, which are unevenly
distributed across the different cellular membrane compartments. Some of these
lipid species require vesicular trafficking to reach their subcellular destinations.
Here, we review recent advances made in the field that contribute to
understanding lipid sorting during endomembrane trafficking.
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1 Introduction

The plasma- and endo-membranes of eukaryotic cells are two-dimensionally diffusing
fluids comprised of myriads of lipid species. They form a barrier, separating compartments
into selective reaction spaces, and embed the trans- and membrane proteins of the cell. It is
estimated that each cell consists of tens of thousands of lipid species (Gerl et al., 2012) with
each cellular membrane compartment or organelle having its unique and distinct lipid
composition and thus membrane identity (Harayama and Riezman, 2018; van Meer et al.,
2008). The different membrane and organelle compartments, however, are interconnected
through vesicular transport and thus in constant exchange. For the plasma membrane
(PM), for instance, it is estimated that the equivalent of its total surface area is turned over
every 15 min (Koval and Pagano, 1991; Mayor et al., 1993). Given this continuous vesicular
endomembrane flux along the endocytic and secretory systems, concomitant lipid and
protein sorting are thus key cellular processes necessary to enable eukaryotic cells to
maintain membrane homeostasis among organelles (van Meer et al., 2008).

There is an increasing body of research demonstrating how individual or bulk lipids can
be supplied to different organelles through either lipid transfer proteins specific for
individual lipids or through membrane contact sites that connect different organelles.
Both pathways bypass vesicular trafficking (interested readers might be referred to the
following references: Anders and Mattjus, 2021; Khaddaj and Kukulski, 2023; Melia and
Reinisch, 2022; Samaha et al., 2019; Wong et al., 2019).

However, these lipid transport conduits are not available for all lipid species. Due to
their large hydrophilic headgroup, complex sphingolipids (cSLs), sphingomyelin and
especially the glycosphingolipids (GSLs), are trapped in the outer membrane leaflet and
cannot rely on lipid transfer proteins for sorting (Sokoya et al., 2022; van Meer et al., 2008;
Young et al., 1992). Rather, complex SLs depend heavily on vesicular trafficking to reach
their subcellular destinations. The mechanisms by which cells preferentially sort these lipids
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during trafficking to their respective compartments and organelles,
and the underlying biophysical driving forces, remain
open questions.

This is the topic of this review: to collect our current
understanding about the mechanisms by which cells can sort
their plethora of different SL species that rely on vesicular
trafficking to maintain compartment and organelle homeostasis.

2 Lipid self-organization and
membrane nanodomains

How membrane lipids interact with each other is critical for
vesicular-based lipid sorting. Membrane lipids, including SLs, are
structurally extremely diverse. This diversity stems from different
headgroups, e.g., for complex sphingolipids, this can be a choline
(sphingomyelin), or a diversity of different sugar headgroups for the
glycosphingolipids. Phospholipids occur as phosphatidylcholine
(PtdCho), -ethanolamine (PtdEtn) or -serine (PtdSer), but all
lipids also differ in their acyl chain structures. The acyl chains of
lipids can vary in their hydrocarbon chain length and in their degree
of saturation. Most phospholipids are ‘hybrid’ lipids and contain one
saturated acyl chain at the sn1 position and one cis mono- or
polyunsaturated fatty acid at their sn2 position. Phospholipids with
two saturated or two unsaturated acyl chains are relatively scarce.
Sphingolipids on the other hand, are anchored in the membrane
through a ceramide portion, characterized by a long chain sphingoid
base connected to an acyl chain of varying length, between 14 and
typically 24 hydrocarbons. The sphingoid base is usually 18 or
20 hydrocarbons in length and comprises a trans carbon double
bond at C4. The acyl chain, however, is predominantly saturated or
contains one cis carbon double bond (Figure 1; Hannun and Obeid,
2018; Merrill, 2011).

There are two ways in which lipids can organize in the
membrane, first by shaping the membrane physically or by
creating lateral heterogeneity. The individual attributes of a lipid,
the ratio between the acyl chain structures, and the size of a lipid’s
headgroup give lipids an intrinsic shape or geometry (Pinot et al.,
2014; Luzzati et al., 1966; Luzzati et al., 1968; Florence et al., 2004;
Vanni et al., 2014; Maggio et al., 1978; Cebecauer et al., 2018; Frolov
et al., 2011). Each cis carbon double bond induces a kink in the acyl
chain tail, thus requiring more physical space than its saturated
counterpart and therefore reducing the ability of the lipid to pack
side-by-side (Chiantia et al., 2006; Dietrich et al., 2001; Hitchcock
et al., 1974; McIntosh and Simon, 1986; Olbrich et al., 2000).
Additionally, the two acyl chains can vary in hydrocarbon chain
length, for some requiring interdigitation into the opposing leaflet.
Apart from the acyl chain structure, the size of the head group affects
the lipid’s overall shape (Rawicz et al., 2000). Phosphatidylcholine
(PtdCho), phosphatidylserine (PtdSer) and the sphingolipid,
sphingomyelin are cylindrical lipids, while lipids such as
phosphatidylethanolamine (PtdEtn), phosphatic acid, and
diacylglycerol (DAG) or cholesterol, have a smaller polar
headgroup, and thus adopt a conical shape. GSLs, with their
large oligosaccharyl headgroup adopt an inverse conical shape,
with the headgroup requiring more space than the ceramide
(Hitchcock et al., 1974). A lipid’s structural features (both the
acyl chain structures and size of the headgroup) also critically

influence its ability to interact with other lipids and pack side-by-
side (see below for the concept of membrane nanodomains, rafts and
the liquid-ordered phase). They give rise to small lateral
inhomogeneities within the membrane space, where lipids are
not uniformly distributed or ‘mixed’, but instead can be highly
organized and form membrane domains with distinct lipid
compositions (Figure 2; Heberle and Feigenson, 2011;
Almeida, 2009).

One example of how lipids can self-associate is the concept of
membrane nanodomains and lipid rafts (Simons and Ikonen,
1997). These nanodomains or rafts are membrane areas enriched
in cholesterol, saturated lipids, and especially sphingo- and
glycosphingolipids, and are thought to organize the plasma
membrane into heterogeneous sub-domains, to
compartmentalize cellular functions (Brown and London,
1998a; Pike, 2006), e.g., immune signaling (Dinic et al., 2015;
Field et al., 1995; Gupta and DeFranco, 2007), endocytosis (Kim
et al., 2017), host-viral/toxin interaction processes (Chinnapen
et al., 2007; Dick et al., 2012; Johannes, 2017; Wang et al., 2008),
and protein clustering (Arumugam et al., 2021). Importantly,
another physiological role for nanodomains is believed to be the
sorting and trafficking platform for membrane components

FIGURE 1
Glycosphingolipid GM1. GSLs such as GM1 contain a large and
hydrophilic oligosaccharyl headgroup, protruding into the
extracellular space. The ceramide is composed of a C18 or
C20 sphingoid base, containing a trans double carbon bond at
C4. The acyl chains can vary dramatically in length and degree of
unsaturation. Depicted is a C24 fully saturated acyl chain. In turquoise
is the C14* motif. 14 fully saturated hydrocarbons from the amide
bond at the water-bilayer interface are required for assembly with
cholesterol.
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between subcellular organelles (Diaz-Rohrer et al., 2014; Schuck
and Simons, 2004; Smart et al., 1996).

The lipid raft hypothesis was originally conceived to explain
differences in membrane sorting between the apical and
basolateral membranes of polarized epithelial cells (Simons
and Ikonen, 1997), but the overall concept was already
suggested earlier by Stier and Sackmann (1973). It assumes
that rafts or nanodomains have different physical properties
by creating a highly packed and ordered lipid environment. This
leads to an altered membrane miscibility, with increased
membrane thickness and rigidity and a reduced diffusiveness
of its components (Lingwood and Simons, 2010; Simons and
Sampaio, 2011; Sezgin et al., 2017; Simons and Toomre, 2000;
Cebecauer et al., 2018). The nanodomain or raft concept is
supported by a wealth of in vitro studies on model membrane
systems, where SLs, phospholipids with saturated acyl chains,
and cholesterol phase-segregate into liquid-ordered (Lo)
regions, with tight lipid-lipid packing, due to their preferred
interactions. Similar to the liquid-disordered (Ld) phase, the Lo
phase is still fluid, allowing molecular motion of the individual
components, albeit at reduced diffusiveness. The Ld phase is
characterized by weak lipid-lipid packing, higher permeability,
and low membrane rigidity. The distinctiveness between these
two phases allows them to coexist over a large compositional
spectrum (Bacia et al., 2005; Brown and London, 1998b;
Feigenson, 2009; Hjort Ipsen et al., 1987; Sezgin et al., 2012;
Simons and Vaz, 2004; Veatch and Keller, 2005; Wesołowska
et al., 2009).

In addition, the concept is supported by many atomistic
simulations characterizing cholesterol interactions in membrane
bilayers, with favorable packing between cholesterol and
saturated lipid acyl chains (Martinez-Seara et al., 2010; Róg
et al., 2007).

While we have a good understanding of the physicochemical
principles that drive phase separation and raft formation in artificial
membrane systems, their existence, relevance, and locations in live
cells remain controversial to this day. Evidence for macroscopic

phase separated Lo domains in live cells comes predominantly from
work on the vacuole of the budding yeast Saccharomyces cerevisiae.
Here, the vacuolar membrane and membrane associated proteins
start to phase separate when the yeast is entering the stationary
growth phase. These vacuolar Lo domains show similar
characteristics than what is observed in GUVs (Leveille et al.,
2022; Moeller and Thomson, 1979; Moeller et al., 1981; Toulmay
and Prinz, 2013). Interestingly, in a recent study, Kim et al. could
demonstrate that this vacuolar phase separation is driven by a
change in lipid trafficking and thus resulting redistribution of
cellular complex SL into the vacuole (Kim and Budin, 2024).

Instead of large macroscopic phase separated domains,
mammalian live cell plasma and endomembranes are thought to
contain small membrane nanodomains, which are highly dynamic
and typically less than 20 nm in size (Kenworthy and Edidin, 1998;
Lagerholm et al., 2005; Lingwood and Simons, 2010; Nichols, 2003;
Sharma et al., 2004; Varma and Mayor, 1998; Veatch and Keller,
2003; Hancock, 2006; Levental et al., 2020). Direct evidence for their
existence comes from studies investigating the differential behavior
and dynamics of, e.g., fluorescently labeled lipids or GPI-anchored
proteins (Eggeling et al., 2009; Kinoshita et al., 2017; Komura et al.,
2016; Mueller et al., 2011; Saha et al., 2016; Stone et al., 2017;
Honigmann et al., 2014). This includes our own work, where, using a
GSL library with varied ceramide structures in live cells, we found
evidence that incorporation of GSLs into membrane nanodomains
requires a specific number of saturated carbon atoms. We termed
this motif within the acyl chain the “C14* motif” (Figure 1). This
stretch of 14+ saturated hydrocarbons from the amide bond at the
water-bilayer interface most likely represents the minimal motif
within an acyl chain to associate and accommodate cholesterol
packing (Arumugam et al., 2021; Schmieder et al., 2022). While
many studies, including our own, have demonstrated a necessity for
cholesterol in nanodomain formation, the Kraft group, interestingly,
using a technique called NanoSIMS, could not detect such
cholesterol-sphingolipid domains in the PM; instead, they
observed local sphingolipid-exclusive enrichments (Yeager
et al., 2016).

FIGURE 2
Membrane nanodomains or lipid rafts. Saturated phospholipids (blue), sphingolipids (red) and cholesterol (yellow) assemble into membrane
nanodomains or lipid rafts. These phase separate from the phospholipids with predominantly unsaturated acyl chains (black).
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Additionally, a restriction for macroscopic phase separation in
the PM of live cells, is presumably the dynamic cortical actin
cytoskeleton, which likely affects the location, size, and timing of
nanodomain domain formation (Badizadegan et al., 2000; Kraft,
2016; Kusumi et al., 2005a; Liu and Fletcher, 2006). Specifically,
nanodomains in the outer membrane leaflet are coupled to the
preexisting actin-myosin networks inside the cell, which are
mediated by the inner leaflet lipid PS (Raghupathy et al., 2015).
Molecular simulations, e.g., demonstrated that filamentous
supports, modeling the cortical actin cytoskeleton, coupled to
lipids, have the potential to segregate membranes into corrals
and stabilize domain formation, even at relatively low
connectivity to the membrane, supporting the picket-fence model
of membrane organization through the actin cytoskeleton (Levental
et al., 2020; Tsai et al., 2024; Kusumi et al., 2005b; Kusumi et al., 2004
Kusumi et al., 1999) (Figure 3). Furthermore, extracellular binding
to and cross-linking of nanodomain components by, e.g.,
endogenous lectins or exogenous toxins, which bind and
crosslink the extracellular headgroup of especially GSLs, can
result in stabilization and/or coalescence of membrane
nanodomains and thereby affect their lifetime and function
(Roemer et al., 2007; Szklarczyk et al., 2013; Hammond et al.,
2005; Arumugam et al., 2021; Koyama-Honda et al., 2020; Day
et al., 2015; Garner and Baum, 2008; Johannes et al., 2018;
Raghunathan et al., 2016).

3 Lipid landscape of a cell

The lipid landscape of a cell, meaning the distinct membrane
compositions of cellular organelles, has been described by the
concept of evolutionarily conserved ‘lipid territories,” delineating
the organelle and vesicular intermediates as two ends of distinct
lipidome spectrums, with a “PM territory” on the one side and an
“ER territory” on the other (Bigay and Antonny, 2012; Kim and

Burd, 2023). The “plasma membrane (PM) territory” comprises
the plasma membrane itself, the trans Golgi network (TGN), as
well as the secretory and endolysosomal networks, while the
endoplasmic reticulum (ER), the cis, and medial cisternae of the
Golgi apparatus belong to the “ER territory.” The distinction
between these two membrane territories is based on differences
in a) lipid compositions, especially SL and cholesterol, leading to
differences in b) membrane order, while also differing in c) the net
charge of the leaflets and d) the degree of lipid species asymmetry
between the bilayer leaflets (Holthuis and Menon, 2014; Kim and
Burd, 2023). The membranes of the “ER territory” are
characterized by a low membrane order due to a relative
absence of nanodomain forming lipids, specifically in SL but
also cholesterol (van Meer et al., 2008). The “PM territory,” on
the other hand, arises from the synthesis of nanodomain-forming
SLs and a consequent sequestration and enrichment of cholesterol
within the late Golgi compartments due to their preferential
interactions (Orci et al., 1981; Hanada et al., 2003; Sharpe et al.,
2011; Slotte, 2013). SLs and cholesterol enrich gradually in the
outer membrane leaflets of the secretory pathway leading to the
plasma membrane. Their assembly into nanodomains leads to a
high degree of packing order characterizing this membrane
territory. Sequestration of cholesterol and SL in the outer
membrane leaflet and the presence of PtdSer and phosphatidyl
inositol (PtdIns) species on the cytoplasmic leaflet give rise to a
highly asymmetric membrane. The increased order and associated
increase in membrane thickness allow for the required barrier
function in the PM. The gradual increase in membrane thickness
through the synthesis of SLs within the Golgi and TGN and the
following increase in cholesterol have been hypothesized to be a
means to sort PM proteins in the Golgi for PM delivery by
hydrophobic mismatch (Bigay and Antonny, 2012; Kim and
Burd, 2023) of the transmembrane domain with membrane
thickness. Indeed, the transmembrane domains of PM-resident
transmembrane proteins contain slightly longer TMs and generally

FIGURE 3
Membrane nanodomains in live cells. The actin cytoskeleton, as well as membrane associated proteins are thought to stabilize and affect
nanodomain size in live cell membranes. Membrane proteins which bind to PtdSer or PtdIns crosslink the membrane to the cortical actin cytoskeleton.
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sort into Lo domains (Lorent et al., 2017; Munro, 1995; Quiroga
et al., 2013).

The differences in SL and GSL composition between the two
membrane territories are believed to rely on the differential SL
trafficking and sorting between them. Importantly, the physico-
chemical features of these territories seem to be conserved
throughout eukaryotic evolution (Bigay and Antonny, 2012; Kim
and Burd, 2023).

The importance of the SL gradient in organelle identity and its
maintenance was recently illustrated by a study by Sokoya et al.
(2022). Here, the sphingomyelin gradient in the secretory pathway
was disrupted by the mislocalization of sphingomyelin synthase to
the ER due to a pathogenic mutation. The subsequent synthesis of
sphingomyelin in the ER and lack thereof in the TGN and PM
resulted in manifold changes in the overall amounts of many
different lipid species, with altered overall membrane lipid
packing within the secretory pathway, and aberrant cholesterol
accumulation in cytoplasmic vesicles, leading to osteoporosis and
skeletal dysplasia in the patients (Pekkinen et al., 2019; Sokoya
et al., 2022).

4 Lipid sorting principles

In the previous section, we provided an overview of the SL and
GSL distributions across the two different cellular lipid territories.
Without lipid sorting, however, vesicular trafficking,
interconnecting the different territories, would quickly erode this
gradient. How can cells maintain SL and GSLs compositions across
their organelles without re-distribution by lipid transfer proteins or
through membrane contact sites? There is compelling evidence that
lipids are sorted differentially into transport carriers in live cells for
both the secretory and endocytic pathways (Figure 4).

While SL synthesis starts with ceramide production in the ER,
ceramide itself is trafficked to the Golgi by both vesicular trafficking
and ceramide-specific transport proteins (Funato and Riezman,
2001). Only the addition of headgroup in the Golgi lumens,
especially the large and hydrophilic oligosaccharide of GSLs
destines SL and GSLs to vesicular trafficking for sorting. Recent
studies in both polarized epithelial cells and nonpolarized cells show
sphingomyelin sorting and enrichment into specific TGN-derived
vesicles, thus supporting the evidence of Golgi-to-PM lipid sorting
for SL and cholesterol (Deng et al., 2016; Klemm et al., 2009; Meer
and Sprong, 2004; Wakana et al., 2020).

Early studies showed that, within the endosomal system,
saturated and thus nanodomain-forming lipids were depleted
from endosomal recycling tubules compared to unsaturated lipids
(Gruenberg, 2003; Maxfield and McGraw, 2004; Mukherjee et al.,
1999; Mukherjee and Maxfield, 2000). And within the retrograde
pathways (trafficking from the PM to the Golgi and back to the ER),
COPI-coated vesicles were found to be depleted of SLs (Brügger
et al., 2000; Manneville et al., 2008). These results are in line with our
own observations utilizing a GSL library of different ceramide
structures. GSL species lacking a C14* motif and thus unable to
form membrane nanodomains (Figure 1) were found in endosomal
sorting tubules of the recycling, the retrograde, as well as in polarized
epithelial cells transcytotic pathways (Schmieder et al., 2022; te
Welscher et al., 2014; Chinnapen et al., 2012; Chinnapen et al.,

2012). However, GSL species containing a C14* motif, which enables
incorporation of the GSL into membrane nanodomains, were
instead significantly depleted from these pathways and were
sorted instead into the degradative pathway. Additionally, we
could identify distinct lipid domains within enlarged endocytic
carriers, where C14* motif containing GM1 species were
segregated from transferrin receptor positive and C14* motif-
lacking GM1 species (Schmieder et al., 2022).

4.1 Curvature based lipid sorting

Apart from lipid composition, membrane curvature also
changes throughout the endomembrane compartments,
suggesting a role for curvature as a means of sorting lipids (Black
et al., 2013). Membrane vesicles, which facilitate inter-organelle
traffic, are produced by budding and fission of the membrane from a
donor organelle. This induction of highly curved membranes is
thought to facilitate sorting of lipids.

Over the years, there has been a wealth of in vitro evidence to
support how individual lipid species can be preferentially sorted
through a curvature-based sorting mechanism. Initially, lipid shape
was thought to be a prime candidate for how lipids might be sorted
across membrane curvature. This was based on the idea that lipids
might distribute spontaneously to differentially curved membrane
regions according to the intrinsic geometrical shape of the lipid (see
concept above, C. Black et al., 2014; Cheney et al., 2017; Hatzakis
et al., 2009; Lodish, 2008). The molecular basis of this argument was
that specific lipid species are not cylindrical-shaped but are conical
and/or inverse-conical, and therefore would preferentially sort into
membrane areas with curvature that accommodates and

FIGURE 4
Endocytic membrane trafficking pathways within cell. After
plasma membrane (PM) cargo is endocytosed, cargo is sorted within
the sorting endosome (SE). Pathway specific tubules are pulled from
the SE, serving the recycling (back to the PM), retrograde (PM to
Golgi to ER) or in polarized epithelial cells the transcytotic (linking
apical and basolateral membranes) pathways. Cargo destined for
degradation remains in the vesicular part of the endosome.
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complements their shape. For instance, lipids with an inverse conical
shape, comprising lipids with a large headgroup to acyl chain ratio,
e.g., lysoPC with a single tail and a large headgroup, PtdIns or the
GSLs, favor membrane regions of positive curvature bending the
monolayer away from their large headgroups (reviewed in:
Chernomordik and Kozlov, 2003; Di Paolo and De Camilli, 2006;
Zimmerberg and Kozlov, 2006). On the other hand, lipids with both
acyl chains being unsaturated and a small headgroup would sort to
negative curvature (Kamal et al., 2009). In line with this, several
studies found an enrichment of phosphatic acid and other inverse
conical shaped lipids at the neck of highly negatively curved
membranes (Crowley et al., 2024; Putta et al., 2016; Zhukovsky
et al., 2019; see also above references). Supplementing these in vitro
studies, molecular dynamics simulations also show that lipids have
the propensity to sort to a membrane region based on their intrinsic
shape, sensing the spontaneous curvature of the membrane
(Baoukina et al., 2018; Beltrán-Heredia et al., 2019; Koenig et al.,
2023). Despite the wealth of studies in this area, the consensus is that
lipid shape alone, while important, does not completely account for
the measurable amount of lipid sorting required in live cells and that
lipid-lipid or lipid-protein based interactions are necessary to
amplify curvature-based sorting (Callan-Jones et al., 2011; Cooke
and Deserno, 2006). This is also supported by our own work in live
cells, where we find that, rather than the size of the SL headgroup, it
is the structure of the ceramide domain with the presence or absence
of the C14* motif that determines intracellular trafficking (Duclos
et al., 2020; Garcia-Castillo et al., 2018; Schmieder et al., 2022;
Chinnapen et al., 2012).

4.2 Nanodomain based lipid sorting

An alternative model or complementary concept to the above-
presented idea of curvature-induced lipid sorting, is that curvature
preference, or indeed, induction, could arise not due to the physical
properties of singular lipid species but as an emergent behavior of
lipid organization in the membrane. Under this umbrella, segregated
membrane nanodomains would provide an explanation for the
differential lipid distributions and consequently lipid territories
observed throughout the cell. Rather than an individual lipid
molecule sensing membrane curvature, membrane nanodomains,
with their unique physical properties, e.g., their low bending
modulus, would detect and/or induce curvature preferences (C.
Black et al., 2014; Huttner and Zimmerberg, 2001). Small and
local inhomogeneities in membrane composition within an
organelle could thus give rise to vesicles with different lipid
compositions. In addition, lipid inhomogeneity might minimize
the energy costs of bending the membrane (Mukherjee et al.,
1999; Mukherjee and Maxfield, 2000; van Meer and Sprong,
2008; Maxfield and McGraw, 2004; van Meer and Sprong, 2008).
This interplay between curvature and phase separation has been
demonstrated in vitro for membranes close to phase separation or
demixing (Baumgart et al., 2003; 2005; Jülicher and Lipowsky, 1996;
Lipowsky, 1993; Ogunyankin et al., 2013; Ogunyankin and Longo,
2013; Parthasarathy et al., 2006; Sorre et al., 2009; Veatch and Keller,
2003; Woodward et al., 2023). Roux et al. (2005), Ikonen (2008) for
instance, were able to demonstrate that lipid tubes pulled from Lo-
Ld phase separated vesicles were almost exclusively in the Ld phase,

implicating that tightly packed SL, or PtdCho with fully saturated
acyl chains, disfavor curvature. These results are consistent with
those by Mukherjee et al. (1999) and our own work. We observed
GSLs species with the C14* motif within endosomal recycling
tubules - in the absence of cholesterol, implicating that rather
than lipid shape, incorporation of GSLs with C14* motif into
membrane nanodomains is the driver for the observed
differences in GSL sorting (Schmieder et al., 2022).

Interestingly, work by the Lippincott-Schwartz group showed in
an elegant study phase separated domains within the endosomal
network by hypotonic swelling and cooling, implicating that small
diffraction limited nanodomains could also exist within the
endosomal network, not only the PM (King et al., 2020). This is
in agreement with, as mentioned above, our results where we also
observed segregated domains within endosomal vesicles (Schmieder
et al., 2022).

4.3 Alternatives: proteins associated with
lipid sorting

An important caveat in many experiments investigating lipid
sorting is, that they are often conducted in cell-free, and thus,
protein-free systems. However, it is unlikely that curvature or
nanodomain-based lipid sorting are the sole driving forces for
lipid sorting within a cell and that this process would occur
without protein assistance. There are few examples of such
protein-assisted lipid sorting. Convincing evidence comes from
studies on caveolin and the transport of cholesterol to the PM
(E. J. Smart et al., 1996). Such selective transport of cholesterol to the
PM by caveolin would most likely affect the concomitant transport
of cSL as well. This is in agreement with work by the Nichols group,
which suggests that caveolin, apart from transporting cholesterol
and SM to the PM, is also required for endocytic trafficking of excess
SL to the lysosome (Shvets et al., 2015).

Apart from caveolin, this idea is supported specifically for cSL-
binding toxins such as Shiga toxin or Cholera toxin or cSL-binding
galectins (Chinnapen et al., 2012; Römer and Elling, 2011; Safouane
et al., 2010, p. 2010; Sorre et al., 2009; Tian and Baumgart, 2009).
Here, the geometry of multivalent binding of nanodomain cSL by
the proteins induces lipid compression and membrane bending
(Arumugam et al., 2021; Ewers et al., 2010; Kabbani et al., 2020;
Koyama-Honda et al., 2020; Roemer et al., 2007; Watkins et al.,
2019). This process facilitates uptake of the membrane-protein
complexes through recruitment of cellular trafficking machinery
and forms the basis of the glycolipid-lectin driven endocytosis
(Simunovic et al., 2017; Day and Kenworthy, 2015; Rydell et al.,
2013; Johannes et al., 2015; Simunovic et al., 2017). Intriguingly, cSL
lipid structures required for these processes to occur, differ between
the different clustering proteins. Simian virus 40 requires cSL with
C14* motif to induce membrane invaginations and endocytosis
(Ewers et al., 2010), Shiga toxin and Cholera toxin however
require cSL that do not contain C14* motif (Roemer et al., 2007;
Chinnapen et al., 2012).

A concept for all the cSL sorting events mentioned in this review
could be envisioned, where different proteins might immobilize and
stabilize particular cSL distributions in the membrane and thus sort
them in the process (Figure 5).
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5 Open questions

We hypothesize that, most likely, SL sorting within the
endomembrane system is a synergy of all three sorting
mechanisms presented here. SL species that are structurally
able to incorporate into membrane nanodomains are sorted as
such, most likely aided by the cellular protein machinery.
Conversely, SL that are unable to assemble into membrane
nanodomains might experience sole curvature-based sorting
mechanisms more strongly.

Most interesting is the recent discovery of bulk lipid exchange at
membrane contact sites, which virtually interconnect all organelles.
We envision that such bulk lipid exchange or the specific depletion/
supplementation with certain lipid species could rapidly change
membrane composition and fluidities in small organelles and thus
drive demixing or curvature generation. An example is VPS 13C,
mediating lipid exchange between the ER with the endosome,
potentially supplying phospholipids to the endosome to ensure
tubule formation (Suzuki et al., 2024).

Given the recent advances in the development of better lipid
probes and membrane sensors, in combination with advancements
in molecular dynamics simulations of more realistic membrane
compositions and over longer time scales, it will be intriguing to
see which endocytic and secretory proteins might function in the
specific delivery of SLs to certain compartments.
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