Cells generate mechanical forces mainly through myosin motor activity on the actin cytoskeleton. In
In animals expressing GFP labeled actin or apical membrane complexes, we severed these structures using femtosecond laser ablation and quantified retractions. RNA interference was used to deplete key contractility regulators.
We show that the basal actomyosin fibers are under tension in the occupied spermatheca. Reducing actomyosin contractility by depletion of the phospholipase C-ε/PLC-1 or non-muscle myosin II/NMY-1, leads to distended spermathecae occupied by one or more embryos, but does not alter tension on the basal actomyosin fibers. However, activating myosin through depletion of the Rho GAP SPV-1 increases tension on the actomyosin fibers, consistent with earlier studies showing Rho drives spermathecal contractility. On the inner surface of the spermathecal tube, tension on the apical junctions is decreased by depletion of PLC-1 and NMY-1. Surprisingly, when basal contractility is increased through SPV-1 depletion, the tension on apical junctions also decreases, with the most significant effect on the junctions aligned in perpendicular to the axis of the spermatheca.
Our results suggest that much of the tension on the basal actin fibers in the occupied spermatheca is due to the presence of the embryo. Additionally, increased tension on the outer basal surface may compress the apical side, leading to lower tensions apically. The three dimensional shape of the spermatheca plays a role in force distribution and contractility during ovulation.