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Fibrosis is the process whereby cells at a damaged site are transformed into
fibrotic tissue, comprising fibroblasts and an extracellular matrix rich in collagen
and fibronectin, following damage to organs or tissues that exceeds their repair
capacity. Depending on the affected organs or tissues, fibrosis can be classified
into types such as pulmonary fibrosis, hepatic fibrosis, renal fibrosis, and cardiac
fibrosis. The primary pathological features of fibrotic diseases include recurrent
damage to normal cells and the abnormal activation of fibroblasts, leading to
excessive deposition of extracellular matrix and collagen in the intercellular
spaces. However, the etiology of certain specific fibrotic diseases remains
unclear. Recent research increasingly suggests that the cytoskeleton plays a
significant role in fibrotic diseases, with structural changes in the cytoskeleton
potentially influencing the progression of organ fibrosis. This review examines
cytoskeletal remodeling and its impact on the transformation or activation of
normal tissue cells during fibrosis, potentially offering important insights into the
etiology and therapeutic strategies for fibrotic diseases.
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1 Introduction

Fibrosis is characterized by the excessive proliferation, hardening, and scarring of
various tissues due to the over-accumulation of collagen and other extracellular matrix
components. This pathological condition results from chronic inflammatory responses to
diverse stimuli, including persistent infections, autoimmune reactions, allergic responses,
chemical injuries, radiation, and tissue damage. Although current therapies for fibrotic
diseases such as idiopathic pulmonary fibrosis, liver cirrhosis, progressive kidney disease,
cardiovascular fibrosis, and systemic sclerosis generally focus on targeting inflammatory
responses, accumulating evidence indicates that the mechanisms underlying fibrosis are
distinct from those governing inflammation (Wynn, 2008). Research indicates that
cytoskeletal reorganization plays a crucial role in fibrotic diseases. During the
progression of pulmonary fibrosis, the reorganization of the actin cytoskeleton mediated
by the ROS/RhoA-ROCK pathway induces myofibroblast transformation and collagen
synthesis, ultimately influencing the outcome of lung fibrosis (Ni et al., 2013). Furthermore,
studies have demonstrated that the reprogramming of the myofibroblast cytoskeleton
through integrin-dependent mechanisms can influence the progression of liver fibrosis.
This process is regulated by the Wnt1-induced signaling pathway protein 1 (WISP1) and
the myocardin-related transcription factor (MRTF) pathway (Xi et al., 2022). Studies have
also indicated that the actin-binding protein developmentally regulated brain protein
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(Drebrin) can facilitate the fibrosis process in cardiac and hepatic
myofibroblasts. It does so by promoting the development of an actin
cytoskeleton and the expression of collagen triple helix repeat
containing 1 (Cthrc1) (Hironaka et al., 2023). During fibrosis, the
activation of the RhoA signaling pathway leads to cytoskeletal
remodeling, which in turn activates MRTF. MRTF further
promotes the expression of fibrosis-related genes by binding to
serum response factor (SRF), activating a series of genes involved in
cytoskeletal reorganization and fibrotic mediators. Additionally,
MRTF activation strengthens RhoA signaling through a positive
feedback loop, with MRTF-dependent upregulation of GEF-H1
mediated in cooperation with the transcription factor Sp1. This
reveals the close connection between fibrosis and the cytoskeleton
(Venugopal et al., 2024). This review provides a comprehensive
overview of the structure and function of the cytoskeleton, with a
focus on the alterations observed in the cytoskeleton of pathogenic
cells in fibrotic organs. Additionally, it explores the potential of
targeting these cytoskeletal changes as a therapeutic strategy for
treating fibrotic diseases.

2 Cytoskeleton classification and
physiological functions

The cytoskeleton is a dynamic fibrous network composed of
proteins within the cell. It provides structural support, mechanical
strength, and maintains cell polarity. Additionally, the cytoskeleton
is involved in various cellular physiological processes, including cell
mobility, signal transduction, and the spatial organization of
internal organelles (Bezanilla et al., 2015). The cytoskeleton is
primarily composed of three structural components:
microfilaments, microtubules, and intermediate filaments (IFs).
Microfilaments are composed of actin, microtubules are formed
from tubulin proteins, and IFs consist of various subunits
(Hohmann and Dehghani, 2019; Pollard and Goldman, 2018).
Microfilaments, microtubules, and IFs each play distinct roles in
various physiological processes and have unique functions.
Furthermore, these different types of cytoskeletal elements
interact in complex ways to regulate the cell’s overall
physiological state (Masters et al., 2017).

Microfilaments primarily maintain cellular morphology and
structure, playing a crucial role in cellular architecture,
particularly at the cell periphery and cortex (Steffen et al., 2017).
Actin forms microfilaments that provide mechanical support and
facilitate cell motility. It is involved in various biological processes,
such as the extension and contraction of the cell edge, as well as
intracellular transport processes within the microtubule system
(Pollard and Cooper, 2009).

Microtubules are a fundamental component of the cytoskeleton in
eukaryotic cells, playing key roles in cell division, morphology,
motility, and intracellular transport. Although their specific
functions can vary, microtubules are composed of highly
conserved tubulin proteins, which share nearly identical molecular
structures. The characteristics and functions of the microtubule
cytoskeleton are modulated by various tubulin isotypes and post-
translational modifications, a regulatory system referred to as the
“tubulin code.” This code is intricately linked to many human
physiological and pathological processes (Janke and Magiera, 2020).

IFs consist of one or more members of the cytoskeletal protein
family, with their expression being specific to particular cell and
tissue types. These filaments are involved in cellular movement and
signal transduction, offering mechanical support and maintaining
the structural integrity of cells and tissues (Lowery et al., 2015;
Herrmann and Aebi, 2016). Vimentin is a prevalent cytoplasmic
intermediate filament protein that plays a pivotal role in stabilizing
intracellular structures (Paulin et al., 2022).

3 Fibrotic diseases

Fibrosis is a physiological and pathological process marked by
the abnormal accumulation of collagen and other ECM components
within tissues. It plays a crucial role in wound healing and tissue
repair, occurring in response to various triggers, including
infections, inflammation, autoimmune diseases, degenerative
conditions, tumors, and injuries (Wynn and Ramalingam, 2012a).
However, excessive formation and deposition of collagen and
extracellular matrix, beyond the tissue’s capacity for degradation
and metabolism, can result in structural and functional
abnormalities in tissues and organs. Such conditions can affect
various organs and systems, including the lungs, liver, heart,
kidneys, and skin, and may also lead to systemic fibrotic
disorders (Fertala et al., 2023).

The etiology of fibrotic diseases is multifaceted, encompassing a
range of factors such as genetic predispositions, environmental
exposures, immune system dysfunctions, and chronic
inflammation (Spruit et al., 2013). Although different types of
fibrotic diseases may have distinct etiologies, it has been
established that the cytoskeleton plays a crucial role in the
development and progression of these conditions which was
presented in Figure 1 (Riches et al., 2015; Niu et al., 2023; You
et al., 2020; Li et al., 2017).

3.1 Pulmonary fibrosis

Pulmonary fibrosis represents the terminal stage of various acute
and chronic lung diseases and is associated with a poor prognosis.
The average survival time is typically only 3–5 years after diagnosis
(Cheng et al., 2022). The pathological hallmark of pulmonary
fibrosis is the abnormal deposition of collagen and extracellular
matrix components. While the precise pathogenic mechanisms
remain unclear, various factors can induce and exacerbate the
progression of fibrosis. These include genetic predisposition,
environmental exposures, autoimmune abnormalities, and viral
infections (Zhao et al., 2023). These inducing factors cause
abnormal cytokine release in lung tissue and adaptive remodeling
of tissue structure, ultimately leading to irreversible pulmonary
fibrosis through the combined effects of multiple factors (Liu
et al., 2021).

Transforming Growth Factor Beta 1 (TGF-β1) plays a critical
role in the development and progression of pulmonary fibrosis.
Moreover, TGF-β1 is vital for the formation of smooth muscle actin
filaments during myofibroblast differentiation, a process facilitated
by neural Wiskott-Aldrich syndrome protein (N-WASP) (Cai et al.,
2012). Research has shown that TGF-β1 can promote the assembly
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of cellular actin filaments and increase cellular tension, thereby
accelerating the progression of experimental pulmonary fibrosis
(Niu et al., 2023). The microtubule-destabilizing agent
Fenbendazole has been shown to alleviate experimental fibrosis
by disrupting microtubule-dependent energy metabolism in
fibroblasts and attenuating TGF-β-induced fibroblast activation
(Wang et al., 2022). Rho-associated coiled-coil kinase (ROCK)
has been implicated in the differentiation of myofibroblasts in
response to changes in matrix stiffness under fibrotic conditions.
Studies have demonstrated that knockout of either ROCK1 or
ROCK2 leads to a significant reduction in α-SMA expression on
soft experimental matrices, suggesting that ROCK contributes to the
progression of fibrosis by modulating cellular tension in fibroblasts
(Htwe et al., 2017). In hyperoxia-induced pulmonary fibrosis, actin
cytoskeleton rearrangement plays a key role. Hyperoxia promotes
the differentiation of pulmonary fibroblasts into myofibroblasts,
marked by increased α-smoothmuscle actin (α-SMA) synthesis. The
RhoA-ROCK signaling pathway enhances this process, affecting
myofibroblast differentiation and collagen synthesis. Animal studies
suggest that RhoA and ROCK inhibitors, as well as ROS scavengers,
could be potential strategies for preventing and treating oxygen
toxicity-induced pulmonary fibrosis (Ni et al., 2013).

In the formation of alveolar septa, the remodeling of the
cytoskeleton in lung fibroblasts (LFs) is crucial for increasing the
gas exchange surface area (McGowan et al., 2024). The Drebrin
protein plays a key role in regulating the cytoskeleton of LFs,
particularly in balancing cell contraction and migration. Research
indicates that the absence of Drebrin leads to a reduction in alveolar
surface area and an enlargement of alveolar ducts, highlighting its
importance for normal alveolar development. Additionally, LFs
lacking Drebrin exhibit defects in response to matrix stiffness
and migration speed, along with impaired activity of non-muscle
myosin-2 (NM2) (McGowan et al., 2024). These findings provide

new insights into the mechanisms underlying emphysema and
pulmonary fibrosis, suggesting that abnormal regulation of the
cytoskeleton may be a key factor in these diseases.

3.2 Hepatic fibrosis

Hepatic fibrosis is a chronic liver condition marked by excessive
fibrous tissue formation, resulting in structural and functional
abnormalities in the liver (Wallace et al., 2008). Hepatic fibrosis
is an early stage of cirrhosis that is potentially reversible. Without
timely intervention, it can progress to irreversible cirrhosis. The
development of hepatic fibrosis is linked to chronic viral hepatitis,
alcohol abuse, fatty liver disease, and exposure to drugs and toxins
(Yang et al., 2022).

Activated hepatic stellate cells are crucial in the pathogenesis of
hepatic fibrosis, serving as the primary source of myofibroblasts
(Krenkel et al., 2018). Research indicates that activated hepatic
stellate cells (HSCs) play a pivotal role in the progression of
hepatic fibrosis. The rearrangement of the F-actin cytoskeleton is
closely linked to the activation of HSCs. Inhibiting the
rearrangement of actin filaments in these cells may suppress the
development of liver fibrosis and cirrhosis (Cui et al., 2014).
Activated hepatic stellate cells are also capable of promoting
cytoskeletal remodeling and facilitating cell migration (Elnagdy
et al., 2023a). Studies have demonstrated that a deficiency in α-
smooth muscle actin (α-SMA) results in a reduction of hepatic
fibrosis. This decrease in fibrosis is attributed to the disruption of
cytoskeletal signaling within hepatic stellate cells (Rockey et al.,
2019). During the process of liver fibrosis, hepatic stellate cells
(HSCs) and fibroblasts are activated, producing large amounts of
extracellular matrix (ECM), especially collagen, leading to liver
structural and functional damage. Microtubule acetylation

FIGURE 1
A schematic illustrating the key pathways and mediators involved in the mechanisms of cytoskeletal participation in fibrosis.
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enhances the activity of the TGF-β1/Smad signaling pathway by
promoting the interaction between YAP protein and microtubules
as well as its nuclear translocation, further driving fibroblast
activation and differentiation. Dynein, a microtubule motor
protein, is involved in this process, and increased activity of α-
Tubulin acetyltransferase 1 (α-TAT1) is associated with elevated
microtubule acetylation levels, collectively contributing to the
progression of liver fibrosis. Investigating these roles of
microtubules can help elucidate the molecular mechanisms of
liver fibrosis and provide potential targets for developing new
therapeutic strategies (You et al., 2020).

In summary, during the development of hepatic fibrosis, the
rearrangement of actin filaments in hepatic stellate cells, triggered by
various factors, promotes cell activation. This results in the
accumulation of myofibroblasts and excessive production of
collagen and extracellular matrix, leading to liver fibrosis. As
fibrosis progresses, it can lead to cirrhosis. Therefore, targeting
actin filament remodeling could be a potential therapeutic
approach for treating liver fibrosis.

3.3 Renal fibrosis

Renal fibrosis, a process linked to chronic kidney disease, is
characterized by the excessive formation of fibrous tissue within the
kidney. This results in structural and functional abnormalities in
nephron units (Li et al., 2022). Renal fibrosis is a common outcome
in various chronic kidney diseases, including chronic
glomerulonephritis, hypertensive nephropathy, and diabetic
nephropathy, potentially leading to kidney function loss. The
primary causes include chronic glomerulonephritis, hypertensive
nephropathy, and diabetic nephropathy. The mechanisms
underlying renal fibrosis involve chronic inflammation, abnormal
cytokine expression, and extracellular matrix deposition (Zhou et al.,
2023; Huang et al., 2018; Du et al., 2023).

It has been reported that in experimental renal fibrosis induced
by asymmetric dimethylarginine (ADMA), ADMA promotes the
accumulation of stress fibers, enhances NF-κB DNA binding, and
increases TGF-β1 expression. Disruption of actin dynamics using
the actin-depolymerizing agent cytochalasin D, the actin-stabilizing
agent jasplakinolide, or removal of stress fiber bundles through the
NADPH oxidase inhibitor apocynin and the p38 MAPK inhibitor
SB203580 significantly suppresses ADMA-induced NF-κB and
TGF-β1 DNA binding. These findings suggest that targeting the
actin cytoskeleton could be a promising therapeutic strategy for
renal fibrosis (Wang et al., 2019). In diabetic kidney injury-induced
renal fibrosis, the actin cytoskeleton-mediated nuclear translocation
of NF-κB is critical for activating the pro-fibrotic factor Rho kinase.
Gene knockout studies have highlighted the essential role of
ROCK2 in the progression of diabetic kidney injury.
Consequently, targeting cytoskeletal alterations driven by
glomerular ROCK2 may offer a promising therapeutic strategy
for diabetic nephropathy and associated fibrosis (Yosuke Nagai
et al., 2019). In polycystic kidney disease, the loss of function in
Polycystin1 or Polycystin2 activates the RhoA signaling pathway,
leading to cytoskeletal reorganization and the nuclear translocation
of MRTF. This promotes the production and secretion of fibrotic
mediators, including connective tissue growth factor (CTGF). These

changes not only affect the morphology and function of epithelial
cells but also activate surrounding mesenchymal cells and the
fibrosis process through paracrine signaling, collectively driving
the development of renal fibrosis (Lichner et al., 2024).

In summary, during renal fibrosis, reprogramming of the
actin cytoskeleton enhances NF-κB nuclear translocation and
Rho kinase activation, promoting NF-κB and TGF-β1 DNA
binding and advancing fibrosis progression. Thus, targeting the
actin cytoskeleton offers a significant therapeutic strategy for
kidney injury and fibrosis. Developing drugs that address these
pathways could help mitigate kidney damage and slow fibrosis
progression.

3.4 Cardiac fibrosis

Cardiac fibrosis is a pathological process marked by alterations
in cardiomyocytes, cardiac fibroblasts, and the collagen I/III ratio. It
involves excessive ECM production and deposition, leading to scar
tissue formation, structural changes in the heart, and impaired
systolic and diastolic function. Cardiac fibrosis is prevalent in
advanced cardiovascular diseases such as ischemic heart disease,
hypertension, and heart failure (Qin et al., 2021). Cardiac fibrosis
often results from an inflammatory response or damage repair.
Following injury, cardiomyocyte loss triggers adverse myocardial
remodeling and fibrosis, impairing the heart’s contraction and
pumping function and leading to heart failure (Aharonov
et al., 2020).

Actin assembly plays a role in promoting the development of
cardiac fibrosis. Additionally, a novel molecule, yes-associated
protein (YAP) circular RNA (circYap), has been identified.
CircYap influences cardiac remodeling during fibrosis by
modulating actin polymerization, indicating its potential as a
therapeutic target for future treatment of cardiac fibrosis (Wu
et al., 2021). Myocardial fibrosis is driven by inflammation.
Single-cell analysis identifies Drebrin, an actin-binding protein, in
fibroblasts of fibrotic heart tissue. Drebrin enhances actin
cytoskeleton formation and signaling of MRTFs and SRF,
exacerbating fibrosis. Targeting Drebrin may offer a novel
therapeutic strategy (Hironaka et al., 2023). A study on cardiac
valve fibrosis revealed that high FBN1 and low MMP2 levels are
linked to severe mitral fibrosis. Additionally, decreased FLNA
expression with age may protect against valve aging, while
SOX9 appears to reduce calcification risk. Inflammation may
further promote fibrosis by affecting cytoskeletal and extracellular
matrix interactions, underscoring the significant role of cytoskeletal
proteins in valve fibrosis (Opris et al., 2024). SGLT2 inhibitors
reduce cardiovascular fibrosis by inhibiting endothelial-to-
mesenchymal transition (EndMT) and regulating cardiac
fibroblast activation. They alter cytoskeletal protein expression,
affecting fibroblast proliferation and migration. Additionally,
SGLT2 inhibitors target transporters like NHE1, SMIT, and
SMVT, which maintain cytoskeletal integrity, further inhibiting
fibrosis progression (Schmidt et al., 2024).

During cardiac fibrosis, remodeling of the actin cytoskeleton
accelerates the disease’s progression. Consequently, targeting the
actin cytoskeleton presents a critical intervention point for cardiac
damage and fibrosis. Therapeutic agents that modulate cytoskeletal
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remodeling may help mitigate cardiac damage and slow the
advancement of cardiac fibrosis.

3.5 Ocular fibrosis

Ocular fibrosis is characterized by the excessive proliferation and
deposition of fibrous connective tissue within the eye, resulting in
structural and functional abnormalities in ocular tissues (Saika et al.,
2008). This process can affect multiple ocular tissues and structures,
including the cornea, sclera, conjunctiva, and peri-lenticular tissues.
Fibrosis in these areas may impair vision and overall ocular health
(Friedlander, 2007). Ocular fibrosis can arise from various factors,
including eye injuries, inflammation, infections, and autoimmune
diseases (Hinz, 2016; Stepp and Menko, 2021; Ludgate, 2019). Both
addressing the underlying cause and managing symptoms can
benefit patients with ocular fibrosis.

Research indicates that selectively inhibiting actin cytoskeleton
remodeling in endothelial cells reduces experimental choroidal
neovascularization and subretinal fibrosis. This suggests that actin
remodeling in choroidal endothelial cells promotes neovascularization
and subretinal fibrosis (Caballero et al., 2011). Damage to lens
epithelial cells (LECs) can induce epithelial-mesenchymal transition
(EMT) and lead to lens fibrosis. Tropomyosin proteins, which regulate
and stabilize actin, are crucial in this process. Abnormal tropomyosin
expression disrupts LEC integrity and cellular physiology. Targeting
actin cytoskeleton remodeling in LECs thus represents a promising
strategy for treating lens fibrosis (Kubo et al., 2012). In corneal
fibroblasts, vimentin is crucial for maintaining cell morphology
and regulating proliferation and migration in response to PDGF. It
plays a key role in cytoskeletal remodeling during myofibroblast
differentiation and is essential for generating traction forces for
matrix remodeling, a process linked to fibrosis. Proteomic analysis
in vimentin-deficient cells suggests its involvement in compensatory
mechanisms during corneal fibroblast fibrosis (Miron-Mendoza
et al., 2024).

Structural damage to optical pathways—such as the cornea, lens,
vitreous body, and retina—can trigger cellular repair processes.
Uncontrolled repair may lead to fibrosis. Actin fiber remodeling
can drive neovascularization or EMT, contributing to tissue fibrosis.
Therefore, drugs targeting actin remodeling offer a novel approach
for treating ocular fibrosis.

3.6 Intestine fibrosis

Intestinal fibrosis is a common complication of chronic
intestinal diseases, resulting from the proliferation of fibroblasts
and excessive extracellular matrix (ECM) deposition after chronic
inflammation. This condition leads to narrowing of the intestinal
lumen and functional disruption. Current treatments, including
anti-inflammatory drugs, have limited success, with surgery often
being the primary option. The progression of fibrosis involves the
interaction of inflammatory cells, cytokines, ECM, epithelial-
mesenchymal transition (EMT), fibroblast differentiation, and the
gut microbiome. Ongoing research is exploring new therapeutic
strategies targeting these mechanisms, such as ECM modulation,
cytokine inhibition, and TGF-β pathway targeting (Liu et al., 2024).

Research shows ROCK is activated in inflamed and fibrotic
intestinal tissues, playing a critical role in fibrosis related to
inflammatory bowel disease (IBD). The ROCK inhibitor
AMA0825 reduces fibrogenic factor production by inhibiting
TGF-β1-induced activation of MRTF and p38 MAPK while
promoting autophagy in fibroblasts. It effectively reverses
established intestinal fibrosis and lowers pro-fibrotic protein
secretion from Crohn’s disease stenotic tissues (Holvoet et al.,
2017).Keratin intermediate filaments play a significant role in
intestinal fibrosis through multiple mechanisms, including
providing structural support to cells and maintaining barrier
function, participating in cell signaling and regulating cell
differentiation and proliferation, serving as mediators and
biomarkers of inflammatory responses, and engaging in
interactions with the microbiome and cellular energy
metabolism. These combined effects make keratin a key factor
influencing the progression of intestinal fibrosis and provide
potential targets for the development of therapeutic strategies
(Polari et al., 2020).

Targeting candidate sites such as ROCK or other pathways
involved in cytoskeletal organization, epithelial-mesenchymal
transition (EMT), and autophagy for the treatment of intestinal
fibrosis may disrupt conventional approaches tomanaging intestinal
fibrosis and open new avenues for therapy.

3.7 Other organ fibrosis

In addition to pulmonary, hepatic, renal, cardiac, and ocular
fibrosis, fibrosis can impact other organs and tissues, including
peritoneal fibrosis (thickening and scarring of the abdominal
lining), skin fibrosis, meningeal fibrosis, skeletal muscle fibrosis,
smooth muscle fibrosis, and pancreatic fibrosis (Raby et al., 2017;
Odell et al., 2022; Enos et al., 2019; Zhuang et al., 2023; Ibarrola et al.,
2023; Swain et al., 2022). These fibrosis types in various tissues and
organs involve excessive fibrous tissue proliferation and deposition,
leading to structural damage and functional abnormalities
(Henderson et al., 2020).

Different fibrosis diseases have unique causes and mechanisms,
but the cytoskeleton is crucial in their development. In peritoneal
fibrosis models, Lysophosphatidic Acid Receptor (LPA1) receptor
activation in mesothelial cells induces CTGF expression, promoting
fibroblast proliferation via a paracrine mechanism. This process
drives peritoneal fibrosis through cytoskeletal remodeling (Sakai
et al., 2013). TGF-β1 mediates fibroblast activation in fibrosis,
including systemic sclerosis (SSc). Engrailed-1 (EN1) is re-
expressed in SSc fibroblasts and amplifies TGF-β1 signaling
during myofibroblast differentiation. EN1 is induced by TGF-β1
via Smad3 and drives pro-fibrotic effects through ROCK activation
and cytoskeletal remodeling. EN1’s role in myofibroblast
differentiation is confirmed by functional assays, and fibroblast-
specific En1 knockout mice show reduced myofibroblast transition
and improved experimental fibrosis outcomes (Györfi et al., 2021).
In vascular smooth muscle fibrosis, TRPC6 is essential in the TGF-
β1 signaling pathway. Antisense RNA targeting TRPC6 mitigates
TGF-β1-induced fibrosis by decreasing myosin light chain
phosphorylation, actin stress fiber formation, and cell migration
(Park et al., 2017).
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FIGURE 2
Cell Types Involved in Fibrosis and Their Mechanisms. (A) Indication of fibroblast activation and microfilament change. (B) Indication of epithelial
mesenchymal transition. (C) Schematic diagram of fibroblast activation induced by immune cells. (D) The transformation of smooth muscle cells during
fibrosis. (E) The transformation of stellate cells occurs during fibrosis.
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Cytoskeletal remodeling impacts fibrosis across various organs,
including the lungs, liver, kidneys, heart, eyes, peritoneum, skin, and
vascular smooth muscle. Targeting the cytoskeleton presents a
potential strategy for developing novel anti-fibrotic drugs to
benefit patients.

4 Cells involved in fibrosis

Fibrosis is a multifaceted physiological and pathological process
that involves various cell types, including fibroblasts, epithelial cells,
inflammatory cells, macrophages, smooth muscle cells, and stellate
cells (Henderson et al., 2020; Wynn and Ramalingam, 2012b). The
cell types involved in fibrosis and their associated pathways are
depicted in Figure 2.

4.1 Fibroblasts

Fibroblasts are a type of mesenchymal cell widely found in
connective tissues such as the skin, lungs, skeletal muscles, and heart.
They are a primary cell component of connective tissues and play a
variety of important pathological and physiological roles. In the
process of fibrosis, fibroblasts are one of the key cell types involved
(Plikus et al., 2021). Fibroblast activation is a crucial step in the
fibrosis process across different types of fibrotic diseases. Activated
fibroblasts are responsible for synthesizing and depositing collagen,
fibronectin, and other collagenous proteins, which contribute to the
formation of fibrous connective tissue (Qian et al., 2023; Arvia et al.,
2022; Geng et al., 2022; Han et al., 2023; Sun et al., 2021; Zhang et al.,
2021). In a mouse model of peritoneal fibrosis, researchers have
found that LPA and LPA1 play a central role in the proliferation of
fibroblasts. The research revealed the critical role of LPA1-induced
cytoskeleton reorganization in promoting the fibrotic process and
offered new targets for the treatment of fibrotic diseases (Sakai et al.,
2013). Another study on IPF explored the role of vimentin
intermediate filaments (VimIFs) in regulating fibroblast
invasiveness. Findings indicated that increased expression and
organization of VimIFs in IPF tissues are linked to autophagy
defects. Vimentin is a crucial cytoskeletal protein associated with
heightened invasiveness, and its dynamic changes are essential for
cell migration. In fibroblasts at the IPF lung tissue margins, vimentin
levels were significantly upregulated. The plant-derived compound
Withaferin A (WFA) was shown to inhibit VimIF assembly,
enhancing autophagy and reducing fibroblast invasiveness.
Furthermore, WFA diminished fibroblast invasiveness in 3D lung
organoids from IPF patients and protected mice from bleomycin-
induced pulmonary fibrosis by promoting autophagy. These results
highlight the dual role of VimIFs in IPF and suggest that targeting
VimIF assembly could provide an effective strategy for reducing
fibroblast invasiveness in pulmonary fibrosis (Surolia et al., 2019).

4.2 Epithelial cells

Epithelial cells are a type of cell that lines the surfaces of the body’s
external and internal cavities. They constitute the primary component
of epithelial tissue. Epithelial tissue performs various important

functions in the body, including providing barrier protection,
facilitating substance absorption, and enabling structural remodeling
(Proud and Leigh, 2011). Epithelial cells participate in the fibrosis
process through various mechanisms, including their transformation
intomesenchymal cells, promotion of fibroblast activation, involvement
inmatrix remodeling, and contribution to inflammatory responses. The
role of epithelial cells in fibrosis may depend on the specific tissue and
pathological context, but their involvement has a significant impact on
the occurrence and progression of fibrosis (Banales et al., 2019; Ji et al.,
2016; Kalluri andWeinberg, 2009; Kang et al., 2014; Selman, 2006). The
remodeling of the cytoskeleton is crucial for the morphological changes
observed in alveolar epithelial cells and fibroblasts during fibrosis.
TUFT1 enhances microfilament assembly and stress fiber formation
through its interaction with N-WASP, which increases cellular
contractility and migration. N-WASP promotes the polymerization
of branched actin filaments, and TUFT1 facilitates the formation of its
activated form, pY256N-WASP, which is vital for TGF-β1-mediated
fibroblast activation. Additionally, elevated TUFT1 expression
correlates with increased levels of fibrosis markers such as α-SMA,
collagen I, and fibronectin, highlighting its significant role in the fibrotic
process alongside cytoskeletal remodeling (Niu et al., 2023).

4.3 Immune cells

Immune cells play a crucial role in the fibrosis process, including
both innate and adaptive immune cells. They release inflammatory
mediators and cytokines that promote fibroblast activation and the
fibrotic response (Cui et al., 2023; Dhana et al., 2018; Gieseck et al.,
2017; Hammerich and Tacke, 2023; Koda et al., 2021; Rurik et al.,
2021; Sobecki et al., 2022). Similarly, macrophages are a key cell type
in the immune system, involved in clearing damaged tissues and
pathogens, and regulating inflammation and repair processes.
During fibrosis, macrophages can secrete pro-fibrotic factors that
stimulate fibroblast proliferation and collagen synthesis (Lee et al.,
2017; Qing et al., 2022; Wynn et al., 2013; Zhang et al., 2022). And
macrophages can sense the mechanical properties of the ECM
through cytoskeletal remodeling, independent of integrin
signaling. This ability allows them to regulate specific gene
expression programs related to tissue repair, thereby influencing
the fibrosis process (Meizlish et al., 2024). The selective
ROCK2 inhibitor GV101 alleviates liver fibrosis by modulating
cytoskeletal dynamics and key signaling pathways. It reduces
fibrosis by inhibiting pCofilin, impacting actin cytoskeleton
remodeling, and targeting the Akt-mTOR-S6K signaling axis,
which regulates fibroblast activation, inflammation, and
metabolism. These mechanisms collectively contribute to a
reduction in collagen levels and fibrotic markers, underscoring
GV101’s potential as a therapeutic agent for liver fibrosis (Zanin-
Zhorov et al., 2023).

4.4 Smooth muscle cells

Smooth muscle cells are a crucial type of muscle cell, primarily
distributed in various organs and tissues throughout the body, such
as blood vessels, the digestive tract, the respiratory tract, the urinary
tract, and the reproductive system. These cells play a role in
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regulating blood vessel contraction and dilation, as well as tissue
repair and remodeling (Donadon and Santoro, 2021). In certain
situations, smooth muscle cells may become activated and
participate in the fibrosis process, leading to smooth muscle
hyperplasia and tissue remodeling (Elamaa et al., 2022; Sun et al.,
2023; Zou et al., 2022). The AP-1 family member Jun B regulates
visceral smooth muscle cell (SMC) contraction by modulating actin
polymerization andmyosin light chain phosphorylation. Jun B levels
are specifically linked to alterations in the F-actin ratio, which
subsequently affects the organization of microfilaments. These
results suggest that Jun B plays a crucial role in the regulation of
SMC contractility and may contribute to fibrosis development.
Targeting Jun B could offer novel therapeutic strategies for
treating fibrosis (Ramachandran et al., 2013).

4.5 Stellate cells

HSCs are multifunctional cells commonly found in neural tissue
and the liver. During liver fibrosis, star-shaped cells can become
activated and transform into fibroblasts. They then participate in
collagen synthesis and deposition, contributing to the fibrotic
process (Anderson et al., 2016; Mohamed Suhaimi and Zhuo,
2012). Studies have shown that HSCs can promote liver fibrosis
through cytoskeletal remodeling, facilitating cell migration and
activation into myofibroblasts. Targeting the cytoskeletal
remodeling of HSCs offers a potential avenue for developing new
treatments for liver fibrosis (Elnagdy et al., 2023b).

Overall, the involvement of multiple cell types is a key feature of
the fibrotic process. These cells, through their interactions and
regulation of signaling pathways, collectively promote or inhibit
fibrotic responses and play a crucial role in the remodeling of tissue
structure and function.

5 Regulation of cytoskeletal dynamics

The cytoskeleton in non-muscle cells comprises a network of
fibrous structures regulated by various factors, affecting their
assembly and disassembly (Goode et al., 2023; Goodson and
Jonasson, 2018; Zhu et al., 2019). To understand its role in
fibrotic diseases, we review physicochemical and biological factors
impacting microfilaments, microtubules, and IFs. The following
Table 1 presents the factors influencing different types of
cytoskeleton.

5.1 Microfilaments

Microfilaments, or actin filaments, maintain cell shape, facilitate
movement, division, and endocytosis. Their assembly and
disassembly are influenced by physical, chemical, and biological
factors, which modulate the equilibrium between G-actin and
F-actin, impacting cellular functions. Certain drugs affect actin
filament dynamics. Cytochalasins bind and sever microfilaments,
preventing new monomer addition without affecting disassembly,
leading to reduced cell stiffness and volume (Shu et al., 2024).
Cylindrocarpine stabilizes microfilaments by preventing
disassembly, inhibiting cell movement and used for staining cell
morphology (Wagner et al., 2023). Actin-binding proteins regulate
actin filament organization and function. Over 100 distinct actin-
binding proteins have been isolated, categorized based on their
functions. Actin monomer-binding proteins regulate filament
assembly. Thymosin β4 inhibits polymerization by blocking
polymerization sites, crucial for cell motility and morphology
(Pollard, 2016; Cassimeris et al., 1992; Skruber et al., 2018).
Profilin regulates actin dynamics by enhancing ATP dissociation
from G-actin, supporting rapid cytoskeletal reorganization essential
for cell movement and proliferation (Carlier et al., 1993). Nucleating
proteins initiate actin filament formation by catalyzing monomer
polymerization, organizing the actin cytoskeleton (Dahlstroem et al.,
2023). Arp2/3 complex, Formin family, and N-WASP are common
nucleating proteins. Cap proteins, like CapZ and α-actinin, regulate
filament assembly and stability by binding to filament ends, adapting
to cellular changes (Berger et al., 2022). Cross-linking proteins
stabilize and connect actin filaments, influencing cellular
structure and function. α-Actinin and fimbrin/plastin are notable
examples (Wu et al., 2001). Severing and depolymerizing proteins
regulate filament remodeling, influencing cell shape and motility.
ADF and cofilin are examples, facilitating filament disassembly and
restructuring (Inada, 2017; Grintsevich et al., 2016; Larson
et al., 2005).

The Rho-ROCK signaling pathway activates RhoA,
promoting myosin light chain phosphorylation and increasing
actin-myosin interactions, which contribute to fibrotic changes.
Additionally, myocardin-related transcription factors translocate
to the nucleus upon dissociating from G-actin, activating the
transcription of fibrotic genes such as fibronectin and
procollagen-1. These dynamics regulate fibroblast activation
and proliferation, resulting in excessive deposition of
extracellular matrix components, thereby driving the
progression of fibrosis (Riches et al., 2015).

TABLE 1 Factors influencing different types of cytoskeleton.

Factors Microfilaments Microtubules Intermediate filaments

physics Mechanical Stress Mechanical Stress, Temperature Mechanical Stress

chemistry Extracellular matrix compound, G-actin, ATP,
Ca2+, Mg2+, K+

Cytochalasin D,Phalloidin
Jasplakinolide

Extracellular matrix compound, Colchicine, Taxol,
Nocodazole, α-tubulin &β-tubulin, GTP, Mg2+

Extracellular matrix compound, pH

biology small GTPase, Phosphorylation, Arp2/3 Formin,
Capping Protein, ADF/Cofilin, α-Actinin and

Fimbrin, Thymosin β4 and Profilin

small GTPase, Phosphorylation, γ-TuRC, MAPs,
Katanin, Stathmin

small GTPase, Phosphorylation, Gene, sHSPs,
interaction of IF and IF, interaction of IF and

Actin/microtubule
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5.2 Microtubules

Microtubules, composed of α-tubulin and β-tubulin dimers,
maintain cell shape, facilitate intracellular transport, support cell
division, and mediate signal transduction. Factors affecting
microtubule dynamics include temperature, binding proteins,
chemical agents, and mechanical stress. Temperature impacts
microtubule dynamics; lower temperatures reduce polymerization
and depolymerization rates, leading to shorter microtubules (Li and
Moore, 2020). Drugs like colchicine, vinblastine, and paclitaxel
affect microtubule growth and stability by targeting tubulin
proteins, providing insights into microtubule regulation (Wilson
et al., 1999). Microtubule-binding proteins (MAPs) aid in
microtubule assembly, stability, and interactions within the
cytoskeleton, regulated by post-translational modifications and
cell-type specificity (Maccioni and Cambiazo, 1995).

Research has shown that microtubules respond to changes in
matrix stiffness through the acetylation of α-tubulin at K40,
enhancing microtubule stability and promoting the translocation
of YAP protein from the cytoplasm to the nucleus. This process
activates the YAP signaling pathway, regulating fibroblast activation,
migration, and extracellular matrix deposition. These findings reveal
the critical role of microtubules in the formation of skin fibrosis and
provide a theoretical basis for developing therapeutic strategies
targeting α-tubulin acetylation (Wen et al., 2020).

5.3 Intermediate filaments

IFs maintain cell shape, mechanical stability, and tissue integrity,
influenced by gene expression, protein interactions, cellular signaling,
and environmental conditions (Dutour-Provenzano and Etienne-
Manneville, 2021). Intermediate filament protein (IFPs) gene
expression regulates protein assembly, influencing their diversity and
characteristics. Specific genes dictate filament organization, providing
mechanical support and influencing cell signaling (Coulombe et al.,
2001). Protein interactions, primarily involving unstructured regions,
regulate assembly and function. Head domains facilitate tetramer
formation, while tail regions influence filament bundling and
network organization (Kornreich et al., 2015). IFs regulate critical
physiological processes by interacting with signaling molecules,
functioning as phosphorylation buffers, and modulating cell-specific
signaling activities (Pallari and Eriksson, 2006). IFPs are crucial for
stress response, mechanical stability, and biological processes, with
dysregulation linked to diseases. They play protective roles in
various tissues and contribute to cellular osmotic balance and
mechanical signal transduction (Pekny and Lane, 2007; Leube et al.,
2015). IFPs modulate cell mechanical properties and signaling during
the cell cycle, particularly during cell division. Phosphorylation by
kinases facilitates mitotic progression by altering IF organization
(Dutour-Provenzano and Etienne-Manneville, 2021).

The functions of intermediate filaments in the cytoskeleton are
often underestimated, however, they play a significant role in the
process of fibrosis. Vimentin intermediate filaments play a critical
role in the process of fibrosis. They are involved not only in
regulating the proliferation of mesenchymal cells and collagen
deposition but also in reducing the severity of pulmonary fibrosis in
Vim−/− mouse models where vimentin is absent. Furthermore, the

increased expression of vimentin is associated with inflammatory
responses, which represent an important early stage in the
development of fibrosis. Vimentin also promotes collagen synthesis
and deposition by maintaining the stability of collagen mRNA, thereby
affecting organ dysfunction. Therefore, vimentin is a potential
therapeutic target for fibrosis, and the development of drugs
targeting vimentin may help modulate tissue repair responses,
thereby preventing or alleviating the progression of fibrosis (Surolia
and Antony, 2022).Research has shown that vimentin plays a crucial
role in fibrosis, with its expression increasing in fibrotic tissues. This
increase is associated with mesenchymal cell expansion and collagen
deposition, promoting the process of epithelial-mesenchymal transition
(EMT). Studies using Vim−/− mouse models indicate that vimentin is
essential for the development of pulmonary fibrosis, as its absence can
alleviate the degree of fibrosis in mice. Furthermore, vimentin is
involved in regulating cell migration and matrix remodeling, both of
which are critical processes in fibrosis. Therefore, vimentin not only
drives the progression of fibrosis but may also serve as a potential
therapeutic target for fibrosis-related diseases (Ridge et al., 2022).

The following Figure 3 illustrates the factors influencing
different types of cytoskeleton and their functions.

5.4 Interaction between cytoskeleton
and ECM

The interaction between the cytoskeleton and the extracellular
matrix (ECM) is vital in the development of fibrosis. Fibroblast-
ECM interactions, mediated by integrin receptors, convert
mechanical signals from the ECM into biochemical signals that
influence cell behavior. Myosin II, a motor protein, generates
contractile force affecting fibroblast morphology, movement, and
differentiation. In normal lung tissue, myosin II facilitates fibroblast
movement and polarization. However, in fibrotic lung tissue,
increased matrix stiffness activates myosin II, leading to
decreased fibroblast motility and weakened polarization, while
promoting differentiation into myofibroblasts. Inhibiting myosin
II activity with small molecule inhibitors or siRNA can restore
motility and polarization in fibrotic tissues. These findings highlight
the role of matrix stiffness and myosin II in fibroblast behavior and
suggest that targeting myosin II may offer new therapeutic strategies
for treating fibrosis (Southern et al., 2016). During the process of
skin fibrosis, intermediate filaments (IFs) play a crucial role by
providing structural support and participating in cell signaling.
Their stiffness is closely related to changes in the extracellular
matrix, a hallmark of skin fibrosis, which involves the activation
and proliferation of fibroblasts, leading to excessive deposition of
extracellular matrix components like collagen. Intermediate
filaments, particularly keratins, regulate cell proliferation,
differentiation, and migration, which can become abnormal in
fibrosis. The connection between IFs and the nucleus enables the
sensing of mechanical stimuli and alters gene expression, a process
that may be disrupted in fibrosis. Additionally, changes in IFs can
impact inflammatory responses by influencing signaling pathways
such as Rho/ROCK, YAP/TAZ, and NF-κB. Mutations in
intermediate filament proteins are also linked to certain skin
diseases and fibrotic disorders, highlighting their significance in
skin pathology. Thus, intermediate filaments are essential for
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maintaining skin structure and function, and their alterations during
skin fibrosis can significantly affect disease progression (Shutova
and Boehncke, 2022).

6 Conclusion

The cytoskeleton plays a crucial role in fibrosis, affecting key
processes such as cell activation, migration, collagen synthesis,
cell-matrix interactions, and signal transduction. Its dynamic
reorganization facilitates the activation and migration of cells to
injury sites, contributing to fibrosis. The stability and dynamics
of cytoskeletal components influence fibroblast function and
collagen deposition, while cytoskeleton-driven cell-matrix
interactions are essential for cell migration and matrix
remodeling. Additionally, the cytoskeleton regulates signaling
pathways like TGF-β, Wnt, and PI3K/Akt, which are pivotal in
the fibrotic process. Future therapeutic strategies should focus on
targeting cytoskeletal reorganization, actin and microtubule
dynamics, intermediate filament functions, cell-matrix
interactions, key signaling pathways, and specific cytoskeleton-
associated proteins. These approaches aim to control fibrosis
progression, though their efficacy requires further validation
through extensive research.
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