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Background: Patients with sub-acute cerebral venous sinus thrombosis
experience (SA.CVST) severe symptoms compared to two other venous sinus-
related diseases, including chronic cerebral venous sinus thrombosis (C.CVST)
and idiopathic intracranial hypertension (IIH).

Objective: This study aimed to determine whether the different immune
reactions in different venous sinuses are related.

Methods: Stagnant blood in the cerebral venous sinuses was extracted by passing
a microcatheter and CD14-positive cells were sorted by magnetic beads and
subjected to RNA-seq sequencing.

Results: Compared to patients with IIH, 128 genes were significantly down-
regulated and 373 genes were significantly up-regulated in the sub-acute CVST
samples. The functions of these genes were mainly focused on “immune
response”, “T cell activation” and “plasma membrane”. Gene Set Enrichment
Analysis (GSEA) showed T cell survival and activation-related function
significantly unregulated in sub-acute CVST. On the other hand, there were
366 genes down-regulated in chronic CVST and 75 genes up-regulated in
chronic CVST. In functional annotation, these differently expressed genes
were enriched in the “extracellular region”, “chemokine-mediated signaling
pathway” and “immune response”. GSEA analysis confirmed that chemokine-
related functions were all up-regulated in sub-acute CVST and monocyte-
macrophage adhesion functions were also significantly up-regulated.

Conclusion: This study suggested the CD14-positive created an activated
immune response in sub-acute CVST.
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1 Introduction

Cerebral venous sinus thrombosis (CVST) accounts for
0.5%–1% of all strokes and occurs mainly in young female
adults (Fan et al., 2020). The clinical prognosis is generally
good, but 5%–15% of patients die in the sub-acute phase
(Saposnik et al., 2011; Capecchi et al., 2018). The prognosis
varies according to the location of thrombosis, the length of
the venous sinus involved, the onset of the disease, and the degree
of establishment of collateral circulation (Fan et al., 2020).
Currently, the first-line treatment is low molecular heparin
combined with warfarin sequential therapy. When sub-acute-
phase pharmacological treatment fails to alleviate the stenosis of
the cerebral venous sinus or the patient’s symptoms, neuro-
interventionalists use several strategies such as contact
thrombolysis, mechanical thrombectomy, or balloon dilatation
to relieve cerebral sinus stenosis of cerebral venous sinus
thrombosis. However, 30% of the patients still have no relief
of their symptoms (Quealy, 2024; Ilyas et al., 2017). As a result, it
is essential to understand more about the characteristics of sub-
acute cerebral venous sinus thrombosis, which can help to
explore more new therapeutic options.

In thrombosis-related diseases, immune cells are closely
involved in the formation and degradation of thrombi
(Scherlinger et al., 2023). Local venous stagnation causes
hypoxia, activation of vascular endothelial cells, and
aggregation of multiple immune cells on the endothelial
surface, ultimately leading to the formation of intraventricular
thrombi (Tang et al., 2023). Neutrophils can form neutrophil
extracellular traps to accelerate thrombus formation, and
monocytes and macrophages can secrete cytokines that can be
involved in vascular recanalization after venous thrombosis
(Subramaniam et al., 2017). However, the specific role of
immune cells in cerebral venous sinus thrombosis is not clear.
At the same time, the meningeal lymphatics form side by the
cerebral venous sinus, which is a bridge between the central
nervous system and the peripheral immune system. Thus, the
cerebral venous sinus immune environment also affects the
immune environment within the brain parenchyma (Louveau
et al., 2018). Therefore, it is valuable to clarify the alteration of the
immune environment in cerebral venous sinus thrombosis.

CD14 is the biomarker for monocytes and macrophages
(Louveau et al., 2018). CD14, working as a biomarker for
extracting monocyte-macrophages from blood in liquid biopsies
assay, is highly effective in a variety of disease models (Soler et al.,
2020; Rudnik et al., 2021; Fuentelsaz-Romero et al., 2021). Liquid
biopsies are often less sensitive and less specific because the blood is
collected intravenously that far away from the lesion site (Nikanjam
et al., 2022). Cerebral venous sinus thrombosis may create a local
blood stasis in the venous sinus. Guidewire catheters can reach this
area during the intervention, and in this way, locally stagnant blood
can be extracted, which carries more immune characteristics of the
local lesion than flowing blood.

In this study, we used cerebral venous sinus blood samples from
patients with sub-acute cerebral venous sinus thrombosis to
compare the transcriptomic profile of CD14-positive cells in
idiopathic intracranial hypertension and chronic cerebral venous
sinus thrombosis to explore the altered immune environment in

different disease conditions within the venous sinuses. We found
that 1) CD14-positive cells in patients with sub-acute cerebral
venous sinus thrombosis exhibited stronger immune responses as
well as recruitment and activation of T cells compared to IIH and 2)
patients with sub-acute cerebral venous sinus thrombosis showed a
significant increase in chemokine related functions, cell adhesion
and migration comparing to chronic patients within CD14-positive
cells. This study aimed to clarify the altered immune environment
within the cerebral venous sinus under different disease
characteristics and to provide a potential therapeutic mechanism
for sub-acute cerebral venous sinus thrombosis.

2 Materials and methods

2.1 Case involvement

This study was approved by the ethical committee of Beijing
Tiantan Hospital, Capital Medical University (ethical statement
number: KY 2016-039-02). We prospectively enrolled thirty-five
patients with cerebral venous sinus-related diseases who came to the
Department of Neurointervention of Beijing Tiantan Hospital from
December 2021 to June 2022 and underwent interventional
procedures (Supplementary Table 1). Ten patients with
concomitant infectious diseases were excluded. Five patients were
excluded during the extraction process because the number of
peripheral blood mononuclear cells (PBMC) was too small.
During RNA extraction, two patients were excluded due to low
RNA content. A total of 18 patients were finally enrolled, including
six patients with sub-acute cerebral venous sinus thrombosis (onset
time less than 1 month while more than 1 day), four patients with
chronic cerebral venous sinus thrombosis (onset time more than
1 month), and eight patients with idiopathic intracranial
hypertension. No acute phase (onset time less than 1 day)
patients were involved (Alvis-Miranda et al., 2013).

2.2 Blood sampling

After the patient had been given general anesthesia, an
intravenous shell was placed in the femoral vein with the
assistance of a guide needle, and an 8-F guide catheter was
placed through the vein at the level of the jugular bulb. A 6-F
intermediate catheter (132-cm Catalyst, Stryker Corporation,
Fremont, CA) was then navigated to the cerebral venous sinus
lesion via a 260-cm glidewire (Chang et al., 2023). Using a 10 mL
syringe, 10 mL of blood was drawn from the lesion section. The
blood was pumped into a blood collection tube containing EDTA
and placed on ice for transport to the laboratory.

2.3 PBMC extraction

Blood from EDTA blood collection tubes was centrifuged, and
the 1.5 mL plasma was collected for each patient and stored at −80°C.
The lower layer of cells was collected and diluted using DPBS
(Thermo, 14040133). The single nucleated cell layer was isolated
using Lymphocyte Separation Solution (Corning, 25-072-CV).
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Erythrocytes were removed from the PBMC using RBC Lysis Buffer
(eBioscience, 00-4333-57). PBMCs were washed twice using DPBS.
Cells were sorted using a CD14 magnetic bead box (Thermo,
11367D). After centrifugation, CD14-positive PBMC was
dissolved in Trizol (Thermo, 15596026CN) and stored at −80°C.

2.4 RNA extraction and library construction

Total RNA was extracted using Trizol reagent according to the
instructions, and RNA purity and quantification were determined
using a NanoDrop 2000 spectrophotometer (Thermo Scientific,
United States). An Agilent 2,100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, United States) was used to assess
RNA integrity. Transcriptome libraries were constructed using the
VAHTS Universal V5 RNA-seq Library Prep kit according to the
instructions. Transcriptome sequencing and analysis were
performed by Shanghai Ouyi Biotechnology Co.

The libraries were sequenced using the Illumina Novaseq
6,000 sequencing platform, and 150 bp double-ended reads were
generated. An average of 55,241,667 raw reads were obtained for
each sample, and the raw reads in fastq format were processed using
the fastp software (Chen et al., 2018). The clean reads were obtained
by removing the low-quality reads for subsequent data analysis.
HISAT2 (Kim et al., 2015) software was used for reference genome
comparison and FPKM (Roberts et al., 2011) calculation and
HTSeq-count (Anders et al., 2015) was used to obtain the counts
of reads for each gene. PCA analyses of genes (counts) were
performed using R (v 3.2.0) as well as mapping to assess the
sample biological repeat.

2.5 Differentially expressed genes
(DEGs) analysis

Differentially expressed genes analysis was performed using
DESeq2 (Love et al., 2014) software, where genes that met the
thresholds of p-value <0.05 and foldchange >2 or
foldchange <0.5 were defined as differentially expressed genes.

Subsequently, gene ontology (GO) (The Gene Ontology
Consortium, 2019) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa et al., 2008) Pathway enrichment
analyses of differentially expressed genes were performed based
on a hypergeometric distribution algorithm for screening
significantly enriched functional entries. R (v 3.2.0) was used to
plot bar charts, chord charts, or enrichment analysis circle plots for
significantly enriched functional entries. Gene set enrichment
analysis was performed using GSEA software (Subramanian
et al., 2005). Using a predefined set of genes, genes were ranked
according to their degree of differential expression in the two sample
types and then tested whether the predefined set of genes was
enriched at the top or bottom of this ranked list.

2.6 RT-PCR analysis

The RNA samples were returned after RNA-seq. There were
eight samples remained high quality, including three IIH samples,

two SA.CVST samples and 3 C.CVST samples. Three replicates were
performed for each sample. 1000ng RNA was converted to cDNA,
and SYBR™ Select Master Mix (Thermo) was used to perform
quantitative real-time PCR on a 7,500 Fast Real-Time PCR system
(Chang et al., 2020). The primer sequences for the genes in this study
were listed in Supplementary Table 2.

2.7 The enzyme linked immunosorbent
assay (ELISA)

The plasma was extracted during PBMC extraction. There were
eight plasma samples remained available, including two IIH
samples, four SA.CVST samples and 2 C.CVST samples. Three
replicates were performed for each sample. CD276 ELISA kit
(Proteintech, KE00143) (Huang et al., 2023) and CCL20 ELISA
kit (Proteintech, KE00149) (Long et al., 2024) were used to detect the
plasma concentration of CD276 and CCL20. Absorbance was
detected for each sample at 450 nm.

2.8 GSVA score calculation

GSVA is a non-parametric, unsupervised method for assessing
the enrichment of transcriptomic gene sets (Hänzelmann et al.,
2013). The R package “GSVA” was used to calculate the GSVA score
by using neutrophil extracellular traps-related genes. The neutrophil
extracellular traps-related genes were collected through the relevant
literatures (Luan et al., 2023; Shen et al., 2022) and listed in
Supplementary Table 3.

2.9 Statistical analysis

One-way ANOVA was used to compare the expression levels of
differentially expressed genes among three groups. All statistical
analyses were conducted using R v4.4., and Prism 9. A value of p <
0.05 was considered statistically significant.

3 Results

3.1 Clinical characteristics of patients

The 18 patients included 6 cases of sub-acute cerebral venous
sinus thrombosis (SA.CVST), 4 cases of chronic cerebral venous
sinus thrombosis (C.CVST), and 8 cases of idiopathic intracranial
hypertension (IIH). Among them, the average age of patients with
sub-acute cerebral venous sinus thrombosis was (32.33 ± 5.75), with
50% males (Figure 1). The patients generally had a short onset time,
with an average onset time of 7.1 days, accompanied mainly by more
serious clinical symptoms. All patients had symptoms of severe
headache, five patients were accompanied by severe nausea and
vomiting, and two of them had epileptic symptoms. After the
intervention surgery, the symptoms were slightly relieved. Four
patients with chronic cerebral venous sinus thrombosis, mean age
(44.00 ± 20.9), 50% male, all with a disease duration of more than
6 months. The patients suffered a wide range of symptoms, and all
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patients’ mRS scores decreased below two after the interventional
surgery. There were eight patients with idiopathic intracranial
hypertension, with the mean age (39.50 ± 13.51), 12.5% male.
The duration of the disease was more than 1 month. The most
common clinical symptom was blurred vision (six patients),
followed by headache (four patients). All of the patient’s
symptoms were relieved after receiving interventional treatment.
Among the cerebral venous sinus-related diseases, patients with sub-
acute cerebral venous sinus thrombosis were more symptomatic, so
we further explored the characteristics of their sinus immune
environment (Supplementary Table 1).

3.2 CD14-positive cells in patients with
SA.CVST has more robust T-cell recruitment
and activation function than IIH

Patients with sub-acute cerebral venous sinus thrombosis
have severe symptoms and poor prognosis. Thus, we first
compared CD14-positive immune cells in the cerebral venous
sinus of patients with sub-acute cerebral venous sinus
thrombosis and patients with idiopathic intracranial
hypertension. We used a heatmap to portray the
transcriptomic data of the patients. We found a significant
difference between the two groups, in which genes such as
CLEC2A, TBC1D3, and DPP10 were upregulated in the group
of idiopathic intracranial hypertension. In contrast, genes such
as SPP1, CCL18 and HS3ST2 were upregulated in the group of
sub-acute cerebral venous sinus thrombosis (Figure 2A).

We used DEseq to calculate the DEGs between the two groups.
373 genes were significantly upregulated and 128 genes were
significantly downregulated in patients with sub-acute cerebral

venous sinus thrombosis. The significantly upregulated genes
included genes closely related to lipid metabolism (APOE,
APOC1, and APOC2), cellular response to cytokine stimulation
(CCL18, XCL1, and FABP4), and P53 downstream signaling
pathways (MMP2, SPP1, and GDF15). Among the significantly
downregulated genes were genes associated with positive
regulation of GTPase activity (PREX2, TBC1D3C, and TBC1D3),
hydrolase activity (CASR, SCN2B, and DPP10), and microtubule
cytoskeletal organization (SPRY1, TEKT2, and TUBB8B)
(Figure 2B). These different-expression genes resulted in different
biological characteristics of CD14-positive cells in different diseases.

To fully describe the function of these DEGs above, we
performed the gene annotation to these DEGs. We found that
most genes were clustered on the “external side of plasma
membrane”, “adaptive immune response”, “T cell receptor
complex” and “plasma membrane” (Figure 2C). We further
analyzed the different GO types and found that the main
clustered functions in Biological Processes were immune
response, T cell activation, T cell receptor signaling pathway, and
cell surface. In the cellular component, the main clusters were
plasma membrane and extracellular region-related functions,
whereas in the molecular function, the main clusters were
chemokine and cytokine receptor functions and fatty acid
metabolism (Figure 2D). To further verify whether these
functions are activated or inhibited in cerebral venous sinus
thrombosis, we performed GSEA analysis and found that “T cell
costimulation”, “Collagen-containing extracellular matrix” and
“Nuclear hormone receptor binding” were all significantly
elevated in the sub-acute cerebral venous sinus thrombosis group
(Figures 2E–G).

In this section, SA.CVST was used to compare with IIH.
Although these two diseases had the common feature that all lead

FIGURE 1
A schematic of the workflow for sample collection. All the samples are extracted during interventional surgery. Catheters were used to collect blood
from the venous sinus lesion. PBMCwas extracted from blood serum andCD14-positive cells were further sorted byCD14 dynabeads. The sortedCD14-
positive cells were used in RNA sequencing.
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to stagnation of blood flow in the venous sinuses, CD14-positive
monocyte-macrophages showed different activation
characteristics. In patients with A.CVST, CD14-positive cells
upregulate genes and signaling pathways associated with

innate immune activation, as well as activating T cells to
create an immune-activated microenvironment. In contrast, in
IIH, the activated genes are mainly focused on maintaining
cellular homeostasis.

FIGURE 2
Transcriptomics analysis and GO functional enrichment between sub-acute CVST (SA.CVST) and idiopathic intracranial hypertension (IIH); (A) The
heatmap of genes expressions of SA.CVST and IIH group; (B) The volcano diagram of DEGs of SA.CVST and IIH group; (C, D) The GO functional analysis of
DEGs; (E–G)The GSEA analysis of GO functions in SA.CVST and IIH group.
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FIGURE 3
Transcriptomics analysis and GO functional enrichment between sub-acute SA.CVST and chronic CVST (C.CVST); (A) The heatmap of gene
expressions of SA.CVST and C.CVST; (B) The volcano diagram of DEGs of SA.CVST and C.CVST group; (C, D) The GO functional analysis of DEGs; (E–G)
The GSEA analysis of GO functions in SA.CVST and C.CVST group.
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3.3 CD14-positive cells in SA.CVST patients
have more substantial chemokine-related
functions than those with C. CVST

To further clarify the alterations in the different phases of
cerebral venous sinus thrombosis microenvironment, we
compared CD14-positive cells in patients with sub-acute cerebral
venous sinus thrombosis with those in patients with chronic cerebral
venous sinus thrombosis of more than 6 months duration. We
portrayed the expression profiles of CD14-positive cells in patients
with sub-acute and chronic cerebral venous sinus thrombosis by
heatmap. There was a clear distinction between the two expression
profiles, in which the expression of APOC2, ANGPTL4, and APOE
was elevated in the sub-acute cerebral venous sinus thrombosis
group, whereas the expression of the genes OR4F16, TREML4, and
TRIL was elevated in the chronic cerebral venous sinus thrombosis
group (Figure 3A).

We further analyzed the DEGs between the two groups, showing
that 75 genes were significantly upregulated in patients with chronic
cerebral venous sinus thrombosis, whereas 366 genes were
significantly down-regulated. Among the significantly upregulated
genes were genes related to positive regulation of cellular catabolic
process-related genes (PNLDC1, REPL4A, REPL4AL1) and calcium
signaling pathway-related genes (ADCY2, OXTR, RET). On the
other hand, significantly downregulated genes included regulation
of vesicle-mediated transport-related genes (APOC1, APOC2,
APOE), cytokine-cytokine receptor interaction-related genes
(CCL18, CCL20, GDF15), and response to hypoxia-related genes
(ALAS2, KCNMA1, ANGPTL4) (Figure 3B).

We functionally clustered the DEGs and the clusters were most
functionally enriched in “extracellular region,” “specific granule
lumen,” “neutrophil degranulation,” and “extracellular space”
(Figure 3C). Among the biological processes, the most enriched
terms related to various immune responses and neutrophil-related
functions. The most relevant functions for cellular components
included the cell surface, extracellular spaces and regions, and the
plasma membrane. Considering molecular functions, C-C
chemokine binding, CCR chemokine receptor, and collagen
binding were highly enriched (Figure 3D). In GSEA analysis,
‘cellular response to vascular endothelial growth factor
stimulation’, ‘C-C chemokine’, and ‘CCR chemokine receptor
binding’ functions were upregulated in SA.CVST patients. These
annotations suggested that CD14-positive cells were more sensitive
to chemokine activation in SA.CVST patients (Figures 3E, F). C-C
Chemokine and CCR Chemokine Receptor Bindings are critical for
vascular endothelial interactions with monocytes and macrophages,
which can help monocyte-macrophages escape the vasculature into
the brain tissue. Thus, CD14-positive cells are more sensitive to
chemokine stimulation in patients with sub-acute cerebral venous
sinus thrombosis.

3.4 Validation of DEGs expression and T cell
activation-related function

To further support our findings in SA.CVST group, the RNA-
seq return RNA samples were used to validate the top different
expressed genes. There were eight RNA samples that remained high

quality. Metabolism-related genes (SPP1, ANGPTL4) and
immunomodulatory molecule-related genes (CD276, CCL20) were
detected by RT-PCR. Consistent with RNA-seq data, SPP1,
ANGPTL4, CD276 and CCL20 were upregulated in SA.CVST
groups compared to IIH and C.CVST groups (Figure 4A).

T cell activation functions were validated by ELISA assay. Eight
patients’ plasma was used to detect T-cell activation-related
chemokines. According to our RNA-seq results, CD276 and
CCL20 were chose as the related chemokines. In the CD276
ELISA assay, the concentration of CD276 was significantly
increased in SA.CVST patients’ plasma compared to IIH and
C.CVST. In C.CVST patients’ plasma, the concentration of
CD276 also increased compared to IIH. Regarding the CCL20
ELISA assay, the concentration of CCL20 showed no significant
difference between SA.CVST and the other two groups. In C.CVST
patients, the plasma CCL20 concentration decreased compared to
IIH group. The concentrations of CCL20 remained low while the
variation of different samples was severe. CD276 were 100-fold
higher compared to those of CCL20. In all, the concentrations of
CD276 were higher in SA.CVST patients’ plasma, which might help
T cell activation in SA.CVST groups (Figure 4B).

3.5 SA.CVST CD14-positive cells express
higher neutrophil extracellular traps-
related genes

As mentioned in previous studies, neutrophil extracellular traps
(NETS) played an important role in mediating CVST formation (Jin
et al., 2022). CD14-postive monocyte-macrophage also participated
in neutrophil extracellular traps formation. Thus, neutrophil
extracellular traps-related genes are examined in our RNA
sequencing data. As shown in the heatmap, the NETS-related
genes are not specifically distributed in SA.CVST or C.CVST
groups (Figure 5A). NETS GSVA scores were compared in all
the samples and no significant difference was found between the
different groups (Figure 5B). Several most important NETS-related
genes (ENTPD4, NCF2, CYBB, TECPR2, ITGB2) were examined
individually (Figures 5C–G). ENTPD4 and NCF2 up-regulated in
SA.CVST and C.CVST groups compared to IIH. CYBB up-regulated
in C.CVST groups compared to SA.CVST and IIH groups. TECPR2
upregulated in SA.CVST group comparing IIH group. ITGB2
expression has no difference between the three groups.

4 Discussion

Cerebral venous sinus thrombosis (CVST) is a cerebrovascular
disease that involves the venous sinus (Fan et al., 2020). Due to
various causes of venous sinus thrombosis, venous outflow channels
are blocked, which results in cerebral venous sinus hypertension,
cerebral venous drainage, and cerebrospinal fluid absorption
impairment (Capecchi et al., 2018). As a result, the intracranial
pressure increases significantly which leads to cerebral edema,
cerebral hemorrhage, or venous infarction (de Bruijn et al.,
2001). Patients with these complications can be seriously life-
threatening. In contrast, patients with chronic cerebral venous
sinus thrombosis have light symptoms and rarely die. In our
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study, all SA.CVST patients suffered severe headaches and four of six
patients witnessed severe nausea and projectile vomiting. The rate of
epilepsy onset also increased in SA.CVST group, which also
supports SA.CVST patients developed neuronal damage, a more
aggravated symptom.

In this study, to better portray the altered immune environment
within A.CVST, we used another non-thrombotic disease involving
cerebral venous sinuses, idiopathic intracranial hypertension, as a
control group. IIH is primarily due to cerebral venous sinus vascular
degeneration or underdevelopment, which produces stagnation or
turbulence in the venous sinuses (Zhang et al., 2023). This is an
anatomically structured disease and does not significantly affect the
immune environment within the venous sinuses. IIH tends to cause
persistent blurred vision or severe headaches but rarely results in

death. The primary treatment of IIH relies on the direct opening of
the venous sinus vessels by interventional means using balloons and
stents creating a path for neuro-interventionalists to collect the local
blood samples in the venous sinus (Zhang et al., 2022).

Liquid biopsies of blood are widely used in the diagnosing,
treating, and monitoring of a wide range of diseases due to their
convenient sample acquisition. In brain tumors, liquid biopsy
detects circulating tumor cells in blood samples and monitors of
tumor progression or recurrence by cross-checking the number of
tumor cells in the blood with imaging features (Alix-Panabières and
Pantel, 2021). In studying other intracranial diseases, monitoring
Tau protein and amyloid-β exosomes within the blood can provide
early diagnosis of Alzheimer’s disease. Based on proteomic data in
the plasma, the immune microenvironment can be analyzed to

FIGURE 4
Validating some important DEGs expressions and T cell activation-related functions. (A) The expression of SPP1, ANGPTL4, CD276 and CCL20 in
CD14-positive cells of IIH, SA.CVST and C.CVST samples. (B) The concentration of CD276 and CCL20 in the plasma of IIH, SA.CVST and C.CVST patients.

FIGURE 5
Neutrophil extracellular traps-related gene expression among IIH, SA.CVST and C.CVST. (A) The heatmap of neutrophil extracellular traps-related
genes among different groups; (B) The GSVA score of neutrophil extracellular traps among different groups; (C–G) ENTPD4 (C), NCF2 (D), CYBB (E),
TECPR2 (F), and ITGB2 (G) gene expression among different groups.
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speculate on the likelihood that the patient has Alzheimer’s disease
(Jia et al., 2019; Wang et al., 2023). However, liquid biopsy is less
sensitive and specific because it is taken from peripheral blood,
which is far from the lesion site. In this study, we collected blood
from the lesion site through an interventional catheter during the
interventional procedure. The PBMC of the local blood carries more
lesion-related transcriptomic alterations, thus increasing the
sensitivity and specificity of the liquid biopsy. We extracted the
cells in the PBMC of the patient’s lesion site and analyzed the
different functions presented by the cells in different disease states.
The transcriptome of the cells was sequenced by RNA-seq to tap the
altered gene expression of the PBMC in different diseases, which
found factors influencing the response to drug therapy for sub-acute
cerebral venous sinus thrombosis.

The cerebral venous sinus is constructed in the dura mater and is
an important essential for cranial blood reflux. Meningeal
lymphatics along the venous sinus is a vital communication
region for immune cells of the central immune system and the
peripheral blood system, which closely monitors the changes in the
cerebral immune environment in physiological and pathological
states (Da Mesquita et al., 2018; Rustenhoven et al., 2021; Louveau
et al., 2015). A study related to subarachnoid hemorrhage showed
that blood clots can block the meningeal lymphatics, affecting
meningeal lymphatics drainage function, allowing the undrained
cerebrospinal fluid to enter the perivascular space, damaging
aquaporin 4, leading to excessive accumulation of toxic and
inflammatory metabolites. In turn, this phenomenon may induce
long-term brain damage (Liu et al., 2020). Besides, monocyte-
macrophages and T-lymphocytes, involved in immune
surveillance and elimination, are mainly derived from dural
sinusoids and blood vessels. Therefore, the dural sinuses and
vessels affect the function of meningeal lymphatics
(Papadopoulos et al., 2020). To further explore the immune
alterations in the cerebral venous sinus in disease conditions, we
extracted CD14-positive cells from PBMC by magnetic beads. CD14
is a surface marker for monocyte-macrophages, which is closely
related to cerebral venous sinus function and thrombosis and is
more suitable for reflecting the immune environment of cerebral
venous sinus thrombosis.

By comparing sub-acute cerebral venous sinus thrombosis
with idiopathic cranial hypertension, we found that the
upregulated genes of CD14-positive cells in sub-acute
cerebral venous sinus thrombosis mainly contained signaling
pathways closely related to immune activation, including lipid
metabolism, cytokine activation, and transcriptional regulation
while the downregulated genes were related to metabolic
enzymes such as GTPase and hydrolase. As found in Guo-
Chang Hu’s research, inactivation of GTPase in macrophages
was found to promote phagocytosis of neutrophils (Jiang et al.,
2017). After sub-acute cerebral venous sinus thrombosis,
GTPase activity was inhibited in activated macrophages,
accelerating macrophage phagocytosis of neutrophils and
participating in thrombus degradation. We performed
functional clustering and GSEA analysis of differential genes
and found that the most critical functional enrichment of CD14-
positive cells activated by sub-acute cerebral venous sinus
thrombosis was T cell recruitment and activation.
Traditionally, thrombosis has been understood primarily in

terms of platelet aggregation and coagulation factors, but
recent studies have highlighted the important involvement of
T cells in this process (Zahran et al., 2024). T cells experience
altered metabolism levels during thrombosis, with increased
cholesterol metabolism and decreased glycolysis. Based on the
metabolic alterations, the functional phenotypes of the T cells
are also altered at a molecular level. The proportion of effector T
(Teff) cells increased significantly after thrombosis. They were
also stimulated by innate immune cytokines to transform from
vascular barrier-protective cells to vascular-injury cells
secreting IL-17A, IL-22, and IFN-g (Burkett et al., 2015).
Thus, in sub-acute cerebral venous sinus thrombosis,
activated CD14-positive cells stimulate T-cell activation,
further exacerbating vascular endothelial cell injury
consistently. This evidence described one possible reason for
severe symptoms in sub-acute cerebral venous sinus
thrombosis patients.

We further compared the differences in the expression of the
transcriptome of CD14-positive cells in sub-acute and chronic
cerebral venous sinus thrombosis, and we found that in sub-
acute cerebral venous sinus thrombotic cells, cytokine-mediated
genes for vesicle-dependent cytosolic cytotoxicity, which is closely
related to monocyte-macrophage function, were significantly
upregulated, as well as the hypoxia-associated gene expression;
whereas significantly down-regulated genes were associated with
intracellular catabolism and calcium channels. We performed
functional enrichment of cellular functions and found that
cytokine and chemokine functions were closely up-regulated.
Monocyte-macrophages accumulate to lesion sites via
chemokines, while different chemokines cause monocyte-
macrophages to differentiate into different phenotypes (Bai et al.,
2023). Meanwhile, the CCR family can mediate monocyte-
macrophage interactions with endothelial cells, which is a
mechanism for how to migrate out of the vessels into the brain
parenchyma (Sun et al., 2021). In several studies, CCR2-CCL2 can
help the monocyte-macrophages evade vascular endothelial cells
into parenchyma to produce ischemia-reperfusion injury (Geng
et al., 2022) or post-epilepsy neuronal injury (Varvel et al., 2016).
In this study, monocyte-macrophages expressed higher chemokines
in the sub-acute phase. Therefore, more monocyte-macrophages
were more likely to enter the brain parenchyma by chemokine
recruitment, which may account for the severity of symptoms in the
sub-acute phase.

There are some limitations in this study. Firstly, this study’s
sample size is relatively small because it is difficult to collect
samples from venous sinus through catheters. As a result, we can
only describe the expression changes of CD14-positive cells in the
cerebral venous sinus in different disease states, while we cannot
analyze the effects of these changes on the prognosis of the
patients. Besides, the tissue samples of the cerebral
parenchyma and the meningeal lymphatic vessels were not
available in this study, and we could not determine the effects
of the expression changes of immune cells in the cerebral venous
sinus on the immune environment in the cerebral parenchyma
and meningeal lymphatic vessels. Based on the present results, we
will further explore the effects of cerebral venous sinus-related
diseases on the brain parenchyma and meningeal lymphatics in
animal models.
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5 Conclusion

In this study, by comparing sub-acute and chronic cerebral
venous sinus thrombosis and idiopathic intracranial hypertension
CD14-positive cells, we found that sub-acute cerebral venous sinus
thrombosis monocyte-macrophages expressed a more vital immune
activation state, played an essential role in recruiting and stimulating
T-cell functions, and expressed higher chemokines and cytokines
with significantly enhanced cell migration functions. These above
results depicted changes in the immune environment within the
sinus of sub-acute cerebral venous sinus thrombosis and provided a
basis for further exploration of potential therapeutic modalities.
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