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Aim: This study aimed to predict the formation of OBL during femtosecond laser
SMILE surgery by employing deep learning technology.

Methods: This was a cross-sectional, retrospective study conducted at a
university hospital. Surgical videos were randomly divided into a training
(3,271 patches, 73.64%), validation (704 patches, 15.85%), and internal
verification set (467 patches, 10.51%). An artificial intelligence (AI) model was
developed using a SENet-based residual regression deep neural network. Model
performance was assessed using the mean absolute error (EMA), Pearson’s
correlation coefficient (r), and determination coefficient (R2).

Results: Four distinct types of deep neural network models were established. The
modified deep residual neural network prediction model with channel attention
built on the PyTorch framework demonstrated the best predictive performance.
The predicted OBL area values correlated well with the Photoshop-based
measurements (EMA = 0.253, r = 0.831, R2 = 0.676). The ResNet (EMA = 0.259,
r = 0.798, R2 = 0.631) and Vgg19 models (EMA = 0.31, r = 0.758, R2 = 0.559) both
displayed satisfactory predictive performance, while the U-net model (EMA =
0.605, r = 0.331, R2 = 0.171) performed poorest.

Conclusion:Weused a panoramic corneal image obtained before the SMILE laser
scan to create a unique deep residual neural network prediction model to predict
OBL formation during SMILE surgery. This model demonstrated exceptional
predictive power, suggesting its clinical applicability across a broad field.
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Introduction

Small-incision lenticule extraction (SMILE) surgery is a widely
employed and efficacious ocular surgery for treating myopia and
astigmatism (Ang et al., 2021). Compared to keratorefractive
surgery, SMILE has a higher level of predictability, precision, and
security (Palme et al., 2022; Wu et al., 2014; Sekundo et al., 2011;
Reinstein et al., 2014; Kobashi et al., 2017). A common
intraoperative complications associated with SMILE is an opaque
bubble layer (OBL). This is engendered by emission of pulsed light
lasting 10−15 s at a wavelength of 1053 nm, which causes
photofracture and the generation of bubbles (carbon dioxide +
dihydrogen oxide) (Moshirfar et al., 2021; Mrochen et al., 2010).
Subsequent bubbles coalescence creates an opaque area. An OBL
causes cap lenticule adhesion, hampering dissection of lenticules. In
severe cases, it may precipitate complications, such as epithelial
breakthrough and cap perforation (Sahay et al., 2021; dos Santos
et al., 2016; Son et al., 2017), which markedly affect the patient’s
postoperative vision (Aristeidou et al., 2015). Hence, diminishing
OBL formation during SMILE surgery holds promise for reducing
complications and improving postoperative visual quality, with
significant practical implications.

In recent years, artificial intelligence (AI) advanced
ophthalmology significantly, presenting novel opportunities and
challenges for ocular disease diagnosis, treatment, and
management (Nuzzi et al., 2021). Through deep learning (DL)
and machine learning, AI systems can swiftly and accurately
detect lesions in fundus color photography, optical coherence
tomography (OCT), and fundus fluorescein angiography (FFA),
thereby assisting clinicians in early stage disease screening and
diagnosis (Schmidt-Erfurth et al., 2018), and can predict the risk
of glaucoma (Li et al., 2020; Xiong et al., 2022). Combined use of AI
and patient data and surgical videos in cataract surgery holds
significant promise for transforming surgical practice (Al Hajj
et al., 2019).

We investigated the value of DL techniques for predicting OBL
in SMILE surgery. Specifically, we attempted to predict formation of
an OBL in femtosecond laser SMILE surgery by recognizing the
panoramic view of the cornea before laser scanning and compared
this prediction with the actual measured OBL area.

Materials and Methods

Research object

This cross-sectional retrospective study enrolled patients
who underwent SMILE at the Ophthalmology Center of the
second affiliated hospital of Nanchang University of between
June 2021 and October 2022. All patients underwent SMILE
surgery to treat myopia and astigmatism, by two experienced
surgeons with 10 and 20 years’ refractive surgery experience in
thousands of cases of photorefractive keratectomy, femtosecond-
laser-assisted in situ keratomileusis (FS-LASIK), and
SMILE surgeries.

This study follows the Declaration of Helsinki, is registered at
ClinicalTrails.gov (identifier, NCT06577012), and approved by the

ethics committee of the second affiliated hospital of Nanchang
University (2024086).

Patients were included if they were aged ≥18 years, had
preoperative spherical equivalent ≥−10.0 dioptre (D); corrected
distance visual acuity ≥16/20; had a relatively stable refractive
diopter (annual dioptre change in the past 2 years < 0.50 D); and
had not worn contact lenses in the last 2 weeks. Patients were
excluded if they had ocular diseases other than myopia and
astigmatism, including keratoconus, severe corneal disease, severe
dry eye, uncontrolled glaucoma, cataracts that seriously affected
vision, or a history of ocular trauma; an ocular surgery history; and
systemic diseases, such as psychiatric disorders, severe
hyperthyroidism, systemic connective tissue diseases, or
autoimmune diseases.

Data collection

Data collection involved obtaining screenshots of the SMILE
surgical video in a panoramic view of the intraoperative corneal
and posterior lenticule cut scans. Additionally, the OBL area was
measured in operated eyes (Son et al., 2017). Following
completion of the side-cut during SMILE surgery, the video
was immediately paused, and the image was captured in BMP
format using the “screen capture” option. Subsequently, the BMP
file was imported into Adobe Photoshop (PS) 2020 software
(Adobe Systems, San Jose, CA), where the “Elliptical Marquee
Tool” was utilised to select the total corneal area. The mean
luminosity and standard deviation were recorded, and the
percentage of pixels above the threshold (average brightness +
two standard deviations) was documented as the OBL region
(Son et al., 2017; Yang et al., 2023). Measurement of the OBL area
was checked by a senior surgeon to eliminate overestimation or
underestimation by the PS software. The actual measured
OBL area are subsequently verified and recorded by
senior surgeons.

Data set building

All operations involved in building the data set were performed
by professionally trained technicians.

Image preprocessing
Considering the surgical instruments in the images captured

from the VisuMax storage system (Carl Zeiss, Oberkochen,
Germany), our initial approach involved the use of OpenCV
within Python (https://pypi.org/project/opencv-python/) to
remove instruments around the cornea. Subsequently, a binary
process was employed to separate the cornea from the
instrument, with the corneal regions individually labelled through
a maximum connected region analysis. The corneal size was
calculated using the ellipse-fitting method. Upon determining the
corneal dimensions, a mask image was generated, and the image bit
operation was executed using the cv2.bitwise_and () functions to
yield a complete corneal image, effectively zeroing all neighbouring
pixels within the image (Figure 1).
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FIGURE 1
The panoramic view of corneal processed by Python [(A, B) respectively show the panoramas view of corneal captured from the VisuMax storage
system (Carl Zeiss, Germany) and the panoramas view of corneal processed by Python].

FIGURE 2
The histogram data of OBL areas.

FIGURE 3
OBL area measured in operated eye. [(A–C) respectively show the OBL generated during SMILE surgery captured by the VisuMax storage system.
After processing by PS software and checking by senior surgeons, 3A represents theOBL area <3%, 3B represents theOBL area 3%–4%, and 3C represents
the OBL area >4%].
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Data partitioning
All collected OBL area data were plotted as a histogram.

According to the Kolmogorov-Smirnov test, the data did not
conform to a normal distribution (P < 0.05). However, given the
large sample size of this study (4,442 eyes) and the “Bell Curve”
characteristics exhibited by the histogram data of OBL areas, which
approximate a normal distribution (Figure 2), it is acceptable to
consider the data as normally distributed (Vetter, 2017; Muntaner
et al., 1996).

Based on the proportion of the OBL area in the panoramic view
of the cornea, we divided the data into three categories: <3%, 3%–
4%, and >4% (Figure 3), consisting of 1,619, 2,126, and 697 items,
respectively. Given that most of the OBL area data fell within the
range of 3%–4%, random partitioning was performed to allocate this
subset into the training set (60%), verification set (20%), and test set
(20%). The remaining data were divided into proportions of 80%,
10%, and 10%.

The training set comprised 60% of the OBL data falling within
the range of 3%–4% and 80% of the data outside this range (<3%
and >4%), totalling 3,271 patches. These datasets were used to train
the DL network to predict the OBL percentage area.

The verification set included 20% of the OBL data within and
10% of the data outside the 3%–4% range, amounting to 704 patches.
These patches were used in real-time monitoring of the network
training progress and the adjustment of network hyperparameters.

For the test set, we used 20% of the OBL data that fell within and
10% of the data that fell outside the 3%–4% range, resulting in a
selection of 467 patches. By verifying the prediction outcomes of the
test set, key evaluation indicators, such as the mean absolute error
(EMA), Pearson correlation coefficient (r), and determination
coefficient (R2), were calculated (Table 1).

Residual regression deep neural network
based on SENet

Predicting the area of the OBL formed during SMILE based on
an RGB image of the eye can be considered as a regression problem.
Therefore, we designed a deep neural network incorporating the
Sque-and-Excitation Networks (SENet) and ResNet architecture to
solve this regression prediction task.

SENet is an influential network architecture (Hu et al., 2020)
that introduces a pioneering feature-relabeling strategy called the
attention mechanism. This approach obtains significant weights for
each channel through a learning process. Subsequently, these
discerned weights are utilised to enhance the crucial features
relevant to the given task, while the impact of less essential
features is simultaneously suppressed.

Moreover, residual neural networks devised by He et al. (2016)
and his team at Microsoft Research tackled the issue of
“degeneration” by introducing a groundbreaking concept known
as the “shortcut” or “skip connection” mechanism. These
connections resolved challenges encountered when training a
neural network with excessive depth.

In the present study, the SENet module was integrated into a
deep residual network. To streamline the number of parameters in
the model, we have chosen to employ the same global average
pooling (GAP) as the original creators to process the features
extracted from the convolutional layer. Simultaneously, the loss
function was refined to the mean square error (MSE) to
enhance the precision of the loss calculation in the regression
prediction task.

SENet module
The combination of SENet and the deep residual network

module (Figure 4) entails executing weighted operations on the
original image at the conclusion of each residual block, including the
GAP, fully connected layer, ReLU operation, and sigmoid function.
These operations calculate the weight values for each channel, which
are then leveraged for multiplication. SENet was combined with the
deep residual network by integrating it into the residual module
following the last block in the module.

Residual network
Residual networks were constructed by stacking the

convolutional (Conv) and identity blocks. As the input and
output dimensions of the Conv blocks differed, they were used to
adjust the dimensions of the network. Conversely, the identity
blocks maintained uniform input and output dimensions, thus
augmenting the network depth. The network structures of the
Conv and identity blocks are shown in Figure 5.

The network structure of the Conv locks is characterised by a
bifurcated structure, and the input data are divided into two
branches, with the first branch undergoing a three-layer
convolution operation to obtain a feature map, while the second
branch undergoes a single-layer convolution operation to obtain
another feature map. These two are added, and the result is subjected
to a ReLU operation (i.e., assuming that a negative value is 0).
Finally, the ReLU operation results are taken as the Conv block
module output. In the network structure of the identity block, only
one branch of input data exists. After three convolution operations
without changing the dimensions, which are directly added
(i.e., residual connection), a ReLU operation is performed on the
result of the sum, which is finally used as the output of the identity
block module.

Loss functions and optimizer
In this study, the MSE loss EMS (MSE) was chosen as the loss

function (Equation 1), calculated as follows:

EMS y, y′( ) � 1
n
∑n
i�1

yi − y′i( )2 (1)

Stochastic Gradient Descent is an optimisation algorithm
commonly used for large-scale datasets and DL model training. It
calculates the gradient of the loss function by selecting one of the

TABLE 1 Specific compositions of training set, verification set and test set.

Categories The number of patches

<3% 3% ~ 4% >4% Total

Training set 1,296 1,418 557 3,271

Verification set 162 472 70 704

Test set 161 236 70 467
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samples and verifies that the direction of the negative gradient
updates the weights to reduce the value of the loss function. The
loss function, which is the optimal value of the weights, is minimised
by iteratively updating the weights.

Evaluation indexes
In this study, EMA, Pearson’s correlation coefficient r, and the

determination coefficient R2 were chosen as the evaluation indices,
calculated as follows (Equations 2–4):

FIGURE 4
Combination of SENet model and deep residual network module.

FIGURE 5
(A, B) shows the network structure of Conv Block and Identity Block respectively.
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EMA � 1
n
∑n
i�1

yi − y′i
���� ���� (2)

r �
∑n
i�1

y′i − �y( ) y′i − �y′( )																			∑n
i�1

yi − �y( )2∑n
i�1

y′i − �y′( )2√ (3)

R2 �
∑n
i�1

y′i − �y( )2
∑n
i�1

yi − �y( )2 (4)

Where �y and �yˊ are the means of the true and predicted values of
the sample, respectively.

�y � 1
n
∑n
i�1
yi, yˊ �

1
n
∑n
i�1
yiˊ

Experimental environment

The DL regression model used in this study was based on
implementation under the PyTorch framework, running on a
server equipped with two NVIDIA 3090 GPUs. The version of
Pytorch was 1.10.0, the version of CUDAwas 11.1, and the operating
system was Ubuntu 18.04. Each GPU had 128 GB of RAM and
24 GB of graphics memory.

The original image was normalised and the pixel values were
scaled to the range [0, 1]. A modified deep residual neural network
with channel attention was used for training, and a dropout function
was introduced in the fully connected layer, to reduce overfitting.
During the training process, the batch size was set to 48, the iteration
epoch was set to 200, the learning rate of the stochastic gradient
descent was set to 10–4, and every 50 iterations reduced the learning
rate to 1/10th of the initial value. During model training, the
evaluation metric, Pearson’s correlation coefficient r, was
recorded for the validation set, and the model with the largest r

value was selected. Finally, models were evaluated using the test set
for each correlation metric, to verify their predictive performance.

Surgical procedure

Each patient received 0.3% gatifloxacin eye gel for 3 days before
surgery as a prophylactic measure against infection. Immediately
before surgery, the nurse administered 0.5% procaine hydrochloride
eye drops in a series of one drop every 5 min, followed by two
consecutive drops to provide surface anaesthesia to the affected eye.

A VisuMax femtosecond laser system (Carl Zeiss), with a 135-nJ
pulse energy of and 4.5-μm spot spacing was used. The corneal cap
thickness was set at 100–120 μm, with a 7.5-mm diameter. The
femtosecond laser scanning sequence included the following steps:
posterior lenticule, lenticule side-cut, anterior lenticule, and cap side-
cut. The cap side-cut was set at 2mm (at the 12 o’clock position, at a 90°

angle). The transition zone for astigmatism treatment was 0.1 mm
(Table 2). The surgeon controlled the eyeball by using microtoothed
forceps in the left hand and femtosecond lens separation in the right
hand to dissect the anterior plane of the lenticule, followed by posterior
plane dissection and lenticule extraction.

All patients began using the following medications on the first day
after surgery: 0.3% gatifloxacin eye gel (four times/day, instilled in the
eye for 1 week), 0.1% flumilone eye drops (four times/day, instilled in
the eye for 4 weeks, decreased once a week), and sodium hyaluronate
eye drops (four times/day, instilled in the eye for 4 weeks).

Statistical methods

IBM SPSS Statistics for Windows version 26.0 (IBM Corp.,
Armonk, NY, USA) was used for statistical processing of the
general information. Microsoft Excel 2018 (Microsoft Org.,
Redmond, WA) was used to organise and tabulate the data, and
GraphPad Prism 9.0 (GraphPad Inc., La Jolla, CA) was used for data
analysis. All measurements are expressed as mean ± standard
deviation (�x± s). Count data are expressed as n (%).

In this study, EMA, r and R2 were used as the model evaluation
indices. EMA was affected by the size of the processed data; therefore,
the EMA only reflected the mean absolute error value, which was not
readable. In Pearson’s correlation test, r = 0.8–1.0 was defined as a
very strong correlation, r = 0.6–0.8 as a strong correlation, r =
0.4–0.6 as a moderate correlation, r = 0.2–0.4 as a weak correlation,
and r = 0.0–0.2 as a poor correlation or lack of correlation. R2 was
used to reflect the goodness-of-fit of the model and ranged from 0 to
1. R2 > 0.4 indicated reliable goodness-of-fit.

TABLE 2 SMILE surgical parameters.

Surgical parameters Range

Wavelength/nm 1,053

Pulse duration/fs 400

Pulse emission frequency/kHz 500

Optical zone/mm 6.5

The transition zone for astigmatism treatment/mm 0.1

Cap diameter/mm 7.5

Cap thickness/μm 100–120

The line and spot separations/μm 4.5

Cap side cut angle/° 90

Incision width/mm 2

Energy/nJ 135

TABLE 3 Evaluation indexes of different DL models in the test set.

Deep neural networks EMA MSE R2 r

U-net 0.605 0.375 0.171 0.331

VGG19 0.31 0.185 0.559 0.758

ResNet50 0.259 0.154 0.631 0.798

Method in this study 0.253 0.136 0.676 0.831
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Results

General information and DL model
prediction performance

This study included 2,265 patients (4,442 eyes) with a mean age
of 21.88 ± 5.32 years. Of these, 68.12% were male patients, and the
mean measured OBL area was 3.26% ± 0.64%.

The proposed algorithm was validated using a test set. It was
also compared with classical network architectures, such as
U-net, Vgg19, and ResNet50, to evaluate its predictive
performance (Table 3). Method in this study and the
ResNet50 model have been described in detail in the
METHODS section. The U-net network comprises four layers,
with the image undergoing subsampling and upsampling four
times, respectively. The convolution kernel sizes for each layer
are 64, 128, 256, and 512, respectively. Each subsampling process
is connected with max pooling, and the upsampling process
utilizes deconvolution and the ReLU activation function of the
U-Net network. Additionally, the VGG19 model consists of
19 layers in total, including 16 convolutional layers and 3 fully
connected layers. The convolutional part is divided into five
blocks, with the respective block counts being 2, 2, 4, 4, and 4.
Each block utilized max pooling for connectivity, and then
connect three fully connected layers, and finally output the
result through the softmax activation function.

According to Table 3, ResNet50 exhibits a smaller EMA, and
larger R2 and r than did U-net and Vgg19. Our proposed method
showed some improvements over ResNet: it slightly reduced the
EMA and increases the R2 and r values. However, omitting GAP
from the model resulted in a significant reduction in the size of
the model (MB). Taken together, the method proposed
in this study performed the best in terms of predictive
effectiveness.

Visual analysis of model predictions

The scatterplot in Figure 6 shows the distribution of the OBL
predictions of our model versus the OBL measurements. These data
correlated well (r = 0.831).

The distribution of the absolute errors in the model predictions
was observed using a density line graph of the absolute errors
(Figure 7). As shown in Figure 7, most of the absolute error
values were distributed below 0.2%, which represents a small
error range.

Discussion

In this study, we trained and evaluated four DL models to
predict the OBL area during surgery, based on a panoramic corneal
image obtained before conducting SMILE laser scanning. To
confirm the best-performing DL model, we used an internal
validation set and designed a deep neural network model
incorporating channel attention and a residual module (EMA =
0.253, r = 0.831, and R2 = 0.676). The model-matching effect and
predictive performance were good. The DL model designed in this
article could assist surgeons in predicting potential OBL areas in
patients preoperatively, enabling the adjustment of surgical
parameters to mitigate OBL formation, such as reducing the laser
energy, replacing the suction ring or modifying the thickness of the
corneal cap (Yang et al., 2023; Wu et al., 2020). This adjustment is
crucial for reducing adverse impacts on surgical outcomes and
postoperative visual recovery, bearing significant practical
implications.

An OBL is an intraoperative complication of SMILE. Its
formation is mainly related to the excessive accumulation of
interlaminar corneal gas generated during photorupture of the
corneal stroma by the femtosecond laser, particularly when a
posterior lenticule is scanned. In previous studies, Liu et al.
(2014), Courtin et al. (2015), He et al. (2022), and others have
investigated the risk factors for OBL in FS-LASIK and have reported
that higher myopia, greater central corneal thickness, and larger

FIGURE 6
Distribution of OBL measured values and predicted values.

FIGURE 7
Density distribution of absolute errors.
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corneal diameter were associated with OBL formation. Ma et al.
(2018) and Son et al. (2017) suggested that the central corneal
thickness and residual stromal thickness are significant independent
risk factors for OBL formation, with a higher likelihood of OBL
occurrence in eyes in which a thinner lenticule is created during the
SMILE procedure.

To date, AI has demonstrated significant potential in the
screening, diagnosis, progression prediction, and supportive
treatment of ocular diseases (Xiong et al., 2022; Wan et al., 2023;
Lin et al., 2019). The widespread application of AI technology is
expected to have a revolutionary impact on ophthalmology, but AI
algorithms have not yet been used to predict OBL formation during
SMILE, as we have done here. The methodology integrated various
disciplines, such as the physical characteristics of femtosecond
lasers, OBL formation mechanisms, computer image processing
technology, and DL algorithms. The AI prediction process was
achieved by extracting effective feature parameters from a
panoramic corneal image scanned by the femtosecond laser. This
study provided a detailed theoretical explanation of the algorithm
implementation process and experimental results, and
demonstrated that our AI prediction model has high accuracy
and superior performance compared with traditional multiple
linear regression models.

This study had some limitations. The DL model developed in
this study focused specifically on predicting OBL formation during
SMILE but did not predict the specific region or quadrant of OBL
occurrence and the weight of the forming factors that influence OBL.
Considering the complexity and variety of SMILE complications in
clinical practice, creating an AI model that can predict all intra-and
postoperative complications would entail a lengthy accumulation
process. The study’s training and test data were relatively limited,
highlighting the need for more extensive test sample data collection
and the establishment of a robust data platform to test system
adequacy. Additionally, the reliance on data from only one hospital
for the test, training, and verification sets in this study introduces a
certain level of inaccuracy. Future research should involve gathering
data from diverse regions and hospitals for further testing
and refinement.

Conclusion

In this study, a DL network, including a residual convolutional
structure of residual modules, was constructed to extract image
features, output regression predicted values by the fully connected
layer, and channel attention. The model performance was verified
on real datasets and exhibited a higher statistical correlation and a
lower EMA than classical network architecture models.
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