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Background: Diabetic peripheral neuropathy (DPN) is common and can go
unnoticed until it is firmly developed. This study aims to establish a
transformer-based deep learning algorithm (DLA) to classify corneal confocal
microscopy (CCM) images, identifying DPN in diabetic patients.

Methods: Our classification model differs from traditional convolutional neural
networks (CNNs) using a Swin transformer network with a hierarchical
architecture backbone. Participants included those with (DPN+, n = 57) or
without (DPN−, n = 37) DPN as determined by the updated Toronto
consensus criteria. The CCM image dataset (consisting of 570 DPN+ and
370 DPN− images, with five images selected from each participant’s left and
right eyes) was randomly divided into training, validation, and test subsets at a 7:1:
2 ratio, considering individual participants. The effectiveness of the algorithmwas
assessed using diagnostic accuracy measures, such as sensitivity, specificity, and
accuracy, in conjunction with Grad-CAM visualization techniques to interpret the
model’s decisions.

Results: In the DPN + group (n = 12), the transformer model successfully
predicted all participants, while in the DPN− group (n = 7), one participant
was misclassified as DPN+, with an area under the curve (AUC) of 0.9405
(95% CI 0.8166, 1.0000). Among the DPN + images (n = 120), 117 were
correctly classified, and among the DPN− images (n = 70), 49 were correctly
classified, with an AUC of 0.8996 (95% CI 0.8502, 0.9491). For single-image
predictions, the transformer model achieved a superior AUC relative to the
ResNet50 model (0.8761, 95% CI 0.8155, 0.9366), the Inception_v3 model
(0.8802, 95% CI 0.8231, 0.9374), and the DenseNet121 model (0.8965, 95% CI
0.8438, 0.9491).

Conclusion: Transformer-based networks outperform CNN-based networks in
rapid binary DPN classification. Transformer-based DLAs have clinical DPN
screening potential.
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Introduction

Diabetic peripheral neuropathy (DPN), which affects more than
half of people with diabetes, is the most common complication of
this disease (Dyck et al., 1999; Pop-Busui et al., 2017). However, the
subtle signs of this condition can go unnoticed until it is firmly
developed and irreversible (Dyck et al., 2011). Early detection of
diabetic neuropathy is vital to halt its progression and reduce the
associated morbidity and mortality risks (Alam et al., 2017; Iqbal
et al., 2018). Presently, the primary method for screening for DPN is
the 10 g monofilament test. The 10 g monofilament test involves
applying a standardized nylon monofilament to various points on
the foot to assess the patient’s ability to feel pressure, serving as a
simple screening tool for detecting loss of protective sensation
(Kumar et al., 1991). However, this method relies on the
subjective response of patients and is limited in its effectiveness
in detecting small fibers initially affected by DPN (Dyck and
Giannini, 1996; Richard et al., 2014; Ziegler et al., 2014).
Evaluating small-fiber function often requires an invasive skin
biopsy (Lauria et al., 2009). Straightforward indicators for
identifying DPN early are lacking in clinical practice (Selvarajah
et al., 2019).

Growing evidence supports the value of corneal confocal
microscopy (CCM) in detecting DPN. CCM offers a swift,
noninvasive method to precisely and objectively measure changes
in the corneal subbasal nerve plexus in diabetic patients (Chen et al.,
2015; Liu Y.-C. et al., 2021). In DPN, CCM reveals significant
alterations in nerve fibers, including a reduction in nerve fiber
density, changes in morphology characterized by thinner and
more tortuous fibers, and a loss of nerve branching (Yu et al.,
2022). These changes collectively indicate nerve damage and
degeneration, serving as critical markers for the assessment of
neuropathy severity. It is highly reproducible and can detect
small fiber function (Devigili et al., 2019; Li et al., 2019).
Moreover, it demonstrates high sensitivity and specificity in
quantifying early damage in DPN patients (Petropoulos et al.,
2013; 2014; Williams et al., 2020; Roszkowska et al., 2021) and
can predict the occurrence of diabetic neuropathy (Pritchard et al.,
2015). This approach is a reliable and noninvasive alternative to skin
biopsy (Ferdousi et al., 2021; Perkins et al., 2021). However, despite
its advantages, the CCM is not currently used for clinical screening
for DPN in patients. This is because large prospective studies are
needed to confirm the reliability of CCM (Sloan et al., 2021), and it is
essential to ensure precise feature extraction from CCM images.

In the past decade, artificial intelligence (AI), primarily deep
learning, has become widely used in clinical diabetic retinopathy
screening, significantly reducing the demands on screening
resources (Rajesh et al., 2023). AI models for diagnosing DPN
from CCM images have shown promising results. Dabbah et al.
(2011) developed a dual-model system for automated detection that
can extract nerve fibers from CCM images. They improved the
automated software by employing dual-model properties across
multiple scales, achieving performance levels similar to manual
annotation (Chen et al., 2017). The model, which lacks
convolutional layers, necessitates additional data preprocessing
and may lead to overfitting during the training process, thus
imposing constraints on its performance. Convolutional neural
networks (CNNs), a branch of deep learning, achieve “end-to-

end” classification without requiring specific instance parameters
(LeCun et al., 2015). It has excelled in the automatic analysis of CCM
images. Preston et al. (2022) introduced an approach for classifying
peripheral neuropathy that eliminates the need for nerve
segmentation, which refers to the process of isolating and
identifying individual nerve fibers in images for analysis.
Additionally, they integrated attribution techniques to provide
transparency and interpretation of the decision-making process.
However, efficiently and accurately obtaining corneal nerve features
from CCM images remains one of the most challenging issues in the
intelligent analysis of CCM images. We have noted that another
deep learning algorithm (DLA), the Swin transformer network, has
shown strong performance in image classification (Liu Z. et al.,
2021). The Swin transformer network is a type of transformer
architecture that utilizes a hierarchical design, allowing it to
effectively process images at multiple resolutions. Unlike CNNs,
the Swin transformer employs a unique shifted window mechanism
for self-attention, which enables efficient information capture across
different parts of the image while maintaining computational
efficiency. However, its application in classifying CCM images
has not been reported.

In this study, we used a transformer-based DLA to classify CCM
images for detecting DPN.We aimed to confirm the feasibility of the
transformer architecture for CCM image classification tasks by
comparing it with traditional CNN models.

Methods

Participants

Ninety-four participants diagnosed with diabetes mellitus (DM)
underwent assessment for the presence (DPN+, n = 57) or absence
(DPN−, n = 37) of DPN based on the updated Toronto consensus
criteria (Table 1). These criteria require evidence of neuropathy,
along with at least one abnormality in two nerve electrophysiology
parameters: peripheral nerve amplitude and peripheral nerve
conduction velocity (Tesfaye et al., 2010). Participants were
recruited from outpatients of Fujian Medical University Union
Hospital, Fuzhou, China, 2024/01–2024/06. Before any
assessments took place, all participants provided informed and
valid consent. Each participant underwent comprehensive
neuropathy and CCM evaluation. Those who had experienced
neuropathy in the past (excluding diabetes), had current or
recurring diabetic foot ulcers, lacked sufficient vitamin B12 or
folate, had a history of corneal disease or surgery, or wore
contact lenses were not included in the study. The research
adhered to the Declaration of Helsinki, and approval from ethical
and institutional bodies was secured prior to participants beginning
the study. Ethics approval was obtained from the Ethics Committee
of Fujian Medical University Union Hospital (NO. 2024KY112).

Image dataset

The dataset consists of corneal subbasal nerve plexus images of
diabetic individuals. The images were obtained at a resolution of
400 × 400 μm with a confocal laser microscope (Heidelberg

Frontiers in Cell and Developmental Biology frontiersin.org02

Chen et al. 10.3389/fcell.2024.1484329

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1484329


Engineering, Heidelberg, Germany). Images were acquired from the
central cornea at the subbasal nerve plexus using section mode,
capturing each image at a resolution of 400 × 400 μm (384 ×
384 pixels). The images were exported in JPEG file format. During
imaging, participants’ heads were fixed, and they were instructed to
gaze straight ahead, ensuring that the laser reflection point remained
at the center of the cornea. During data collection, the CCM of each
participant yielded a spectrum of 20 to 40 digital images per eye.
After a rigorous screening by medical experts (JZH and WQC),
which involved excluding images marred by blurriness or captured
from regions deemed inappropriate, quintets of images per eye were
meticulously selected for analytical purposes. The selection was
based on the following principles: first, the images had to be of
high quality with good contrast and clearly visible nerves; second,
they were selected from the central cornea; and third, we aimed to
represent a range of corneal nerve densities, choosing images that
showed the lowest to the highest density (Kalteniece et al., 2017).
The final dataset consisted of images from individuals diagnosed
with DPN (n = 570) and individuals diagnosed without
DPN (n = 370).

Dataset preparation

The dataset was arbitrarily stratified among training, validation,
and test subsets following a proportion of 7:1:2, anchored on
individual participants. The data were divided according to the
original distribution ratio, consisting of 660 for the training set
(DPN+ 400, DPN− 260), 90 for the validation set (DPN+ 50, DPN−
40), and 190 for the test set (DPN+ 120, DPN- 70). The training set
was utilized for model data training and parameter adjustment, and
the validation set was employed to assess the effect in the training
phase. The test set data were utilized to assess the final effectiveness
of the model.

Before being input into the model, the images underwent
preprocessing operations. We resized images from 384 ×
384 pixels to 224 × 224 pixels using the bilinear interpolation
method to meet the input specifications of the model. We
normalized the values to [−1, 1] using a mean of 0.5 and a

standard deviation of 0.5 across the three channels during image
input to optimize training.

Network architecture and
different backbone

Our classification model employs the Swin transformer network
(Liu Z. et al., 2021) as its backbone (Figure 1). Compared to the
traditional CNN, the transformer structure introduces a hierarchical
architecture that processes features at different resolutions by
training the image in small patches. The self-attention
computation of the transformer is confined to fixed-size local
windows. The Swin transformer leverages a shifted window
mechanism, alternating the positions of these windows in
adjacent layers, enabling the model to capture information across
windows while avoiding the high computational cost of global self-
attention. After obtaining 1024-dimensional features extracted by
the network, we added a compact stratum with 512 neurons,
sequenced by a dropout layer featuring a rate of 0.7. Finally, the
features passed through a binary dense layer, and the softmax
activation function was used to output the binary classification
result. The network continued training on the basis of pretrained
model weights from ImageNet1000 (Deng et al., 2009).

In the model configuration for the Swin Transformer, the patch
size is set to 4, and the window size is set to 7. The base model has an
embedding dimension of 128, with the depth of each Swin
Transformer block set to 2, 2, 18, and 2, and the number of
heads set to 4, 8, 16, and 32, respectively. For the tiny model, the
embedding dimension is set to 96, with the depth of each block
configured as 2, 2, 9, and 2, and the number of heads as 3, 6, 12, and
24, respectively. During the model training process, the batch size
was set to 32, and the Stochastic Gradient Descent optimizer was
employed. The initial learning rate was set to 0.005, and the learning
rate scheduler used was CosineAnnealingLR. Cross-entropy loss was
chosen as the loss function, and the model was trained
for 150 epochs.

We also selected other models for training to compare their
effectiveness. ResNet50 (He et al., 2016), DenseNet121 (Huang et al.,

TABLE 1 Demographic and clinical profiles of participants with DM.

Variables DPN− DPN+ P value

n 37 57

Age (years) 54.7 ± 12.7 57.7 ± 11.3 0.164

Diabetes duration (years) 7.7 ± 6.5 13.7 ± 7.6 <0.001

HbA1c (%) 8.0 (7.1,10.0) 8.7 (7.6,10.1) 0.186

BMI (kg/m2) 23.9 ± 3.4 24.2 ± 3.3 0.716

eGFR (mL min−1 L−1) 108.4 ± 26.2 105.6 ± 37.8 0.712

NDS 0.0 (0.0, 2.0) 5.0 (3.0, 6.0) <0.001

SSNA (μV) 12.0 (9.0, 16.0) 5.0 (3.0, 8.0) <0.001

SSNCV (m/s) 55.0 (53.0, 60.0) 48.0 (39.0, 54.0) <0.001

BMI, body mass index; HbA1c, Hemoglobin A1c; eGFR, estimated glomerular filtration rate; NDS, neuropathy disability score; SSNA, sural sensory nerve amplitude; SSNCV, sural sensory

nerve conduction velocity; Data that follows a normal distribution are presented as the mean ± SD; if not, it is expressed as median (P25, P75).
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2018), and InceptionV3 (Szegedy et al., 2016) were selected as
different backbone networks for training. These network
structures are all based on the CNN architecture. The
experimental training settings remained consistent except for
changes in the input size of the individual networks.

The results were generated using a PC featuring an Intel Core i7-
13700K processor with 32 GB of RAM and an Nvidia GeForce RTX
4070 Ti. The model was formulated and trained using Python
3.9 and PyTorch 2.0.0.

Performance evaluation

Each model generated a respective confusion matrix, elucidating
the discrepancy between the actual classification of images and the
predictions rendered by the model. A suite of standard metrics
derived from the confusion matrix for evaluating classification
models was computed, encompassing accuracy, sensitivity,
specificity, and the F1 score.

Accuracy is determined as the ratio of accurate predictions to the
overall number of predictions.

Recall, also called sensitivity, represents the number of predicted
positives relative to the total number of actual positives.

Precision is defined as the ratio of true positive instances
among all predicted positives, which gauges the impact of
false positives.

F1-score is a statistical measure that represents the harmonic
mean of precision and recall, balancing the trade-off between these
two metrics. It offers a more comprehensive evaluation of model

performance compared to using accuracy alone (Sokolova and
Lapalme, 2009).

Area Under the Curve (AUC) is a crucial metric for evaluating
classification models. It quantifies the model’s ability to distinguish
between classes, summarizing the trade-offs between sensitivity and
specificity at various thresholds. A higher AUC value indicates better
model performance in differentiating between the positive and
negative classes, making it an essential indicator of a model’s
potential effectiveness in clinical settings.

Grad-CAM technology (Selvaraju et al., 2020) is employed to
visualize the areas within images that the model prioritizes for
decision-making, offering insights into the model’s interpretability.

Given that five images were taken from each participant from
both the left and right eyes, with each image yielding a binary
probability output, the evaluation of the model efficacy in discerning
the status of participants necessitates a comprehensive approach.
Therefore, the probability outputs associated with all images from a
single participant are combined through a weighted mean
calculation. A patient is defined as DPN + when the weighted
mean of DPN+ is greater than that of DPN−, and as DPN−
when the weighted average of DPN+ is less than or equal to that
of DPN−. The final output serves as the criterion for assessment at
the participant level.

Results

The confusion matrix table generated from the test set using the
Swin transformer network as the prediction model for backbone

FIGURE 1
Diagram of the DLA based on the modified Swin transformer network. Each blue block represents patch merging, which is primarily employed to
adjust the dimensionality of the input after initial segmentation into patches. Each orange block represents a Swin transformer block, which utilizes a
concatenation of multihead self-attention and shifted windowing multihead self-attention mechanisms to facilitate information exchange among small
patches. The black block represents the subsequent classifier, which comprises dense and dropout layers, to obtain the final classification
probabilities. In the DLA network, a single-image input generates image-level predictions. Probabilities from multiple images belonging to the same
participant were weighted averaged to obtain participant-level predictions.
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network training is shown in Tables 2, 3. Among the DPN + patients
(n = 12), the model successfully predicted all participants. According
to the single-image confusion matrix, 117 DPN + images (n = 120)
were accurately categorized, and 3 images were inaccurately
categorized as DPN−.

The performance indicators for a single image are shown in
Table 4. The network trained with the Swin transformer architecture
reached the highest accuracy of 0.8789, in contrast to other
classification networks. The best F1 score was 0.9084, and the
highest recall was 0.9500. The AUC reached 0.8996 (0.8502,
0.9491). Overall, the networks based on the transformer
architecture achieved superior results.

The performance indicators for a single participant are shown
in Table 4. Apart from the area beneath the ROC curve, all other
model performance metrics align with our proposed model. The
overall classification accuracy reached 0.8947, with the AUC
achieving an even higher value of 0.9405 (0.8166, 1.0000).
Figure 2 depicts the AUC performance of our suggested
method, delineated separately for the training and test subsets
across a single participant.

Figure 3 presents the various CCM images within the test set
across distinct models, alongside the Grad-CAM images generated
for each case. The networks based on the transformer architecture
tend to exhibit more refined detail in the regions identified for image

judgment during the presentation process than those based on CNN
architectures.

Discussion

In our research, we employed an advanced DLA to analyze CCM
images of corneal nerves, simulating a clinical screening
environment, to distinguish diabetic patients with DPN from the
diabetic population. The algorithm performed well in this binary
classification task without requiring nerve segmentation (AUC
0.9405; sensitivity 0.8947; specificity 0.9167), highlighting its
clinical utility in accurately identifying DPN patients. Our
experiments showed that in classifying DPN using deep learning
networks, networks based on transformer architectures outperform
those based on CNN architectures.

Current clinical criteria of DPN typically include a combination
of clinical history, physical examination, and nerve
electrophysiology, but they often fail to capture the nuances of
nerve damage early on (Atmaca et al., 2024). Timely detection and
assessment of small nerve fiber damage is key to screening for DPN.
CCM, as a non-invasive examination method, can provide accurate
biomarkers for small nerve fiber damage (Carmichael et al., 2022).

Some studies have utilized AI-based CNN approaches to analyze
corneal nerve images to classify DPN patients (Scarpa et al., 2020;
Williams et al., 2020; Salahouddin et al., 2021; Preston et al., 2022;
Meng et al., 2023). Williams et al. (2020) employed a U-Net CNN
architecture for analyzing and quantifying corneal nerves, achieving
an AUC of 0.83, specificity of 0.87, and sensitivity of 0.68 in
distinguishing DPN + patients. Preston et al. (2022) utilized a
ResNet-50-based CNN to classify corneal nerve images for DPN,
attaining a recall of 0.83, precision of 1.0, and an F1 score of 0.91.
Salahouddin et al. (2021) employed a U-Net-based CNN to
distinguish individuals with DPN from those without DPN,
demonstrating a sensitivity of 0.92, a specificity of 0.8, and an
AUC of 0.95. Meng et al. (2023) utilized a modified ResNet-50
CNN to achieve dichotomous classification between DPN+ and
DPN− patients, with a sensitivity of 0.91, a specificity of 0.93, and an
AUC of 0.95.

In contrast to previous CNN-based models, our study utilizes
the Swin transformer as the backbone network for training. In our
research, the models generally demonstrated superior performance,
as evidenced by higher AUC values than those trained with
traditional architectures. The Grad-CAM visualizations further

TABLE 2 Single-image confusion matrix from the Swin transformer
network.

True class Predicted class

DPN− DPN+

DPN- 49 21

DPN+ 3 117

TABLE 3 Single-participant confusion matrix from the Swin transformer
network.

True class Predicted class

DPN- DPN+

DPN− 6 1

DPN+ 0 12

TABLE 4 Single-image and single-participant classification indicators.

Classification ModelName Acc Precision Recall F1 AUC 95% CI

Single-image Swin_transformer_base 0.8789 0.8702 0.95 0.9084 0.8996 0.8502, 0.9491

Swin_transformer_tiny 0.8684 0.8682 0.9333 0.8996 0.8977 0.8483, 0.9472

DenseNet121 0.8737 0.8871 0.9167 0.9016 0.8965 0.8438, 0.9491

Inception_v3 0.8632 0.8561 0.9417 0.8968 0.8802 0.8231, 0.9374

ResNet50 0.8684 0.88 0.9167 0.898 0.8761 0.8155, 0.9366

ResNet152 0.8579 0.8605 0.925 0.8916 0.8886 0.8354, 0.9419

Single-participant Swin_transformer_base 0.8947 0.9167 0.9167 0.9167 0.9405 0.8166, 1.0000
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revealed that Swin transformer-based models excel in identifying
nuanced details of neural components, indicating that they extract
features with greater precision and depth than conventional CNN
architectures. Our approach, which contrasts with analogous binary
classification methods, is more advanced and demonstrates
enhanced sensitivity. The pronounced recall of the model
indicates an enhanced sensitivity toward detecting neurological
abnormalities, notwithstanding the possibility of misdiagnosis in
certain instances. This heightened sensitivity is pivotal in
minimizing the likelihood of overlooking such conditions,
thereby rendering the model exceptionally beneficial for
preliminary screenings.

Due to the limited coverage of each corneal image, individual
images may offer incomplete representations of the overall corneal

nerve. Relying solely on a single image might not provide a
sufficiently comprehensive depiction for an accurate diagnosis.
Scarpa et al. (2020) simulated the clinical decision-making
process by utilizing multiple corneal nerve images from a single
eye to assess DPN, which supported this standpoint. In our study,
aggregating the prediction outcomes from multiple images for
classification led to an overall improvement in the composite
metrics across all models. This indicates that integrating
judgments from multiple images yields more accurate results
than relying on the assessment of a single image (Meng et al.,
2023). This approach corresponds more with the judgments made in
practical scenarios. Clinicians often find it difficult to make
assessments based on a single image. This approach both
improves the precision of model predictions and mirrors the
nuanced decision-making process in clinical settings.

However, the sample size in our study, particularly for the DPN-
group, is limited. A larger cohort would improve statistical power
and generalizability. In addition, our model’s performance needs to
be validated on external datasets to ensure its reliability. Given that
data collection is a challenging process, we are concurrently
gathering data from multiple centers.

Our DLA-based DPN screening method showed superior
performance compared to the currently used monofilament
tests (Wang et al., 2017), which demonstrated a sensitivity of
0.53 and specificity of 0.88. Despite the limitations of a smaller
dataset, our study still attained a reasonable level of classification
accuracy. There are currently no reports of AI-based CCM
deployed in real-world settings for screening DPN. Based on
previous experience, previous studies on diabetic retinopathy
have suggested that AI performs less effectively in clinical
practice than in laboratory validation (Kanagasingam et al.,
2018). Therefore, large-scale prospective clinical studies are
crucial for AI-based DPN screening.

FIGURE 3
Grad-CAM images of DPN+ (left 3 columns) and DPN− (right 3 columns) patients accurately detected using the transformer andCNNmodels. Upper
section, original images; center section, transformer Grad-CAM images; lower section, CNN Grad-CAM images.

FIGURE 2
ROC curve analysis for detecting DPN using training and test
subsets from a single participant.
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Conclusion

The transformer-based networks demonstrated superior
performance than traditional CNNs regarding rapid binary DPN
classification. The transformer-based DLA offers a new direction for
classifying DPN through automatic analysis of CCM images and
holds potential for clinical screening.
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