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Background: The high morbidity and mortality rates of colorectal cancer (CRC)
have been a public health concern globally, and the search for additional
therapeutic options is imminent. Hyodeoxycholic acid (HDCA) has been
receiving attention in recent years and has demonstrated potent efficacy in
several diseases. Nonetheless, the antitumor effects and molecular pathways
of HDCA in CRC remain largely unexplored.

Methods: In this study, we investigated how HDCA influences the growth
potential of CRC cells using techniques such as flow cytometry, Edu assay,
CCK-8, colony formation assay, Western blot analysis, and animal experiments.

Results: It was found that HDCA treatment of CRC cells was able to significantly
inhibit the proliferative capacity of the cells. Furthermore, it was discovered that
HDCA primarily stimulated Farnesoid X Receptor (FXR) rather than Takeda G
protein coupled receptor 5 (TGR5) to suppress CRC growth. It was also confirmed
that HDCA inhibited the Epiregulin (EREG)/Epidermal Growth Factor Receptor
(EGFR) pathway by activating FXR, and a negative correlation between FXR and
EREG was analyzed in CRC tissue samples. Finally, in vivo animal studies
confirmed that HDCA inhibited CRC proliferation without hepatotoxicity.

Conclusion: Our findings indicate that HDCA suppresses the EREG/EGFR
signaling route by activating FXR, thereby hindering the growth of CRC cells
and demonstrating a tumor-inhibiting effect in CRC. This study may provide a
new therapeutic strategy to improve the prognosis of CRC.
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1 Introduction

Colorectal cancer (CRC) ranks among the prevalent gastrointestinal cancers globally,
characterized by significant incidence and death rates (Sung et al., 2021). While existing
treatments have somewhat enhanced the outlook for CRC patients, significant obstacles
remain in developing effective CRC therapies. Consequently, it is crucial to identify essential
elements and potential targets for CRC treatment, as well as drugs or natural substances that
can accurately address them.

Lately, more researchers have concentrated on the connection between bile acids and
cancer development (Cong et al., 2024; Zhu et al., 2023; Riscal et al., 2024). Cholesterol’s
primary metabolites, bile acids, are produced in the liver and traveled to the intestine via the
enterohepatic circulation. There, the intestinal microbiota partially transforms them into
secondary bile acids. As an important signaling molecule in the organism, bile acids have
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been shown in many studies to play important roles in glucose
homeostasis (Zheng et al., 2022; Huang et al., 2024), energy
metabolism (Li et al., 2024), inflammation (Zhuang et al., 2024),
and tumorigenesis and development (Riscal et al., 2024), in addition
to their traditionally considered functions in lipid digestion.
Hyodeoxycholic acid (HDCA) belongs to a type of secondary bile
acid, which is found in high levels in pig bile and is the main active
ingredient in the traditional Chinese medicine pig bile (Zhong et al.,
2023). HDCA, present in modest amounts in humans and rodents,
has recently been demonstrated to significantly reduce
hyperlipidemia (Watanabe and Fujita, 2014), alleviate glucose
metabolism (Zheng et al., 2021), and mitigate non-alcoholic fatty
liver disease (Zhong et al., 2023). Nonetheless its role in CRC
is unclear.

The Farnesoid X Receptor (FXR), similar to the Takeda G
protein-coupled receptor 5 (TGR5), is primarily activated by bile
acids and functions as a transcription factor encoded by the
NR1H4 gene, predominantly found in the liver and intestines. To
date, numerous studies have confirmed that bile acids exert
biological functions by modulating the FXR. For instance, He
et al. found that ursodeoxycholic acid alleviates acute lung injury
by upregulating FXR expression, thereby inhibiting the p38 MAPK/
NF-kB signaling pathway (He et al., 2024). Tschuck et al.
demonstrated that bile acids activate FXR, leading to the
suppression of lipid peroxidation and ferroptosis (Tschuck et al.,
2023). Additionally, other research has reported that hyocholic acid
increases the production and secretion of GLP-1 in enteroendocrine
cells by simultaneously activating TGR5 and inhibiting FXR (Zheng
et al., 2021). Numerous research papers have shown that FXR is
crucial in the progression of CRC (Fu et al., 2019; Guo et al., 2022);
Yu et al. showed that downregulation of FXR expression promoted
CRC progression (Yu et al., 2022); in addition, another study found
that FXR could play a tumor suppressor role in CRC by inhibiting
Wnt/β-catenin signaling (Yu et al., 2020). Therefore, activation of
FXR by bile acids may have a role in inhibiting CRC progression.

This study evaluated the effect of HDCA on the proliferative
capacity of CRC cells in vitro and in vivo. And the relationship of
HDCA mediating the Epiregulin (EREG)/Epidermal Growth Factor
Receptor (EGFR) signaling pathway through FXR was explored.

2 Methods and materials

2.1 Patients and clinical specimens

Eight pairs of primary CRC and paracancerous tissue
specimens were collected from the Second Affiliated Hospital
of Nanchang University. All patients did not receive any
treatment prior to their surgeries, and their tumors were in
staged between II and IV. The collected specimens were used to
detect the levels of EREG and FXR by Western blotting. The
Ethics Committee of the Second Affiliated Hospital of Nanchang
University granted approval for the research, and every
participant gave their informed written consent.

2.2 Cell culture and transfection

Human CRC cell lines (HCT116 and DLD1) were purchased
from China Fuheng Biotechnology Co. DLD1 was cultured in
DMEM (Solarbio, China) medium at 37°C with 5% CO2, while
HCT116 was cultured in 1640 medium.

CRC cells were inoculated in T25 culture flasks and
transfected when the cell density was 60%–70%. Small
interfering fragments (siRNA) and Lipofectamine 3,000
(Thermofisher, America) were firstly mixed with serum-free
and penicillin-streptomycin-free medium, respectively, and
subsequently the two were mixed and added to the culture
flasks. Following a period of 6–8 h, the medium was
substituted with one that included serum and penicillin-
streptomycin for further incubation.

2.3 CCK-8 assay and lactate dehydrogenase
(LDH) activity assay

The CRC cell line was mixed and resuspended with culture
medium and inoculated in 96-well plates at 5000/100ul, while 100 µL
complete mediumwithout cells was set up (as a control). Following a
24-h period for cell adhesion to the wall, various doses of HDCA

FIGURE 1
Selection of suitable concentrations of Hyodeoxycholic acid (HDCA). (A, B), Cell viability of HDCA at different concentrations (0, 2.5, 5, 10, 25, 50,
100, 200, 400, and 800 μM)was determined by CCK8 assay for HCT116 andDLD1 after 48 h. (C), Evaluation of HDCA cytotoxicity onHCT116 andDLD1 by
measuring lactate dehydrogenase (LDH) activity. *Represents comparisons with concentration 0 μM; *p < 0.05, **p < 0.01.
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(Aladdin, China) were introduced. The optical density was
measured at 0, 24, 48, and 72 h. Each well received 10 µL of
CCK-8 reagent and was incubated for 2 h. Ultimately, the OD
was read at 450 nm with an enzyme-linked immunosorbent
assay reader.

CRC cells were inoculated in 96-well plates containing
different concentrations of HDCA and cultured for 48 h.
Then, the cells were incubated in PBS for 1 h. At the end of
the incubation, LDH activity was determined according to the kit
instructions.

2.4 5-ethynyl-2′-deoxyuridine assay

Again as described above first resuspend CRC cells in culture
medium and inoculate in 96-well plates at 10,000 cells per 100 µL.
The cells were given 8 h to adhere to the surface, followed by a 48-h
treatment with the appropriate HDCA concentration. Cells were
incubated with 5-ethynyl-2′-deoxyuridine (EdU, 10μM, UE, China)
for 2 h, followed by fixation using 4% paraformaldehyde for 20 min.
They were then permeabilized with 0.3% Triton X-100 for 30 min
and thoroughly washed with BSA. Then, EdU staining was

FIGURE 2
HDCA inhibits the proliferation of colorectal cancer (CRC). (A), Flow cytometry assay for cell cycle analysis of CRC cells treated with different HDCA
concentrations (100 and 200 μM) for 48 h. (B), Edu assay to detect the effect of HDCA on the proliferative capacity of CRC cells. (C), clonogenic
generation of HCT116 and DLD1 cells cultured with the indicated HDCA concentrations. Assay. (D), Western blotting assay of HDCA-treated CRC cells for
48 h on cylinD1 and CDK6 expression. *Represents comparisons with NC; # represents comparisons between 100 and 200 μM; *p < 0.05, **p <
0.01, ##p < 0.01.
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performed by incubating cells for 1 h, followed by DAPI staining for
nuclear visualization. Ultimately, images were captured with a
fluorescence microscope, and the count of Edu-positive cells was
assessed through ImageJ software.

2.5 Colony formation assay

For the colony formation assay, 1000 CRC cells were seeded into
6-well plates and grown for approximately 2 weeks in a full medium
with a modified HDCA concentration. Once the colonies could be
seen without a microscope, they were preserved using 4%
paraformaldehyde and then dyed with 0.1% crystal violet. Finally,
the colonies were photographed and analyzed using
ImageJ software.

2.6 Flow cytometry assay

A cell cycle analysis was conducted utilizing the Cell Cycle Assay
Kit fromUE, China. The treated cells were digested and resuspended
and fixed using 70% ethanol for more than 2 h (placed at 4°). Once
fixation was done, the cells were rinsed with PBS, 500 µL of the
working solution was introduced, and the cells were left to incubate
at room temperature, shielded from light for 30–60 min, before
being analyzed using flow cytometry.

2.7 Western blotting

Proteins were isolated with RIPA buffer supplemented with
protease and phosphatase inhibitors, and their concentrations were
determined using a BCA assay kit from Beyotime, China. Proteins

were isolated using 10% SDS-PAGE and then moved to PVDF
membranes, with transfer duration adjusted based on the target
molecular weight. Membranes were blocked with 5% BSA for 1 hour
at room temperature, followed by an overnight incubation with the
primary antibody at 4°C. The next day, the secondary antibody was
combined with the primary antibody for 1 hour at room
temperature, followed by development and photography. The
primary antibodies utilized in the experiments were anti-NR1H4
(1:2000, Proteintech, China); anti-TGR5 (1:500, Proteintech,
China); anti-GAPDH (1:1000, Servicebio, China); anti-cyclin D1
(1:5000, Proteintech, China); anti-CDK6 (1:5000, Proteintech,
China); anti-EREG (1:1000, CST, USA); anti-AREG (1:500,
Proteintech, China); anti-Tublin (1:1000, Proteintech, China);
anti-EGFR (1:1000, CST, USA); and anti-Phospho-EGFR (1:1000,
CST, USA).The secondary antibody was sheep anti-rabbit (or
mouse) Ig G (1:8000, UE, China).

2.8 qPCR

qPCR was performed to assess mRNA expression levels,
following established protocols detailed in prior studies (Pang
et al., 2024). In summary, RNA was initially isolated from cells
with Trizol reagent, and then cDNA was produced through reverse
transcription. In the end, qPCR (quantitative real-time PCR) was
conducted. The mRNA levels were evaluated using the 2−ΔΔCT

technique, with GAPDH serving as the control. The primer
sequences were as follows: FXR forward 5′-ACTTCCGTCTGG
GCATTCTGAC-3′ and reverse 5′-GCTGTAAGCAGAGCATAC
TCCTC-3′; AREG forward 5′-GCACCTGGAAGCAGTAACATG
C-3′ and reverse 5′-GGCAGCTATGGCTGCTGCTAATGCA-3′;
EREG forward 5′-CTTATCACAGTCGTCGGTTCCAC-3′ and
reverse 5′-GCCATTCAGACTTGCGGCAACT-3′.

FIGURE 3
HDCA activates Farnesoid X Receptor (FXR) but not the Takeda G protein-coupled receptor 5 (TGR5). (A), The expression of FXR and TGR5 was
detected after the appropriate concentration of HDCA acted on CRC cells for 48 h. (B, C), Western blotting and qPCR screening of siFXRs knocking down
the FXR. (D, E), CCK-8 assay to detect the proliferative capacity of the cells after knocking down of the FXR by HCT116 and DLD1, respectively. (F), Colony
formation assay after HCT116 and DLD1 knockdown of FXR. *p < 0.05, **p < 0.01.
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2.9 In vivo xenograft experiments

HCT116 cells were resuspended in 100 μL of medium (5 × 106

cells/100 µL) and administered subcutaneously into male BALB/c
nude mice aged 4–5 weeks. A week post-injection, the mice were
divided into three groups: control, HDCA-75 mg/kg, and HDCA-
150 mg/kg, with three mice in each group. Mice received gavage
injections on alternate days for 15 days. Tumor size was assessed
every 4 days and computed using the formula: volume (mm3) =
length × width2 × 0.52. Mice were necropsied, and the tumors were
weighed, paraffin-embedded, and subjected to tissue staining. All

animal studies were approved by the Animal Ethics Committee of
Nanchang University (RYE2024061101).

2.10 Statistical analysis

GraphPad Prism 9 was utilized for conducting all statistical
evaluations. ImageJ was used for characterization of the Edu assay and
colony formation assay. The data were presented as the mean plus or
minus the standard deviation and evaluated with a two-tailed Student’s
t-test. A p-value below 0.05 was considered statistically significant.

FIGURE 4
HDCA inhibition of CRC proliferation is dependent on FXR. (A), Detection and analysis of cell cycle after 200 μMHDCA and/or siFXR treatment; (B),
Edu assay to detect the effect of 200 μMHDCA and/or siFXR treatment on the proliferative capacity of CRC cells; (C), Colony formation assay of 200 μM
HDCA and/or siFXR-treated cultured HCT116 and DLD1 cells. (D), Western blotting analysis of FXR, Cyclin D1, and CDK6 in CRC cells after 200uM HDCA
and/or siFXR treatment. *Represents comparison with NC; *p < 0.05, **p < 0.01.
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3 Results

3.1 Effects of HDCA on HCT116 and
DLD1 cell viability

To explore how HDCA impacts CRC cells, we initially
conducted CCK-8 assays to assess the viability of HCT116 and
DLD1 cells. The 2 cell lines were treated with appropriate
concentrations of HDCA (0, 2.5, 5, 10, 25, 50, 100, 200, 400, and
800 μM) for 48 h in order to facilitate the selection of optimal
treatment conditions. The results showed that HDCA exhibited an
inhibitory effect on CRC cells when the concentration of HDCA
started from 50 μM (Figures 1A, B). In addition, our lactate
dehydrogenase assay revealed significant toxicity to CRC cells at
concentrations of 400 and 800 μM (Figure 1C). Therefore, we finally
chose 100 and 200 μM as the appropriate concentrations for
subsequent studies.

3.2 HDCA inhibits proliferation of CRC cells

To clarify the impact of HDCA on the growth of CRC cells, we
conducted flow cytometry analysis, revealing that HDCA induced
CRC cells to halt at the G0/G1 phase (Figure 2A). In addition, the
proliferative ability of CRC cells was also confirmed to be
significantly diminished in a concentration-dependent manner

after the addition of HDCA by Edu and flow cytometry assay
(Figures 2B, C). At the same time, the levels of cyclinD1 and
CDK6, proteins associated with the cell cycle, were observed to
decline as HDCA concentration rose (Figure 2D). In summary,
HDCA can inhibit the proliferation ability of CRC cells.

3.3 HDCA activates FXR but not TGR5 to
exert tumor suppressor effects

We examined the two most common receptors for bile acids,
FXR and TGR5, and found that HDCA mainly activated the
expression of FXR, while the activation of TGR5 was not obvious
(Figure 3A). In addition, we analyzed the oncogenicity of FXR in
CRC, firstly we screened for effective knockdown of siRNAs of FXR
byWestern blotting and qPCR, and the results indicated that siFXR-
3 significantly knocked down the expression of FXR (Figures 3B, C).
Later, we verified through CCK-8 and colony formation assays that
reducing FXR levels could accelerate CRC development
(Figures 3D–F).

To further elucidate the exact role of FXR in the inhibition of
CRC proliferation by HDCA, we gave HDCA stimulation treatment
while knocking down FXR. The flow cytometry analysis
demonstrated that HDCA activation counteracted the
proliferative influence of siFXR on CRC cells, causing a shift in
the cell cycle from the G0/G1 phase to the G2/M phase (Figure 4A).

FIGURE 5
HDCA inhibits the Epiregulin (EREG)/Epidermal Growth Factor Receptor (EGFR) pathway. (A), Western blotting analysis of FXR, AREG, EREG, EGFR,
and p-EGFR (phosphorylated EGFR) after 48 h of action of the indicated concentrations of HDCA on CRC cells; (B), Western blotting analysis of FXR,
AREG, and EREG in CRC cells after knockdown of FXR; (C), mRNA analysis of FXR, AREG, and EREG in CRC cells after knockdown of FXR. (D),
GEPIA2 analysis of the correlation between EREG and FXR; (E), Western blotting of FXR and EREG in eight pairs of CRC tissue samples. (F), Western
blotting analysis of FXR, EREG, EGFR and p-EGFR in CRC cells after 200 uM HDCA and/or siFXR treatment Blot analysis. *p < 0.05, **p < 0.01.

Frontiers in Cell and Developmental Biology frontiersin.org06

Pang et al. 10.3389/fcell.2024.1480998

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1480998


At the same time, findings from the Edu and colony formation tests
indicated that HDCA could counteract the impact of siFXR on the
growth potential of CRC cells (Figures 4B, C). In addition, we also
detected the expression of cycle-related proteins cyclinD1 and
CDK6, and the results were consistent with the above
(Figure 4D). Taken together, all these findings can indicate that
HKDCA activates FXR but not TGR5 to inhibit CRC cell
proliferation.

3.4 HDCA activates the FXR/EREG/
EGFR pathway

Earlier research indicated a strong link between EGFR and
tumor cell growth, prompting us to investigate EGFR and its
phosphorylated form in CRC cells treated with HDCA. Our
findings revealed that HDCA suppressed EGFR phosphorylation
(Figure 5A). In addition, we detected two common ligands of EGFR,
Amphiregulin (AREG) and EREG, and found that HDCA
significantly decreased the expression of EREG, while it did not
have a significant effect on AREG (Figure 5A). Consequently, we
proposed that HDCA suppresses the growth of CRC cells by
downregulating EREG and thereby preventing EGFR activation.

Considering that bile acids can activate the transcriptional activity of
FXR after the action of FXR, we hypothesized that FXR may inhibit
the transcription of EREG and then play the role of cancer
inhibition. Consequently, we examined the alterations in EREG
and AREG using qPCR and Western blotting following FXR
knockdown. The findings indicated a notable rise in both protein
and mRNA levels of EREG post-FXR knockdown, whereas AREG
levels remained largely unchanged (Figures 5B, C). Analysis by
GEPIA2 website also revealed that FXR showed a significant
negative correlation with EREG (Figure 5D). Furthermore, to
enhance our validation, we analyzed eight pairs of CRC tissue
samples and discovered that FXR levels were notably reduced in
tumor tissues compared to adjacent non-cancerous tissues, whereas
EREG levels were higher in the tumor tissues (Figure 5E). Therefore,
we hypothesized that FXR might be a transcriptional repressor of
EREG. In conclusion, to confirm that HDCA-induced activation of
the EGFR pathway relied on FXR, we conducted Western blot
analyses. The results indicated that FXR knockdown alone
enhanced EGFR phosphorylation, but when FXR knockdown was
combined with HDCA treatment, EGFR phosphorylation was
partially suppressed (Figure 5F). Therefore, we conclude that
HDCA can inhibit EGFR phosphorylation through the FXR
receptor and thus inhibit the expression of EREG.

FIGURE 6
HDCA inhibits CRC proliferation in vivo. (A), Tumor size of nude mice after administration of different concentrations (75 mg/kg and 150 mg/kg) of
HDCA. (B), weight analysis of the tumors. (C), volumetric analysis of the tumors. (D), HE staining and immunohistochemistry analysis of the tumor tissues.
*Represents comparison with NC; # represents comparison between 75 mg/kg and 150 mg/kg; *p < 0.05, **p < 0.01, #p < 0.05, ##p < 0.01.
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3.5 HDCA inhibits CRC proliferation in vivo

To further confirm the inhibitory effect of HDCA on CRC
proliferation, we verified it by in vivo animal experiments. First, we
inoculated CRC cells (HCT116) under the skin of nude mice, and
when the subcutaneous tumors of nude mice were fully formed on
the eighth day, HDCA was administered to the nude mice for
15 consecutive days. Research indicated a notable decrease in
both tumor size and mass in nude mice, correlating with the
dosage of HDCA administered (Figures 6A–C). In addition, in
order to detect whether HDCA has liver damage, we performed
HE staining on the livers of nude mice and found that there was no
obvious liver function damage (Figure 6D). At the same time,
immunohistochemistry was used to measure cyclinD1 levels in
tumor samples, revealing that cyclinD1 expression diminished as
HDCA concentration rose (Figure 6D). Thus, we determined that
HDCA can safely prevent the growth of CRC cells.

4 Discussion

This research demonstrated that HDCA could suppress the
growth of CRC cells and lack of liver toxicity through animal
testing. In addition, it was found that HDCA could inhibit the
EREG/EGFR signaling pathway by activating the expression of FXR,
and then inhibit the proliferation of CRC.

An expanding body of research has verified the involvement of
bile acids in cancer formation. However, the role of bile acids in
tumor progression varies, and some bile acids may have a role in
promoting tumor progression, while others have efficacy in
inhibiting tumor progression. In one study, Taurodeoxycholic
acid was found to promote malignant progression of gallbladder
cancer through activation of YAP1 (Yang et al., 2023). Zhu et al.
showed that deoxycholic acid could promote proliferation and
invasiveness of CRC cells (Zhu et al., 2012).On the other hand, a
study by zhang et al. demonstrated that ursodeoxycholic acid could
inhibit the malignant progression of CRC through the TGR5-YAP
axis (Zhang et al., 2021). However, some bile acids may play
completely opposite roles in different tumors, such as lithocholic
acid. In CRC, lithocholic acid promotes malignant progression and
metastasis as a tumor promoter (Nguyen et al., 2017). However, Li
et al. research indicated that lithocholic acid can suppress
gallbladder cancer growth by disrupting glutamine metabolism
(Li W. et al., 2022), and furthermore, it has demonstrated
therapeutic benefits in treating breast cancer (Luu et al., 2018). In
summary, the role of bile acids in tumor progression is complex and
tissue-specific. Synthesized in the liver, bile acids bind to plasma
proteins and enter the systemic circulation, distributing to various
organs. The concentration and composition of bile acids differ
across tissues, leading to diverse biological functions (Cai et al.,
2022; Jia et al., 2024), which may account for their tissue-specific
effects. Moreover, the concentration of bile acids is crucial in
maintaining physiological homeostasis; appropriate levels stabilize
bodily functions, while excessive or insufficient concentrations can
disrupt this balance. This variability underscores the importance of
investigating specific bile acids, such as HDCA, within
particular contexts.

HDCA, a secondary bile acid, is highly abundant in porcine bile.
Although HDCA is relatively less abundant in humans, several
studies have confirmed its role in a variety of diseases. HDCA is
effective in treating atherosclerosis and lowering cholesterol levels in
mice (Sehayek et al., 2001). HDCA improves glucose homeostasis in
diabetic mice via TGR5 and FXR receptors. Furthermore, multiple
research papers have shown that HDCA can help reduce non-
alcoholic fatty liver disease (Zhong et al., 2023; Kuang et al.,
2023). These studies basically lead to the assumption that HDCA
may be a beneficial bile acid, and thus our team hypothesized that
HDCAmay have a role in inhibiting tumor progression. Through ex
vivo experiments, we verified that HDCA can suppress the growth of
CRC cells and assessed its hepatotoxicity to ensure that HDCA
effectively and safely inhibits CRC cell proliferation.

To investigate how HDCA suppresses CRC growth, we
examined its impact on FXR and TGR5 receptors, ultimately
determining that HDCA curbs CRC proliferation via FXR
activation, not TGR5. FXR plays an important role in CRC, and
it appears logical that HDCA-induced activation of FXR would have
a tumor-inhibiting impact on CRC. In previous studies, bile acids
have been shown to contribute to the EGFR pathway (Bhat et al.,
2018; Raufman et al., 2008), and we evaluated the effect of HDCA on
the EGFR pathway, and HDCA inhibited phosphorylation of EGFR.
To further investigate the mechanisms by which HDCA affects the
EGFR pathway, we evaluated its impact on the EGFR ligands EREG
and AREG. Li et al. demonstrated that inhibiting EREG/EGFR
expression exerts antitumor effects (Li M. et al., 2022). Similarly,
Nakamura et al. found that downregulation of the EREG/EGFR/
mTOR complex one signaling pathway suppresses gallbladder
cancer progression (Nakamura et al., 2023). Additionally, Jiang
et al. reported that AREG promotes lung cancer proliferation
through the EGFR/PI3K/AKT/mTOR signaling pathway (Jiang
et al., 2024). These studies collectively suggest that AREG and
EREG, via EGFR, have crucial biological functions. Moreover, a
Japanese study identified low-affinity EGFR ligands as signaling
mediators in epithelial collective cell migration (Deguchi et al.,
2024), further underscoring the importance of AREG and EREG
as EGFR ligands. Further exploration of how HDCA inhibits EGFR
phosphorylation revealed that FXR plays an important role, and the
study confirmed that FXR may inhibit EREG expression through
transcriptional suppression of EGFR phosphorylation.
Unfortunately, however, we were not able to further explore the
specific regulatory mechanism between FXR and EREG in depth,
which deserves further investigation.

The present study still has some limitations. Firstly, this study
failed to fully elucidate the relationship between FXR and EREG;
secondly, the number of nude mice used in the in vivo experiments
of this study was relatively small, and no in vivo animal experiments
were performed in response. Finally, while our results indicate no
observable liver toxicity at the tested doses of HDCA, these findings
are preliminary. Comprehensive safety evaluations, including
chronic toxicity studies, are necessary to establish HDCA as a
therapeutic agent. Although there are some constraints, the
experimental evidence presented in this research still shows that
HDCA can prevent the growth of CRC.

To sum up, this research showed that HDCA can suppress the
EREG/EGFR signaling route by activating FXR, thereby hindering
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the growth of CRC. Therefore, HDCA could be an alternative as a
potential therapeutic intervention for CRC.
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