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Protein aggregation is a common pathological occurrence in neurodegenerative
diseases. This often leads to neuroinflammation, which exacerbates the
aggregation and progression of diseases like Parkinson’s and Alzheimer’s.
Here, we focus on immune responses and neurotoxicity in a Parkinson’s
disease model in Drosophila. Mutations in the SNCA gene that encodes the
alpha (α)-Synuclein protein have been linked to familial Parkinson’s disease,
disrupting autophagy regulation in neuronal cells and promoting the
formation of Lewy bodies, a hallmark of Parkinson’s pathology. This results in
the loss of dopaminergic neurons, manifesting as movement disorders. α-
Synuclein aggregation triggers innate immune responses by activating
microglial cells, leading to phagocytic activity and the expression of
neuroprotective antimicrobial peptides (AMPs). However, sustained AMP
expression or chronic inflammation resulting from inadequate microglial
phagocytosis can induce neuronal toxicity and apoptosis, leading to severe
dopaminergic neuron loss. This review underscores the mechanistic
connection between immune response pathways and α-Synuclein-mediated
neurodegeneration using Drosophila models. Furthermore, we extensively
explore factors influencing neuroinflammation and key immune signaling
pathways implicated in neurodegenerative diseases, particularly Parkinson’s
disease. Given the limited success of traditional treatments, recent research
has focused on therapies targeting inflammatory signaling pathways. Some of
these approaches have shown promising results in animal models and clinical
trials. We provide an overview of current therapeutic strategies showing potential
in treating neurodegenerative diseases, offering new avenues for future research
and treatment development.
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1 Background

Understanding the intricacies of neuronal cell death has long been a challenging pursuit
in the realm of neuroscience. Over decades of meticulous molecular dissection, researchers
have unraveled the mysteries surrounding this phenomenon. It is now widely recognized
that, in most instances, neuronal cell death is not merely a random occurrence but rather the
culmination of well-coordinated programs initiated by the neuron itself in response to
various internal or external signals throughout its lifespan. During the developmental stages
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of the human central nervous system (CNS), neurogenesis is often
accompanied by substantial neuronal cell loss (Okano and
Sawamoto, 2008; Paridaen and Huttner, 2014; Chi et al., 2018).
This process is integral to constructing a fully functional command
center. However, in mature CNSs, extensive neuronal loss is a rare
occurrence, with occasional or planned death events. Nonetheless,
observable differences in neuron numbers between young and old
individuals may emerge in certain brain regions during the aging
process (Grady, 2012; Fjell et al., 2010). While limited neuronal loss
characterizes normal aging, neurodegenerative diseases present a
stark departure from this pattern. These conditions are marked by a
significant increase in neuronal loss compared to age-matched
controls, a trend that correlates closely with longitudinal
examinations of disease progression. The clinical implications of
these observations are immense, fueling intense interest in
deciphering the triggers of pathological changes leading to cell
death and regional brain shrinkage. Such insights hold the
promise of guiding the development of treatments aimed at
halting or reversing disease progression. In general, mature CNS
neurons exhibit remarkable resistance to cell death compared to
their immature counterparts. These neurons, having endured an
individual’s lifetime, possess sophisticated mechanisms for
maintaining cellular homeostasis and resilience to various
stresses. Nonetheless, cell death becomes an inevitable outcome
when the cumulative burden of stressors overwhelms the neuron’s
capacity for resilience—a scenario commonly observed in
neurodegenerative diseases (Lau et al., 2023). Thus, unraveling
the mechanisms underlying neuronal resilience and vulnerability
holds the key to understanding and combating these devastating
conditions.

Ensuring the proper functioning of cells and organisms hinges
on the correct activity of a vast network of proteins. Central to this
functionality is the three-dimensional structure of proteins, dictated
by their amino acid sequences. Chaperone proteins play a pivotal
role in overseeing protein folding processes, minimizing errors, and
facilitating the removal of malfunctioning proteins. However,
mounting evidence suggests that protein misfolding and
aggregation underlie various neurological and systemic diseases,
known as protein conformational disorders (Soto and Pritzkow,
2018; Salahuddin et al., 2016). These disorders encompass common
neurodegenerative diseases and rare inherited disorders
characterized by the deposition of protein aggregates in the
brain. Neurodegenerative diseases are characterized by a
spectrum of conditions affecting cognitive functions, motor skills,
emotions, memory, and other abilities (Christidi et al., 2018). This
diverse group of diseases includes Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), as well as
related polyglutamine disorders such as various forms of
spinocerebellar ataxia (SCA), transmissible spongiform
encephalopathies (TSEs), Ataxia-telangiectasia (A-T), and
amyotrophic lateral sclerosis (ALS) (Marcos-Rabal et al., 2021).
Extensive evidence from neuropathological and genetic studies,
along with the generation of transgenic animal models, strongly
supports the notion that diverse neurodegenerative diseases stem
from the misfolding, aggregation, and accumulation of specific
proteins in the brain (Soto and Pritzkow, 2018) resulting in high-
order aggregate formation, imposing significant stress on neurons,
and triggering cytotoxic events. These events include increased

production of reactive oxygen species (ROS), excitotoxicity,
synaptic neurodegenerative diseases in degradation systems,
endoplasmic reticulum (ER) stress, DNA damage, mitochondrial
dysfunction, inflammation, and cell cycle re-entry (Karvandi et al.,
2023). Mishandling these challenges eventually culminates in
neuronal death and activates the immune responses through
microglial cells.

1.1 Chronic neuroinflammation and protein
aggregation: insights from different
model systems

The immune system is crucial for maintaining tissue
homeostasis, eliminating pathogens, and aiding in injury
recovery. Typically, immune responses are beneficial and self-
limiting, resolving once tissue repair is complete or an infection
is eradicated (Hill-Burns and Clark, 2009). However, if an
inflammatory stimulus is not effectively cleared, the usual
resolution mechanisms can become overwhelmed. Sustained
chronic inflammation leading to the release of neurotoxic factors
and worsening disease has been reported for many neurological
disorders (Frakes et al., 2014; Xiang et al., 2023).

Neuroinflammation serves as an initial defense mechanism to
safeguard the brain by eliminating or suppressing various pathogens
(Morales et al., 2014; Kempuraj et al., 2017). This inflammatory
reaction can offer beneficial outcomes by facilitating tissue repair
and clearing cellular debris. However, prolonged inflammatory
responses can be harmful as they hinder regeneration. The
persistence of inflammatory stimulation may arise from
endogenous factors such as genetic mutations and protein
aggregation, or external factors like infections, trauma, and
exposure to certain drugs. These sustained inflammatory
responses involve the activation of microglia and astrocytes and
can contribute to the development of neurodegenerative diseases
(Xu et al., 2016; Kwon and Koh, 2020).

Conformational disorders are characterized by the ability of
specific proteins to fold into stable alternative conformations,
leading to their aggregation and accumulation as fibrillar deposits
within tissues of different model organisms as reported for mice and
D. melanogaster (Drosophila melanogaster) (Iijima et al., 2008)
(Figure 1A). The innate immune system is triggered by various
factors such as microbial infiltration, injury, stress, aging, and brain
disorders (Leszek et al., 2016). Excessive activation of the innate
immune system and subsequent neuroinflammatory reactions
contribute to chronic age-related neurodegeneration.
Interestingly, the mechanism for immune pathway activation is
similar between D. melanogaster and humans (Leclerc and
Reichhart, 2004). Therefore, D. melanogaster can serve as a
valuable model organism to examine and understand the cellular
and molecular mechanisms underlying the connection between
infection and neurodegenerative diseases.

InD. melanogaster, prolonged and excessive neuroinflammatory
responses in the brain can lead to neurodegeneration, facilitated by
the neurotoxic effects of antimicrobial peptides (AMPs) (Dhankhar
et al., 2020; Nayak and Mishra, 2022). In mammals, prolonged
inflammation in microglial cells contributes to the progression of
neurodegenerative diseases. While D. melanogaster does not possess
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FIGURE 1
Neuronal cell death and enhanced production of antimicrobial peptides (AMPs) triggers neuroinflammation in D. melanogaster (A). Misfolding of α-
Synuclein and Aβ proteins causes neurotoxicity which further activates the immune responses via activation of microglial cells causing BBB (Blood Brain
Barrier) leakage and neuroinflammation. (B). The organs of the fly, which are crucial in activating molecules and signaling in the innate immune response,
have striking functional similarities with those of mammals. The fly’s CNS, gut, trachea, fat body, Malpighian tubules, and hemocytes mimic their
human counterparts and actively participate in triggering immune pathways, inducing the production of antimicrobial peptides (AMPs) and reactive
oxygen species (ROS), melanization, cytokine production, and phagocytosis. Generated by BioRender.
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specific microglial cells, they have different types of glia cells that can
perform similar functions to microglia. As a result, the link between
inflammatory processes in the brain and the pathogenesis of
neurodegeneration in D. melanogaster has been systematically
investigated and reported. Recent findings indicate a potential
common cause and pathological mechanism underlying these
diseases: the misfolding, aggregation, and accumulation of
proteins leading to neuronal apoptosis followed by the induction
of neuroinflammatory responses (Erekat, 2022; Nayak and Mishra,
2022) (Figures 1B, 2).

While these protein deposits share some morphological,
structural, and staining characteristics, different protein
aggregates may also exhibit distinct biochemical features,
particularly depending on whether they accumulate intra- or
extracellularly. The term “amyloid” was initially used to describe
extracellular protein deposits found in AD and systemic amyloid
disorders, but it has since been expanded to include certain
intracellular aggregates. The first indications of involvement of
protein misfolding and aggregation in neurodegenerative diseases
emerged from post-mortem neuropathological studies (Chiti and
Dobson, 2017). More than a century ago, Alois Alzheimer identified
the characteristic neuropathological features of the disease bearing
his name: neuritic amyloid plaques and neurofibrillary tangles
(Alzheimer, 1907; Graeber et al., 1998; Möller and Graeber,
1998). Amyloid plaques, primarily composed of the amyloid-β
protein (Aβ), accumulate extracellularly in the brain parenchyma

and around cerebral vessel walls. Neurofibrillary tangles, on the
other hand, consist of aggregates of hyperphosphorylated tau
protein within the cytoplasm of degenerating neurons.

1.2 Genetic factors and protein aggregation
in neurodegenerative diseases: the role of α-
synuclein and other pathogenic proteins

Building on the understanding of neuroinflammation and
protein aggregation, the genetic underpinnings of
neurodegenerative diseases provide further insight into their
pathogenesis. Notably, the observation that Parkinson’s disease
(PD) can be transmitted in some families as either an autosomal
dominant or an autosomal recessive trait indicates that mutations in
single genes can cause certain forms of PD in a monogenic manner
(Matsumine et al., 1997). The first gene associated with PD to be
discovered was alpha (α)-Synuclein. It encodes a 143-amino acid,
neuron-specific protein identified through expression screening
from the electric organ of the fish Torpedo californica
(Maroteaux et al., 1988). It was named “Synuclein” because the
protein was found in both synapses and the nuclear envelope. α-
Synuclein have been shown to be highly conserved across distantly
related species (Jakes et al., 1994). In PD, neurons within the
substantia nigra (SN) harbor cytoplasmic aggregates known as
Lewy bodies, primarily comprised of fragments of α-Synuclein

FIGURE 2
Misfolded proteins activate the innate immune response. Microglia, astrocytes and sustained chronic inflammation cause neurotoxicity and severe
neuronal death. Generated by BioRender.
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protein (Stefanis, 2012; Choong and Mochizuki, 2022). Meanwhile,
intranuclear deposits of a polyglutamine-rich version of huntingtin
protein are characteristic of HD. In ALS, aggregates containing
superoxide dismutase (SOD1) are found in the cell bodies and axons
of motor neurons (Sherman and Goldberg, 2001; Soto and Martin,
2009). Additionally, various forms of transmissible spongiform
encephalopathies (TSEs) are characterized by the accumulation of
protease-resistant aggregates of the prion protein (PrP) in the brains
of affected humans and animals, sometimes resembling the amyloid
plaques seen in AD.

Given these clinical observations, understanding the triggers of
pathological changes leading to cell death and regional brain
shrinkage is of paramount importance. This knowledge can
ideally facilitate the development of treatments to counteract
disease progression. Mature CNS neurons exhibit high resistance
to cell death compared to immature neurons, owing to their ability
to maintain cellular homeostasis and withstand various stresses.
However, in neurodegenerative diseases, multiple stresses
accumulate beyond the cell’s recovery capacity, leading to
neuronal demise. Traumatic incidents such as ischemic strokes or
prolonged seizures can also induce acute neuronal cell death by
abruptly disrupting energy production in affected neurons
(Chauhan, 2014; Kaur and Sharma, 2017).

Recent findings indicate that inflammation plays a causal role in
the pathogenesis of various diseases, particularly late-onset CNS
disorders. Understanding and managing the intricate crosstalk
between the immune system and the nervous system could hold
the key to preventing or delaying these conditions. Alzheimer’s
disease demonstrates that its pathogenesis extends beyond neuronal
processes and involves significant interactions with immunological
mechanisms in the brain.

When misfolded and aggregated proteins bind to pattern
recognition receptors on microglia and astroglia, they initiate an
innate immune response marked by the release of inflammatory
mediators. This response contributes significantly to the progression
and severity of the disease (Béraud and Maguire-Zeiss, 2012). Upon
receptor ligation, microglia begin to engulf Aβ fibrils through
phagocytosis, leading these fibrils into the end lysosomal
pathway. Unlike fibrillar Aβ, which is resistant to enzymatic
degradation, soluble Aβ can be broken down by various
extracellular proteases. Among these, neprilysin and insulin-
degrading enzyme (IDE) play crucial roles within microglia.
However, increased cytokine concentrations, resulting from the
downregulation of Aβ phagocytosis receptors, may lead to
inadequate microglial phagocytic capacity and subsequent
neuronal apoptosis.

In D. melanogaster, dysregulation of different processes
including autophagy, cell death, apicobasal polarity, sensory
neuronal cell fate specification and maintenance, dendritic
arborization establishment and maintenance, and optic lobe
neuroepithelial differentiation leads to progressive
neurodegeneration (Sahu and Mondal, 2020).

This review highlights the critical role of neuroinflammation in
the CNS, emphasizing its impact on neuronal function and survival.
The study focuses on microglia’s dual roles in neuroprotection and
neurotoxicity, particularly in the context of PD and AD, using
insights from D. melanogaster. By examining the regulatory
mechanisms of AMPs and the contribution of various glial cell

types, this review aims to advance understanding of
neuroinflammation’s role in neurodegenerative disease
progression, offering potential pathways for novel diagnostic and
therapeutic strategies.

2 Common cell death mechanisms
among neurodegenerative diseases

2.1 Autophagy and cell death

Autophagy is a finely regulated process essential for maintaining
cellular homeostasis and responding to various cellular stresses.
Many neurodegenerative diseases are marked by thebuild up of
misfolded proteins and the gradual loss of specific neuronal cell
populations. This key intracellular process, responsible for clearing
aggregated proteins and damaged organelles, is increasingly
acknowledged for its role in the development of pathological
changes observed in conditions like AD, PD, HD and ALS.
Dysregulated autophagy is believed to play pivotal roles in the
progression of most neurodegenerative disorders, prompting
exploration into autophagy regulation as a potential therapeutic
strategy (Wu et al., 2018; Rai and Roy, 2022; Rai et al., 2023).

Autophagy encompasses three distinct subtypes:
macroautophagy, microautophagy, and chaperone-mediated
autophagy (Galluzzi and Green, 2019).While these subtypes vary
in cargo recognition and the involvement of molecular chaperones,
they converge at the lysosome for cargo digestion and recycling. The
process of autophagy is often depicted as autophagic flux,
comprising autophagosome formation, fusion with lysosomes,
and cargo degradation within lysosomes. Initially, misfolded
proteins and damaged organelles are sequestered by a newly
formed membrane structure known as the phagophore. This
membrane originates from various cellular sources, including the
plasma membrane, Golgi, mitochondria, or ER. The phagophore
gradually engulfs cargoes through elongation until it closes to
forming an autophagosome. Subsequently, the autophagosome is
transported to the lysosome via cytoskeletal microtubule systems,
where it fuses to form an autolysosome. Within the autolysosome,
lysosomal enzymes digest the cargoes, which are then recycled for
reuse (Yamano et al., 2018).

Autophagy is orchestrated by numerous proteins, including
several autophagy-related proteins found in mammals. Initiation
of autophagy involves two major complexes: the ULK complex and
the class III phosphatidylinositol-3-kinase (PI3K) complex, which
are recruited to the phagophore assembly site (PAS). The ULK
complex comprises ULK1/2, FIP200, and ATG13, while the PI3K
complex, also known as the Beclin1 complex, consists of Vps34, p15,
Beclin1, and Barkor (Guo et al., 2018). Notably, Beclin1, localized on
the ER membrane, is regulated by anti-apoptotic dimers such as
BCL-2 and BCL-XL. Upon autophagy activation, Beclin1 dissociates
from the BCL-2 complex and works with Vps34, leading to the
concentration of phosphatidylinositol 3-phosphate [PI (3)P] on the
phagophore’s surface (R Kang et al., 2011). The extension and
closure of the autophagosome are mediated by two ubiquitin-like
complexes: the Atg5-Atg12-Atg16 complex and the LC3
(Atg8 ortholog) conjugation systems. Atg9, along with Atg2 and
Atg18, facilitates trafficking between the Trans-Golgi network,
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endosomes, and newly formed autophagosomes (Kang et al., 2011)
(Lystad et al., 2019). Following maturation, autophagosomes require
kinesin and motor proteins to move along microtubules. Upon
fusion with lysosomes, multiple membrane protein complexes, such
as soluble NSF attachment protein receptors (SNAREs), are
recruited. Once autolysosome formation is complete, the cargoes
carried by autophagosomes undergo degradation by proteolysis
(Lystad et al., 2019).

Macroautophagy, commonly referred to as autophagy, is a cellular
process crucial for the removal of long-lived proteins and dysfunctional
organelles that are too large for degradation by the proteasome.
Autophagy not only contributes to fundamental cellular processes
like development, differentiation, apoptosis, response to pathogen
invasion, and adaptation to starvation, but it also impacts diseases
ranging from cancer and immune disorders to neurodegenerative
conditions. Numerous studies have established a close association
between autophagy and neurodegenerative diseases. For instance,
observations reveal significantly increased autophagic vacuoles in
the brains of individuals with neurodegenerative diseases compared
to healthy controls, indicating impairedmaturation of autophagosomes
into autolysosomes (Rai and Roy, 2022). Autophagy plays a crucial role
in eliminating aggregated proteins implicated in various
neurodegenerative diseases, such as mutant α-synuclein in PD,
mutant huntingtin in HD, and mutant TAR DNA-binding protein
43 (TDP-43) in ALS (Furlong et al., 2000; Ojaimi et al., 2022).
Inhibition of autophagy hampers the clearance of these toxic
proteins, while their activation enhances their removal. Dysfunction
of lysosomes in neurons is closely linked to neurodegeneration and cell
death mechanisms. Accumulating genetic and biochemical evidence
points to disruptions in endosomal–lysosomal and autophagic
lysosomal pathways as contributors to the pathogenesis of many
neurodegenerative diseases, including AD, PD, and ALS. The
therapeutic potential of modulating autophagy/lysosomes in animal
models further emphasizes the importance of lysosomal dysfunction in
the pathogenesis of neurodegenerative diseases (Wolfe et al., 2013;
Bordi et al., 2016).

The vulnerability of the brain in lysosomal disorders suggests
that neurons may depend even more heavily on autophagy
compared to other cell types for maintaining protein balance.
Neurons face challenges due to their unique structures, such as
extensive dendritic and axonal cytoplasm, making it difficult to
efficiently remove damaged organelles and waste materials. With
aging, neurons gradually lose their ability to effectively clear these
waste products, leading to the accumulation of abnormal autophagic
substrates. Consequently, neurons are particularly susceptible to
damage caused by impaired autophagy and proteolysis.

Defects in the autophagy machinery in neuronal cells lead to cell
death and neurodegeneration, which subsequently induces an
inflammatory response causing neuroinflammation. This is a
common pathophysiological mechanism in AD, PD, and ALS
(Ramanan and Saykin, 2013).

2.2 The interrelation of neuroinflammation
and neurodegeneration

Neurodegenerative diseases are characterized by the gradual loss
of specific neuronal subsets, yet recent evidence suggests that

immune responses also play a crucial role in disease progression.
Host-pathogen interactions indicate a conserved innate immune
function across species. In vertebrates, the presence of adaptive
immune responses often overshadows the innate immune response,
making vertebrate models less ideal for studying innate immunity.
In contrast, D. melanogaster lacks adaptive immunity (Nayak and
Mishra, 2022) and with similarities in neural development
mechanisms and innate immune activation between flies and
humans, coupled with advanced genetic tools, D. melanogaster
emerges as an excellent model organism for studying immune
responses in neurodegenerative diseases (Buchon et al., 2014).

Given the substantial homology between the human and D.
melanogaster immune systems and recent findings highlighting the
interplay between the immune system and neurodegenerative
disease progression, this review aims to provide a comprehensive
understanding of how neuro-immune interactions contribute to
neurodegeneration, utilizing D. melanogaster as a model system.

The innate immune response of D. melanogaster to microbial
infections is multifaceted, involving both humoral and cell-mediated
reactions. The humoral response entails the production of AMPs
from the fat body, which functions similarly to the mammalian liver.
Within 24 h of microbial infection, the fat body releases AMPs into
the hemolymph, reaching concentrations of up to 300 μM(Bulet and
Stocklin, 2005; Lemaitre and Hoffmann, 2007). Additionally, D.
melanogaster’s cellular immune response comprises three major
types of surveillance cells, or hemocytes: plasmatocytes,
lamellocytes, and crystal cells. Plasmatocytes, akin to mammalian
macrophages, make up approximately 95% of circulating hemocytes
and serve as professional phagocytes, also participating in AMP
production (Lebestky et al., 2000). Like macrophages, plasmatocytes
differentiate into tissue-resident cells, further solidifying their
analogy with mammalian macrophages (Elrod-Erickson et al.,
2000). Crystal cells, constituting the remaining 5% of circulating
hemocytes, secrete components of the phenoloxidase cascade
essential for pathogen melanization and wound healing.
Lamellocytes, the largest and least abundant hemocytes in
healthy larvae, are involved in encapsulating large invading
pathogens such as wasp eggs (Lamberty et al., 2001; Meister and
Lagueux, 2003). Mammals lack equivalent counterparts for crystal
cells and lamellocytes.

Like in mammals, hematopoiesis in D. melanogaster also relies
on the Janus kinase/signal transducers and activators of
transcription (JAK/STAT) pathway and Notch signaling.
Constitutive activation of the JAK/STAT pathway in humans can
lead to leukemia, lymphoma, and developmental defects, mirroring
the leukemia-like phenotype induced by hyper-activation of its
homolog, Hopscotch, in D. melanogaster larvae (Luo et al., 2002).

The production of AMPs and cytokines in response to infection
is governed by two distinct nuclear factor-kappa B (NF-κB)
signaling pathways: Toll and immune deficiency (Imd)
(Hoffmann and Reichhart, 2002) (Figure 3). These pathways,
activated upon gram-positive bacterial and fungal infections (Toll
pathway) or gram-negative bacterial infections (Imd pathway),
respectively, regulate the differential expression of AMP-encoding
genes through distinct NF-κB-like transcription factors (Figure 3)
(Hoffmann and Reichhart, 2002; Martinelli and Reichhart, 2005).
The Toll pathway is activated by an extracellular serine protease
cascade, leading to the release of processed spätzle, analogous to
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FIGURE 3
Toll and IMD signaling pathway of D.melanogaster. (A) The Toll pathway in Drosophila melanogaster is a critical component of the innate immune
response, primarily activated by fungal and bacterial infections. It begins with the recognition of pathogens by pattern recognition receptors (PRRs), which
detect microbial patterns. This leads to proteolytic activation of the cytokine-like molecule Spätzle. Activated Spätzle binds to the Toll receptor, which
recruits adaptor proteins such as MyD88, Tube, and Pelle, initiating a phosphorylation cascade that results in the degradation of the Cactus (IkB
homolog) protein. This degradation releases the transcription factors Dl and DIF, allowing them to translocate into the nucleus. Once in the nucleus, Dl
and DIF induce the expression of AMPs like Drosomycin and other immune response genes, helping the organism to combat the infection. (B) The IMD
pathway is primarily activated by aggregated proteins or Gram-negative bacterial infections. This pathway is initiated by the binding of bacterial
peptidoglycans to the pattern recognition receptor PGRP-LC (step 1). Upon recognition, PGRP-LC activates the IMD protein, which recruits the adaptor
protein death domain-containing protein (dFADD) and the caspase “death related ced-3/Nedd 2- like” (Dredd) (step 2). This leads to the activation of the

(Continued )
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mammalian Interleukin-17 (IL-17), which binds to the Toll receptor
and initiates downstream signaling cascades culminating in the
nuclear translocation of the NF-κB-like transcription factors
Dorsal (Dl) and Dorsal-related immunity factor (Dif)
(Figure 3A). In contrast, the Imd pathway relies on the
peptidoglycan recognition receptor-LC (PGRC-LC) and results in
the phosphorylation and cleavage of the NF-κB-like transcription
factor Relish, leading to AMP gene expression (Figure 3B). While
adaptive immune responses were traditionally believed to be
restricted to mammals, the presence of a primitive form of
adaptive immunity in D. melanogaster alongside its innate
immune defenses has also been reported (Siffrin et al., 2007).

AMPs are crucial elements of the innate immune system across a
wide range of species, including humans, animals, and plants, acting
as the first line of defense against foreign invaders. The production of
cathelicidin and defensin peptides has been recognized as a crucial
component of human innate immunity. Some examples are provided
in Table 1 (Rathinakumar and Wimley, 2010; Starr et al., 2018).

2.3 Apoptosis of dopaminergic neurons
activates neuroinflammatory responses in
PD pathology

The innate immune system is primarily activated by microbial
infiltration, injury, stress, aging, and brain disorders. Hyperactivation
of this system and subsequent neuroinflammatory reactions
contribute to chronic age-related neurodegeneration. The
mechanisms for activating the immune pathway are conserved
between D. melanogaster and humans (Nayak and Mishra, 2022).

PD is characterized by distinctive movement disorder symptoms
such as tremors and postural instability, as well as specific pathological

features including the accumulation of α-Synuclein and the loss of
dopaminergic neurons in the substantia nigra (SN). α-Synuclein
aggregates form Lewy bodies, which are found in the brains of PD
patients (Erekat, 2018; Rai et al., 2023). Neuronal death in PD is
largely attributed to apoptosis, a process involving various caspases
that can be initiated through intrinsic or extrinsic pathways. The
intrinsic pathway is mediated by caspase-9 activation, whereas the
extrinsic pathway involves caspase-8 activation. Both pathways
converge on executioner caspases like caspase-3 and caspase-7,
leading to apoptosis characterized by DNA cleavage and
fragmentation. Mitochondrial dysfunction is an early event in PD,
observed both in humans and animal models (Lin and Beal, 2006).
The SN in PD patients exhibit defects in mitochondrial complex I
activity. Dopamine metabolism generates reactive oxygen species
(ROS), which can trigger apoptotic cell death. Monoamine oxidase
(MAO) metabolizes dopamine to produce H2O2, leading to the
generation of ROS. Dopamine degradation products further
contribute to increased ROS production (Rai and Roy, 2022).
Dopaminergic neurons, susceptible to mitochondrial complex I
dysfunction, are particularly affected, potentially leading to apoptosis.

Inherited forms of PD involve mutations in genes related to
mitochondrial health, such as the E3-ubiquitin ligase Parkin,
Leucine-rich repeat kinase 2 (LRRK2), PTEN-induced Kinase
1 (PINK1), and the protein deglycase DJ-1 (PARK7). These
mutations underscore the vulnerability of nigral neurons to
mitochondrial damage and dysfunction. Parkin deficiency, for
instance, leads to mitochondrial dysfunction and contributes to
PD pathology. Parkin plays multiple roles including promoting
mitochondrial biogenesis and degrading toxic protein aggregates.
PINK1 mutations also link to mitochondrial dysfunction, where
Parkin can compensate for PINK1 mutations. DJ1 mutations
increase oxidative stress and disrupt mitochondrial function,
contributing to early onset PD. LRRK2 mutations induce
defective mitochondrial dynamics and increase ROS production,
potentially leading to dopaminergic neuronal death via apoptosis.
Neuroinflammation also plays a significant role in PD pathogenesis,
alongside mitochondrial dysfunction and impaired proteostasis.
Chronic inflammation, triggered by risk factors such as α-
Synuclein misfolding, immune-related gene polymorphisms, and
mitochondrial dysfunction, initiates neurodegeneration. This
neurodegeneration, in turn, induces immune responses, with
microglia, astrocytes, and peripheral circulating myeloid cells
actively participating in the neuroinflammatory process. This
ongoing neuroinflammation further exacerbates PD pathology.

2.3.1 PD and neuroinflammatory responses in
Drosophila melanogaster

Stress stemming from intracellular misfolded proteins is associated
with heightened immune responses, indicating the significant
involvement of both innate and adaptive immune systems in

FIGURE 3 (Continued)

Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) complex, which subsequently activates the inhibitor of nuclear factor kappaB-
kinase (IKK) complex (step 4, 5, and 6). The IKK complex phosphorylates the NF-κB-like transcription factor Relish, causing its cleavage (step 7). The
cleaved Relish translocates to the nucleus, where it activates the transcription of AMPs for e.g., Attacin, Cecropin, Drosocin etc., and other immune
response genes (step 8). Both pathways are essential for the Drosophila melanogaster immune defense, each tailored to respond to different types
of pathogens. For more details see Kleino and Silverman, 2014. Figure drawn with Biorender.

TABLE 1 Antimicrobial peptides (AMPs) produced under disease conditions
in various organisms.

AMPs Organism/s

α-defensin 1 Homo sapiens

α-defensin 6 Homo sapiens

β-defensin 1 Homo sapiens

Antifungal heliomicin Heliothis virescens

Defensin-like peptide-2 Ornithorhynchus anatinus

Fowlicidin-1 Chicken

LL-37 (hCLD) Homo sapiens

Protegrin PG-5 Sus scrofa

Defb1 (Homolog to human β-defensin) Mouse
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neurodegeneration (Olejniczak et al., 2015). Unlike mammals, D.
melanogaster depends solely on innate immunity, which comprises
cellular and humoral components, to combat infections. In D.
melanogaster, the Toll and IMD pathways orchestrate humoral
immunity, prompting the production of AMPs to fend off bacterial
and fungal infections. However, prolonged activation of individual
AMPs has been linked to neurotoxic effects and the upregulation of
caspases, eventually leading to significant neuronal apoptosis (Petersen
et al., 2013) (Dulovic et al., 2014).

Neuroinflammation has been shown to contribute to neuronal
death in diseases such as PD and AD (Giridharan et al., 2019;
Kempuraj et al., 2019; Wu et al., 2019). For example, in AD, the
accumulation of β-amyloid aggregates leads to persistent immune
system activation and hinders microglial clearance.

In ataxia-telangiectasia model in D. melanogaster, Peterson et al.
demonstrated that mutations in the protein kinase ataxia
telangiectasia mutated (ATM) gene trigger nuclear translocation
and activation of Relish, a key transcription factor activated by the
IMD signaling pathway (Petersen et al., 2013). This nuclear
translocation triggers the transcription and synthesis of AMPs
such as Diptericin B (DptB) which plays a neuroprotective role
at the initial level. Earlier studies also reported that during
neurodegeneration, autoinflammation occurs, a condition known
as “inflammaging.” Inflammation protects the host from microbial
infection and stress-injury by activating microglia and astrocytes in
the CNS. However, chronic inflammation arises due to the
prolonged activation of microglial and macrophages constantly
producing AMPs, ROS and cytokines which further promote
damage to neurons (mainly motor neurons, and dopaminergic)
which culminate in development of PD.

In mammalian models, NF-κB is crucial for the inflammatory
response by regulating genes that encode pro-inflammatory
mediators. Elevated NF-κB activation has been observed in the
brains of PD patients, highlighting the connection between
immune activation and neurodegenerative diseases. Similarly, in D.
melanogaster increased NF-κB activation has been associated with
age-related neurodegeneration. Thus, precise regulation of the IMD
pathway is essential to prevent uncontrolled chronic inflammation
(Maitra et al., 2019).

Multiple genes associated with PD have been identified,
significantly advancing our understanding of its etiology and
treatment (Larsen et al., 2018). The death of dopaminergic
neurons in PD is accompanied by astrocytic dysfunction, hyper-
activation of microglia, and the activation of various inflammatory
networks in the SN. α-Synuclein, the main component of Lewy
bodies, forms abnormal aggregates not only in neurons but also in
microglia. There is ongoing debate about whether α-Synuclein can
trigger microglial responses and pathological reactions. Studies have
shown that α-Synuclein disrupts neuronal function and activates
microglia, leading to increased phagocytic activity and the
production of pro-inflammatory cytokines (Lim et al., 2018).

Although α-Synuclein is typically a cytosolic protein, a small
amount can be released from neurons via the exocytosis process.
Misfolding and aggregation facilitate its release from neuronal cells.
Once released, α-Synuclein can be transferred to neighboring neurons
and astroglia, where it promotes the formation of inclusion bodies,
induces cell death in neurons, and triggers proinflammatory responses
from microglia and astroglia (Kim et al., 2013). Additionally, cell-

released α-Synuclein acts as an endogenous agonist for Toll-like
receptor 2 (TLR2), which activates microglia and leads to
neurotoxicity (Figure 4). By eliminating the interaction between
neuron-released α-Synuclein and TLR2, inflammatory responses in
the brain are dampened, presenting a potential therapeutic approach
(Kim et al., 2013). Overexpression of α-Synuclein in vivo also increases
microglial activation (Drouin-Ouellet et al., 2015). However, α-
Synuclein internalization proceeds even in the absence of TLR2,
indicating that its uptake involves multiple receptor systems
(Drouin-Ouellet et al., 2015). The transcription factor NF-κB
regulates neuroinflammation in glial cells, contributing to the
pathology of several neurodegenerative diseases, including PD
(Shabab et al., 2017). NF-κB activation increases the production of
pro-inflammatory cytokines, chemokines, inducible nitric oxide
synthase (iNOS), and cyclooxygenase-2 (COX-2), leading to
neuroinflammation (Ghosh and Hayden, 2008). Interestingly, NF-
κB activation in neurons promotes survival and plasticity (Mettang
et al., 2018), whereas in glial cells, it accelerates inflammatory
processes in neurodegenerative diseases (Frakes et al., 2014;
Bernaus et al., 2020).

In the α-Synuclein mutant PD model in D. melanogaster, a high
level of Relish expression is observed in the larval CNS which
indicates the activation of innate immune inflammatory
responses, and the loss of dopaminergic neurons are also marked
in the larval as well as adult brain, as evident of neuroinflammation
effects. Physiological changes have also been observed like
significant reduction in the climbing ability and eye-roughness
(Rai et al., unpublished data).

In addition to this, mitochondrial dysfunction also plays an
important role in neuroinflammation. The genes PARK2 and
PINK1, which cause autosomal recessive forms of PD, maintain
mitochondrial homeostasis through mitochondrial homeostasis
(Rai and Roy, 2022). Mitochondrial dysfunction is closely linked to
PD, warranting further study of mitophagy dysfunction in PD
pathogenesis (Rai et al., 2023; 2024). The NLRP3 inflammasome
(NOD-, LRR- and pyrin domain-containing protein 3) is an
indispensable component of the innate immune system that
facilitates caspase-1 activation and the secretion of
proinflammatory cytokines IL-1β/IL-18 in response to microbial
infection and cellular damage. Depleting mtDNA and mtROS in
p62ΔMye macrophages reduces excessive IL-1β production in
response to NLRP3 agonist stimulation, highlighting the
dependency on mitochondrial damage (Shi et al., 2015). In in vitro
assays, mitochondrial lysates induce inflammation in primary
microglia and increase the mRNA levels of cytokines like tumor
necrosis factor (TNFα) and IL-8 (Wilkins et al., 2015). ROS from
damaged mitochondria activate the NLRP3 inflammasome pathway
and other redox-sensitive proteins (Heid et al., 2013).

Mitochondrial dysfunction releases various pro-inflammatory
molecules, including mitochondrial DNA, ATP, cardiolipin,
mitochondrial transcription factor A, cytochrome c, formyl peptides,
and RNA (Sliter et al., 2018). Damage-associated molecular patterns
(DAMPs) from mitochondria trigger immune responses and
mitophagy (West, 2017). Inflammation-induced mitochondrial
dysfunction and dopaminergic neurodegeneration can be mitigated
by anti-inflammatory drugs (Hunter et al., 2007; Yang et al., 2020).
Clinically, modulating the immune system is a promising strategy for
treating PD, given the significant role of neuroinflammation in its
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progression (Kustrimovic et al., 2018).While previous studies suggested
that neurodegenerative disease inflammation originates in the brain’s
microglia, other views propose that it may also originate from
peripheral circulation (Braak et al., 2003).

2.4 Clinical application

Many fundamental biological, physiological, and neurological
properties are conserved between mammals and D. melanogaster,
with nearly 75% of human disease-causing genes believed to have a
functional homolog in the fly. Several models of human
neurodegenerative diseases e.g., AD and PD have been developed
using D. melanogaster and other models, demonstrating their
potential for drug discovery (Table 2) (Jackson et al., 2002;
Springer et al., 2005; Luheshi et al., 2007; Sang et al., 2007; Cao
et al., 2010; Feuillette et al., 2010). These models share common
phenotypic traits in flies, such as retinal degeneration, locomotor
defects, wing abnormalities, climbing impairments, and reduced
lifespan (Table 2). Thus, drug discovery assays aimed at identifying
therapeutics for these neurodegenerative diseases can utilize
protocols focused on these shared phenotypes. For instance,
potential drugs could be evaluated based on their ability to
rescue the rough eye phenotype, improve locomotor and
climbing deficits, or restore normal activity levels.

Therapeutic approaches targeting the peripheral immune
system have also shown promise in preclinical trials (Choi et al.,
2019). Adoptive transfer of T cells immunized with glipidine acetate
to PD mice suppressed microglial activation and provided
neuroprotective effects. The gut-brain α-Synuclein transmission
model, proposed by Heiko Braak and colleagues based on post-
mortem studies, has gained support from recent evidence (Braak
et al., 2003). They proposed that misfolding of α-synuclein, triggered
by an external factor in the enteric nervous system (ENS), neuropod
cells, and the olfactory bulb, leads to the accumulation of Lewy
bodies if clearance mechanisms are impaired. Subsequently, α-
Synuclein aggregations migrate to the brainstem via the vagus
nerve or through olfactory structures. Finally, the aggregations
reach the especially susceptible dopaminergic neurons of the SN,
resulting in disease symptoms. However, the modulation of immune
activity is crucial for gut-brain communication, with chronic pro-
inflammatory immune activity being a key element in
neurodegenerative diseases. Intestinal inflammation is relevant to
PD pathogenesis, necessitating further study of the inflammation
mechanisms involved in gut-brain α-Synuclein transmission.

In conclusion, neuroinflammation, driven by the activation of
microglia, astrogliosis, and other key pathways, plays a significant
role in neurodegeneration. Pharmacological modulation of
neuroinflammation may offer a therapeutic strategy for treating
neurodegenerative diseases.

FIGURE 4
Mechanisms of α-Synuclein induced neurotoxicity in Parkinson’s Disease Genetic and environmental factors contribute to the aggregation of α-
Synuclein, leading to its accumulation in neurons. Excessive α-Synuclein is transported into mitochondria, causing mitochondrial dysfunction, a key
factor in PD progression. Mutations in mitochondrial-associated proteins such as LRRK2, PINK1, PARK7, and PRKN, found in familial PD cases, also induce
mitochondrial dysfunction and neurotoxicity. When α-Synuclein aggregation exceeds cellular clearance capacity, it is released either directly from
neurons or through exosomes, activating microglia and spreading α-Synuclein to neighboring healthy dopaminergic (DA) neurons, thus amplifying
neurotoxicity. Damage-associated molecular patterns (DAMPs) released from dying neurons further enhance microglial activation. Additionally, genetic
and environmental factors promote the activation of microglia and other immune cells. Activated microglia exacerbate the disease by increasing α-
Synuclein pathogenicity, oxidative stress, and mitochondrial dysfunction. Generated by BioRender.
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3 Conclusion

Neuroinflammation is a key aspect of the chronic innate
immune response in the CNS, contributing to neuronal
dysfunction and death. The infiltration of foreign invaders or
neuronal injury activates pro-inflammatory molecules secreted by
the host immune system, leading to the accumulation of microglial
cells and deregulation of brain tissue homeostasis, which can
escalate into neurotoxicity or neurodegeneration. Prolonged
expression of pro-inflammatory cytokines or AMPs derived from
glial cells in the CNS of D. melanogaster results in elevated
deposition of endogenous non-infectious ligands, such as α-
Synuclein, contributing to the pathogenesis of PD. While AMPs
have both protective and pathological roles in the brain in D.
melanogaster, the regulatory mechanisms behind this functional
switch remain unclear. Activated microglia have been observed in
areas of neuronal damage and degeneration in post-mortem brains
of patients with PD and AD. Research has shown that inflammatory
responses are functionally linked to disease progression, with
microglia exerting neuroprotective effects and inducing
neurogenesis mainly through the release of cytotoxic soluble factors.

Microglial cells, as key players in the brain’s innate immune
response, assume crucial and complex roles in various
neurodegenerative disorders. They can change their
morphological and phenotypic activation states in response to
their microenvironment and potent activators, such as cytokines
and chemokines, which induce both pro- and anti-inflammatory
states. While the function of microglial cells has been extensively
studied, the roles of other glial cells, including astrocytes, remain less
clear. The involvement of dysregulated inflammation complicates
the deployment of therapeutic interventions that could slow or halt

disease progression. Understanding these mechanisms using D.
melanogaster will aid in the development of novel diagnostic
tools and therapeutics for neurodegenerative diseases.
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TABLE 2 Disease-causing factors in AD and PD, and their role for neurodegeneration in various models.

Disease/Gene Model Phenotypes

Alzheimer’s disease

β-Amyloid protein C. elegans Progressive paralysis, cytoplasmic protein accumulation, fibrillar amyloid formation

D. melanogaster Eye degeneration, amyloid plaque accumulation, reduced lifespan, locomotor defects, brain vacuolation

Mouse Eye degeneration, amyloid plaque accumulation, reduced lifespan, locomotor defects

Tau proteins

C. elegans Age-dependent neurodegeneration, insoluble tau accumulation, reduced lifespan, progressive impairment in touch response,
embryonic lethality, mechanosensory defects

D. melanogaster/
Mouse

Eye degeneration, disruption of microtubular networks at presynaptic nerve terminals, axonal degeneration, morphological
defects at neuromuscular junctions

Parkinson’s Disease

α-Synuclein C. elegans Mitochondrial stress, dopaminergic neuron degeneration, developmental defects, increased dopamine synthesis,
redistribution of dopaminergic synaptic vesicles

D. melanogaster/
Mouse

Age-dependent dopaminergic neuron loss, progressive climbing defects

Parkin and Pink1

C. elegans Hypersensitivity to proteotoxic stress, Parkin insolubility and aggregation

D. melanogaster/
Mouse

Dopaminergic neuron loss, age-dependent motor deficits, reduced lifespan, locomotor defects, male sterility, mitochondrial
pathology
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Glossary

AD Alzheimer’s Disease

ALS Amyotrophic Lateral Sclerosis

AMPs Antimicrobial Peptides

ARM Armadillo repeats

A-T Ataxia-telangiectasia

ATM Ataxia Telangiectasia Mutated

BBB Blood Brain Barrier

CNS Central Nervous System

COX 2 Cyclooxygenase-2

DAMPs Damage-Associated Molecular Patterns

dFADD Drosophila Fas-associated protein with death domain

Dif Dorsal-immunity related factor

D melanogaster (Drosophila melanogaster)

DNs Dopaminergic Neurons

DptB Diptericin B

ER Endoplasmic Reticulum

Dredd death related ced-3/Nedd 2- like

HD Huntington’s Disease

IKK inhibitor of nuclear factor-kappaB kinase

Imd Immune Deficiency

iNOS Nitric Oxide Synthase

IDE Insulin-degrading enzyme

IL-17 Interleukin-17

JAK/STAT Janus kinase/signal transducers and activators of
transcription

LRRK2 Leucine Rich Repeat Kinase 2

MAO Monoamine Oxidase

NF-κB Nuclear Factor-Kappa B

NLRP3 inflammasome NOD-, LRR- and Pyrin Domain-containing Protein 3

PAS Phagophore Assembly Site

PI3K Phosphatidylinositol-3-kinase

PD Parkinson’s Disease

PGRC-LC Peptidoglycan Recognition Receptor-LC

PI 3P Phosphatidylinositol 3-Phosphate

PrP Prion protein

PINK1 PTEN-induced Kinase

ROS Reactive Oxygen Species

SCA Spinocerebellar Ataxia

SN Substantia Nigra

SNAREs Soluble NSF Attachment Protein Receptors

SOD1 Superoxide Dismutase 1

TAK1 Transforming growth factor-β (TGF-β)-activated kinase 1

TDP 43 TAR DNA-binding protein 43

TLR Toll-like receptor

TNFα Tumor Necrosis Factor

TSEs Transmissible Spongiform Encephalopathies
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