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Radial glia (RG) are the main progenitor cell type in the developing cortex. These
cells are highly polarized, with a long basal process spanning the entire thickness
of the cortex and acting as a support for neuronal migration. The RG cell
terminates by an endfoot that contacts the pial (basal) surface. A shorter
apical process also terminates with an endfoot that faces the ventricle, with a
primary cilium protruding in the cerebrospinal fluid. These cell domains have
particular subcellular compositions that are critical for the correct functioning of
RG. When altered, this can affect proper development of the cortex, ultimately
leading to cortical malformations, associated with different pathological
outcomes. In this review, we focus on the current knowledge concerning the
cell biology of these bipolar stem cells and discuss the role of their polarity in
health and disease.
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1 Introduction

The cerebral cortex is in the outermost region of the brain and it is responsible in human
for high cognitive functions such as problem solving, flexibility, speaking, perception and
taking decisions. Corticogenesis is a term that refers to the processes of proliferation,
migration, differentiation and synaptogenesis by which the cerebral cortex is formed in
mammals, during the development of the central nervous system (CNS). Once formed, it is
composed of six distinct neuronal layers. The first step in neurodevelopment is neural tube
closure, which takes place at embryonic day 9 (E9) in mice, or gestational week 6 in humans
(GW6). The neural tube is a pseudostratified epithelium composed of neuroepithelial cells
(NECs) that are highly polarized along the apico-basal axis. This pool of progenitor cells will
be amplified by several rounds of symmetric divisions (Dwyer et al., 2016; Götz and
Huttner, 2005).

With the onset of neurogenesis at E11 (GW8), NECs give rise to more fate-restricted
progenitors termed radial glia (RG, Figure 1), a distinct but related cell type, exhibiting
both neuroepithelial and astroglial properties (Götz and Huttner, 2005). These apical cells
can self-amplify through symmetric division to expand the pool of existing progenitors,
or give rise to intermediate progenitors (IPs) or neurons through asymmetric division
(Götz and Huttner, 2005). IPs are not attached to the VZ, they are more basal and form
the subventricular zone (SVZ). RG can also produce basal RG (bRG). These latter cells are
less numerous in mouse compared to primates and are known for their neurogenic
potential (Penisson et al., 2019). The earliest born neurons appear at E11 and form the
preplate (PP). With the formation of the cortical plate (CP) around E13 (GW9), the PP is
divided into the subplate (SP) and the marginal zone (MZ). After this splitting, later born
neurons migrate past earlier born neurons, thus constituting the upper layers (L2-L4) and
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the deep layers (L5 and L6) of the CP, respectively. This temporal
sequence of neuronal birth and migration is termed “inside-out”
development of the cortex. Neurons migrate radially along RG
basal processes to reach their final position in the postnatal and
then adult neocortex (Dwyer et al., 2016; Molyneaux et al.,
2007) (Figure 1A).

RG are the main progenitor cell type during the development
of the cerebral cortex and they are highly polarized cells
(Figure 1B). Their cell bodies are restricted to the ventricular
zone (VZ), the most apical cell layer that faces the ventricle
during development. They undergo interkinetic nuclear
migration (INM) during their cell cycle, meaning that their
nuclei migrate up and down along the apico-basal axis of the
VZ. They are in S-phase when their nuclei are on the basal side of
the VZ and in mitosis when they are at the apico-basal bordering
the ventricle (ventricular surface). RG in interphase have a short
apical process, aiding their attachment at the ventricular surface.
The apical process terminates with an endfoot which exhibits a
primary cilia (PC), protruding into the cerebrospinal fluid (CSF)
and acting as a signalling hub. A longer basal process spans the
entire thickness of the cortex and acts a support for neuronal
migration (Nadarajah and Parnavelas, 2002). It also terminates
with an endfoot, contacting the pial surface (Figure 1B).

Establishment and maintenance of RG cell structure and
polarity is crucial for their correct functioning, organized
neuronal migration, and ultimately for proper cortex
development. In this review, we resume the current knowledge
on the morphology and cell biology of these bipolar stem cells
and discuss the importance of polarity in health and disease. We
mention via the study of mutant models, various changes in polarity
impacting corticogenesis (Figure 2).

2 Asymmetric distribution of organelles

Highly polarized RG show particular intracellular characteristics
(Figure 3), of which we cite here a number of examples.

2.1 Apical cell-cell adhesion

A key player in apico-basal polarity establishment and
maintenance in RG are adherens junctions (AJ). These structures,
composed of cadherins and catenins, ensure the cell-cell contacts
between the apical membranes of RG and maintain the tissue
compact at the ventricular surface (Veeraval et al., 2020)
(Figure 3A). AJ recruit polarity proteins, such as Crumbs, Par
and Scribble complexes (Jossin, 2020; Singh and Solecki, 2015).
These complexes have crucial roles in signalling pathways that help
maintain AJ and polarity. Numerous studies show that when these
contacts are lost, RG can detach from the ventricular surface with an
impact on their polarity, proliferation, and ultimately corticogenesis.

Disrupting apical adhesion components can give rise to
periventricular heterotopia (PVH), a phenotype associated with
breaks in the ventricular boundary (Klingler et al., 2021; Romero
et al., 2018). FAT4 and DCHS1 are protocadherin proteins,
respectively receptor and ligand, that are apically located but
distinct from AJ and act upstream of the Hippo signalling
pathway. Absence of either protein of the pair, through
knockdown experiments in mouse, was shown to lead to an
accumulation of RG in the SVZ, due to cell detachment,
associated with a PVH-like phenotype (Cappello et al., 2013)
(Figure 2B, right). Importantly, mutations in FAT4 and DCHS1
have been identified in individuals (from four and three families

FIGURE 1
(A) Schematic of a section of the mouse developing cortex. Cortical zones are indicated on the left and separated by dashed lines. The different cell
types are depicted on the right. (B) Illustration of a radial glia cell (RG), highlighting its different cell compartments and features. A migrating neuron
(orange) is shown. Abbreviations: VZ, ventricular zone; SVZ, subventricular zone; IZ, intermediate zone; CP, cortical plate; MZ, marginal zone.
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FIGURE 2
Different scenarios of changed polarity affecting RG and leading to cortical malformations. (A) RG and bRG (both light blue-green) are present
during normal cortical development and neurons (light purple) are correctly positioned in the cortical plate following migration along the basal process.
RG apical detachment giving rise to bRG from RG is regulated by factors such as Plekha7 (Tavano et al., 2018). (B) Perturbed RG (dark blue) with loss of
apical processes can lead to cortical malformations in themouse such as subcortical heterotopia (SH, left) e.g., due tomutations in Eml1, RhoA (Zaidi
et al., 2024; Cappello et al., 2012). Breakages in the ventricular boundary can also lead to apical cell detachment and periventricular heterotopia (PVH,
right) (e.g., mutations in Fat4, Dchs1, Cappello et al., 2013). Ectopic neurons are depicted in dark purple. (C) Loss of basal process attachment, often

(Continued )
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respectively) with Van Maldergem syndrome, an autosomal
recessive condition characterized by intellectual disability,
craniofacial malformations and PVH (Cappello et al., 2013).

In mouse mutants for αE-catenin, the AJ are heavily disrupted,
the ventricular surface is disorganized and RG lose their polarity,
with disorganized and almost absent processes (Lien et al., 2006;
Schmid et al., 2014). Some internalized rosette structures, where cells
maintain contact with each other, were observed (Lien et al., 2006).
Dlgap4 is a synaptic scaffolding protein also expressed in RG, and
knockdown experiments in themouse lead to a disrupted ventricular
boundary, with reduced expression of actin, catenin and cadherin.
RG fibers are also disorganised (Romero et al., 2022). Moreover, the
authors identified DLGAP4 mutations in patients presenting
heterotopias and cortical malformations (Romero et al., 2022)
(Figure 2D). For additional human genetic information please see
Ferent et al., 2020.

Llgl1 is the mammalian ortholog of a Drosophila cell polarity
gene. This protein makes a link between polarity complexes and AJ
(Jossin, 2020; Jossin et al., 2017). Mutations in this gene lead to a
phenotype similar to αE-catenin mutants, with RG internalized
above the ventricular surface, forming rosettes where the polarity

complexes are still detectable and from which RG processes extend
outside (Jossin et al., 2017) (Figure 2D).

Another renowned study shows that the AJ specific protein
Plekha7 plays a critical role in keeping RG attached at the ventricular
surface, as shown by inactivation experiments that lead to RG
delamination (Tavano et al., 2018). This is most likely due to
Plekha7 interaction with proteins (e.g., of the nectin system and
CAMSAPs) that make a link with the cytoskeleton, as suggested by
the authors in the discussion. Physiologically, a timely regulated
repression of Plekha7 by the transcription factor Insm1 is crucial for
delamination of RG to give rise to more basally localized progenitors
(Tavano et al., 2018) (Figure 2A, right).

Thus, these examples emphasize how the regulation of AJ
complexes and apical adhesion is associated with forming and
maintaining RG morphology and polarity.

2.2 Centrosomes and primary cilia

Other apical structures such as the centrosome and PC assist in
establishing polarity [e.g., see Francis and Cappello (2021) for

FIGURE 2 (Continued)

caused by defective signalling, can be accompanied by breaches of the basal lamina. This leads to a cobblestone-like lissencephaly as seen for
mutation in laminin and integrin genes, among others (Haubst et al., 2006; Radakovits et al., 2009). (D) RG can lose polarity both apically and basally,
leading to internalised RG as seen for example, for αE-catenin and Llgl1 mouse models, causing respectively SH (left) and PVH (right)-like phenotypes
(Lien et al., 2006; Schmid et al., 2014). (E)More rarely, inversion of polarity in RG can be observed as in Arl13b mouse mutants (Higginbotham et al.,
2013). In this situation, the cell soma is located next to the basal lamina. Conversely, neurons are found at the ventricular surface.

FIGURE 3
Features and composition of RG compartments. (A) Apical process and endfoot. RG are in contact with each other through AJ. A PC (dark green)
protrudes in the ventricle, centrioles (light green) act as an MT organizing centre. The PC receives signals from the CSF. Mitochondria, Golgi and ER are
also present in the apical side of RG. (B) Interkinetic nuclear migration. RG nuclei are found most basally during S phase and move to the ventricular
surface to enter mitosis, aided by dynein (orange) along the MT cytoskeleton. The apical to basal movement is supported by kinesin (pink). (C) Basal
process and endfeet. ER andmitochondria are also found in the basal side of RG, the latter particularly enriched in the endfoot. Trans-Golgi elements are
present in basal process varicosities, associated with CAMSAP which acts as an MT nucleator removed from the centrosome. mRNA transport along the
basal process and local translation in the basal endfeet are represented. Proteins on the surface of the endfoot (integrins, dystroglycan complex) ensure
the contact with the ECM. Abbreviations: AJ, adherens junctions; PC, primary cilia; MT, microtubules; CSF, cerebrospinal fluid; ER, endoplasmic
reticulum; RBP, RNA binding protein.
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review]. The PC is an antenna-like structure that acts as a signalling
hub by protruding in the CSF to capture signals, and the centrosome
is crucial for its formation [reviewed in Zaidi et al. (2022)]
(Figure 3A). Defects in these organelles can impact RG polarity
and lead to abnormalities in cortical development.

Showing the major role of PC in maintaining RG polarity,
deletion of Arl13b, a cilia-specific small GTPase, in mouse
cortical progenitors led to a reversal of RG apico-basal polarity
and abnormal neuronal positioning (Higginbotham et al., 2013)
(Figure 2E). This is likely to be due to improper receptor localization
at the PC, impacting downstream signalling, as shown for the
IgfR1 receptor (Higginbotham et al., 2013). Mutations in
ARL13B are also linked with Joubert syndrome, where patients
present cortical malformations and intellectual disability.

Defective centrosomes were observed in mice mutants for Eml1,
a microtubule (MT) associated protein (Zaidi et al., 2024). This
mutation is associated with apical RG cell detachment leading to
subcortical heterotopia (SH) (Figure 2B, left), a cortical
malformation characterized by large clusters of neurons in the
white matter. In this study, in accordance with other works on
the same mutation both in mouse and human models, defects were
revealed in the PC as well, which were shorter due to the mutation
(Jabali et al., 2022; Uzquiano et al., 2019; Zaidi et al., 2024). The
centrosome and PC defects were partially rescued upon Epothilone
D (EpoD) treatment (Jabali et al., 2022; Zaidi et al., 2024), an MT
polymerizing and stabilizing agent. Mutations in EML1 are found in
patients from eight families, who display SH, epilepsy and
intellectual disability (Markus et al., 2021).

Furthermore, upon conditional loss of the centriolar protein
SAS4, RG lose their attachment in the VZ, move away and ultimately
die, leading to microcephaly in mice, as observed in patients with
mutations for SAS4 (Insolera et al., 2014). Mutant cells lose their
centrosome and PC, highlighting their role in RG positioning.
CEP83 is also involved in anchorage of centrosomes to the apical
membrane. When the gene is mutated, the organization of MTs at
the apical surface is affected, possibly altering the mechanical
properties of the membrane that becomes wider and more
stretched (Shao et al., 2020). Intellectual disability and
occasionally hydrocephalus are observed in patients with mutant
CEP83 (Failler et al., 2014).

Thus, we cite examples showing that these linked apical
organelles are crucial for RG integrity.

2.3 Golgi apparatus

The Golgi apparatus receives, modifies and sorts proteins and
lipids to different cell compartments and it is therefore crucial for
membrane trafficking (Ravichandran et al., 2020). This will
ultimately play a role in cell polarity, as different and specialized
regions of the cells require specific lipid and protein compositions.

In RG, it has been shown that the Golgi apparatus is confined in
the apical process and is not generally in close proximity with the
centrosomes (Taverna et al., 2016). Post-Golgi secretory transport of
vesicles was shown to be important in apical processes [(Brault et al.,
2022), see also Cytoskeleton section] (Figure 3A). The Golgi
apparatus was found to be absent in the basal process, whereas
the endoplasmic reticulum (ER) can be found throughout the RG

cell (Rash et al., 2018; Taverna et al., 2016) (Figures 3A, C). A later
study (Coquand et al., 2021) identified secretory machinery
resembling trans-Golgi elements in varicosities of the basal
process, playing also a role in MT nucleation (Figure 3C)
Nevertheless, cis and medial Golgi elements were not identified,
confirming the findings of Taverna et al. In basal progenitors that are
not attached apically, the Golgi apparatus becomes associated with
the centrosome.

Golgipathies have been linked to microcephaly (presumably
affecting RG), and can also involve PC defects [see Passemard
et al. (2019); Masson and ElGhouzzi (2022) for further details].
Also, in a model of aberrant RG apical detachment linked to
heterotopia (Uzquiano et al., 2019), VZ RG showed abnormal
Golgi apparatuses, such as a lower number of Golgi elements and
reduced extension of the organelle within the apical process. Golgi
anterograde trafficking was shown to be affected. This suggests that
changes in polarity (here loss of apical processes), in healthy or
pathological conditions, can lead to (or be caused by) reorganization
of the Golgi apparatus.

2.4 Mitochondria

Mitochondria are key organelles for the proper functioning and
survival of a cell. Mitochondria are found in RG cell soma as well as
both apical and basal processes and interestingly they seem to be
enriched in endfeet (Rash et al., 2018) (Figures 3A, C). A study
performed on Xenopus neural progenitors showed mitochondria
distributed all over the cell. However, they also seemed to be
asymmetrically distributed in dividing cells around the cell soma
and this, together with mitochondrial remodelling, is likely to be
linked to cell fate in multiple organisms (Feng et al., 2023; Iwata
et al., 2020; Iwata and Vanderhaeghen, 2021).

Mitochondria transport has been observed along RG processes
in organotypic brain slices and this transport is likely to be Ca2+

dependent, indeed local calcium release slows mitochondrial
movement (Rash et al., 2018). This team had observed previously
that Ca2+ is able to propagate bidirectionally through RG processes,
its source residing in the ER, and this is particularly high in RG
endfeet (Rash et al., 2016), possibly explaining mitochondria
enrichment at this location. In hyperglycaemic conditions, that
affect glucose metabolism and therefore mitochondria, RG
processes collapse, and slower mitochondria transport is observed
(Rash et al., 2018). Whether this could be at the origin of any cortical
malformation is not yet known, although perhaps likely.

A recent study on the human-specific protein ARHGAP11B
described its role in mitochondria (negative regulation of membrane
permeability), and notably it regulates the transition of apical to
basal RG by stimulating glutaminolysis (Xing et al., 2024).

These results show how mitochondria localization, distribution
and function in apical RG helpmaintain the bi-polarity of these cells.

2.5 Basal process: inheritance and cell fate

The basal process protruding from the soma of RG spans the
entire thickness of the cortex to contact the pial surface. It has the
crucial role of providing a scaffold for neuronal migration during
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corticogenesis [extensively reviewed in (Meyerink et al., 2020)]
(Figure 1B). We discuss here specifically its maintenance.

As mentioned in the introduction, RG can divide through
asymmetric division to give rise to a daughter RG together with
an IP, bRG, or a neuron. How basal process inheritance plays a role
in cell fate outcome has been the subject of several debates.

A pioneer study showed that the daughter neuron inherits the
basal process, while the progenitor will regrow a new one (Miyata
et al., 2001), but the consensus is now that the basal process is largely
inherited by the progenitor daughter cells (Alexandre et al., 2010;
Konno et al., 2008; Tsunekawa et al., 2012). Inheritance of both
apical and basal processes is hypothesized to be important for self-
renewal capabilities (Konno et al., 2008). CyclinD2, localized in the
basal endfoot of RG, is asymmetrically inherited by the most basal
daughter cell and will dictate self-renewing fate. Overexpression and
knockdown experiments, altering asymmetric distribution of
CyclinD2, perturb RG cell fate output (Tsunekawa et al., 2012).
Live imaging in zebrafish neural tube also showed that the most
basal daughter cell inherits the basal process and commits to
progenitor fate (Alexandre et al., 2010).

The basal process is also inherited by proliferating bRG, often
originally generated through oblique cell division (Penisson et al.,
2019; Shitamukai et al., 2011, see also Cytoskeleton section).
Therefore, is clear that the basal process plays a key role in RG
polarity (see also Extracellular signals section).

3 Cytoskeleton

The cytoskeleton is crucial for maintenance of the structure and
morphology of RG while providing the support for trafficking of
organelles and proteins that help to establish polarity.

3.1 Maintenance of RG structure

The cytoskeleton is composed of intermediate filaments, actin
filaments and MTs and is critical for RG structure. For example,
treatment of the RG-like cell line C6-R with drugs such as
nocodazole and taxol, disrupting MT dynamics, leads to the
alteration of their bipolar morphology with cells losing their
processes, showing the crucial importance of these components
(Li et al., 2003). We also cite here examples of specific proteins
influencing different aspects of the cytoskeleton.

The Lis1-Nde1 complex stabilizes the dystrophin/dystroglycan
glycoprotein complex (DGC), allowing the formation of a multi-
protein complex that links the actin and MT cytoskeletons of RG
to the extracellular matrix (ECM), helping with the maintenance of
radial morphology and cell-cell adhesion (see also Extracellular
components section). Lis1-Nde1 mutations were found to cause
deformed and disjointed RG that impaired self-renewal and
neuronal migration as a consequence. Functional insufficiencies of
LIS1, NDE1 and dystroglycan are all known to cause lissencephaly
syndromes in patients (Pawlisz and Feng, 2011). Deletion of Eml1,
mentioned above, also affects MT growth and dynamics, with partial
rescue of the resulting SH phenotype achieved upon treatment with
Epothilone D (Zaidi et al., 2024), which also rescued centrosome and
PC phenotypes (Jabali et al., 2022; Zaidi et al., 2024).

Related to the actin cytoskeleton, as stated previously, deletion of
αE-catenin in the developing mouse cortex leads to severe disruption
of RG polarity and subsequently to the formation of SH, and this is
caused by the uncoupling of AJ with intracellular actin fibres, leading
to an increased subcellular G-actin/F-actin ratio (Schmid et al., 2014).
Deletion of the small GTPase RhoA leads to the migrational disorders
of SH and cobblestone lissencephaly (Figure 2B, left and 2C) as a result
of a defective RG scaffold, disrupted upon destabilization of both the
actin and MT cytoskeletons (Cappello et al., 2012). Other actin
modulator Rho-GTPases, Cdc42 and Rac1, were also shown to
affect RG morphology when mutated (Cappello et al., 2006; Leone
et al., 2010; Yokota et al., 2010). Furthermore, mTOR signaling, which
is associated with several neurodevelopmental disorders, is found to
regulate basal RGmorphology and neuronal migration bymodulating
Rho-GTPase-mediated organization of the actin cytoskeleton
(Andrews et al., 2020). Dlgap4, mentioned above, also impacts
actin cytoskeleton dynamics, affecting RG morphology and causing
a ventricular surface (PVH) phenotype in mouse and SH in human
(Romero et al., 2022) (Figure 2D, right).

Nestin, vimentin and GFAP are well known intermediate
filament markers for glia, including RG (de Reus et al., 2024).
RG are likely to also strictly require these less well-studied
structural proteins (Li et al., 2021), potentially aiding organelle
movement and distribution.

3.2 Interkinetic nuclear migration (INM)

Apart from the maintenance of RGmorphology and scaffolding,
the cytoskeleton also plays an important role in the process of INM.
For completeness in this review, we mention this crucial RG process.

During cell cycle progression, the nuclei of apical RG move
between apical and basal sides of the VZ. The nuclei move away
from the apical surface towards the basal side during G1 phase,
undergo S phase at the basal position, and return towards the apical
side during G2 phase for mitosis (Figure 3B). INM in mammalian
apical RG is mediated byMT-based processes, and the apical to basal
movement is driven at least in part by the actin-myosin system and
displacement by active apical nuclear movement (Kosodo et al.,
2011; Schenk et al., 2009; Spear and Erickson, 2012; Tsai et al., 2010).
MTs and the minus end directed motor protein dynein are
important for the basal to apical movement and kinesin for
basally directed nuclear movement (Tsai et al., 2010) (Figure 3B).
Concerning daughter cells, the one that inherits the basal process
(committed to progenitor fate, as described in Section 1) will move
the nucleus more quickly away from the apical region compared to
sibling cells generated in a morphologically unpolarized manner,
helping to avoid overcrowding during INM. Indeed, removal of the
basal process by inhibition of TAG-1, a glycoprotein involved in
adhesion (see also Extracellular section below), results in abnormally
highly-packed progenitors apically, which will detach and lead to
heterotopia (Okamoto et al., 2013). Daughter cell polarity hence
contributes to correct corticogenesis.

A number of MT or MT motor associated proteins when
impaired lead to a disrupted INM in the neocortex of rodents.
Disruption of factors that impact the organization and integrity of
MT such as CEP120, TACCs, Hook3, PCM1 and TPX2, were found
to impact INM (Ge et al., 2010; Kosodo et al., 2011; Xie et al., 2007).
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Furthermore, the mutation of dynein regulators such as
Lis1 and NudC also impact this process (Cappello et al., 2011;
Tsai et al., 2005). Blebbistatin inhibition of non-muscle myosin II
at low concentrations to selectively inhibit the INM in RG while
maintaining the structural integrity in slice cultures revealed that
there was selective impairment of apical to basal nuclear
migration. Indeed, this movement requires myosin II mediated
constriction of the apical process which pushes the nucleus in the
basal direction (Schenk et al., 2009). In addition, inhibition of the
PITP/ncPCP- signaling pathway is found to impair INM and in
turn tangential expansion of the cortex by deregulating
actomyosin activity in the nuclear periphery of RG (Xie and
Bankaitis, 2022).

Thus, multiple pathways are crucial for INM, allowing polarized
movements within RG and correct cell cycle.

3.3 Mitotic spindle formation

The formation of the oriented mitotic spindle, an MT-based
structure in apical RG, ensures proper chromosomal segregation
and inheritance of cell fate determinants by controlling the angle of
division (di Pietro et al., 2016; Matsuzaki and Shitamukai, 2015).
The orientation of the mitotic spindle therefore affects cell lineage
specification of the progeny.

While early apical RG predominantly exhibit vertical
cleavage plane divisions, conditional deletion of Afadin for
example, and overexpression of Inscuteable in mouse are
found to increase oblique divisions favoring the production of
IPs (Fish et al., 2008; Postiglione et al., 2011; Rakotomamonjy
et al., 2017). The bRG cells in human may be increasingly
produced by horizontal cleavage plane divisions of the
ventricular apical RG [Lamonica et al. (2013), see also
Penisson et al. (2019) for further discussion]. Clearly division
angles and polarity (choice of apical or basal process inheritance
or re-growth) must be linked, although little is known concerning
these regulatory steps.

It is known though that genes that are implicated in
microcephaly are often involved in centrosome biogenesis and
maturation, and/or spindle orientation (Noatynska et al., 2012).
Mouse Aspm protein is normally localized at the mitotic spindle
poles of NECs and is downregulated upon the switch from
proliferative to neurogenic divisions. RNA interference
(RNAi) of Aspm leads to changes in the perpendicular
orientation of cleavage planes, most probably causing
increased asymmetric divisions, favoring thus neurogenic over
proliferative divisions (Fish et al., 2006). Human mutant ASPM
cortical organoids displayed transient randomization of mitotic
spindle orientation leading to precocious generation of bRG
while depleting the amplification of ventricular apical
progenitors (Benthem et al., 2023). Deletion of Mcph1 in
mouse led to uncoupling of mitosis and the centrosomal cycle
causing premature mitotic entry, upon Chk1 not localizing to the
centrosome. This led to a shift in the alignment of the mitotic
spindle favoring neurogenic cell fate over the proliferation of
progenitors (Gruber et al., 2011). Similarly, deletion of factors
which are important for centrosomes such as CDK5RAP2,
CPAP, STIL and CEP63 also led to spindle orientation defects

(Garcez et al., 2015; Kitagawa et al., 2011; Lizarraga et al., 2010;
Marjanović et al., 2015).

Deletion of the lissencephaly gene Lis1 results in less stable astral
MTs and causes defects in mitotic spindle positioning, increasing
premature asymmetric neurogenic divisions and reducing the cell
number (Yingling et al., 2008). Mutations in Lis1 related proteins
such as Magoh, Dcx and NdeI also result in spindle orientation
defects (Feng and Walsh, 2004; Pramparo et al., 2010; Silver et al.,
2010). Mitotic spindle lengths were also found to be abnormally long
in the apical progenitors of Eml1 mutant mice which exhibit
excessive RG delamination (Bizzotto et al., 2017). It is possible in
this case that mechanical forces are changed in the VZ, consequently
altering apical RG attachment.

3.4 Intracellular trafficking

The MT cytoskeleton is important for the polarized transport
of cargoes to the apical and basal ends of RG (Wimmer and Baffet,
2023). Subcellular live imaging of mouse brain tissue revealed that
most of the MTs in the apical process emanated from the
pericentrosomal region with an apical to basal direction
(Figure 3A). On the other hand, MTs in the basal fibres of
apical RG and human basal RG were oriented in both
directions (however with a basal bias) emanating from the
acentrosomal MT organizing centres localized in varicosities of
the basal fibre (mentioned above), dependent on the CAMSAP
family of proteins, in addition to those emanating from the
centrosome (Coquand et al., 2021) (Figure 3C).

Memo1, critical for RG tiling (non-randomly arranged and
regularly interspaced RG basal processes) during neocortical
development, was found to regulate MT stability and dynamics
of the basal process. Deficiency of Memo1 led to disrupted
CAMSAP2 distribution at MT minus ends leading to aberrant
branching of MTs and alteration of polarized trafficking of the
basal domain protein Gpr56 (Nakagawa et al., 2019) (see also section
Local translation).

The apical MT network in RG helps with the transport of
cargoes from the Golgi apparatus to the apical surface via
dynein-based transport mechanisms. The apical post-Golgi
transport of Crumbs via Rab6+ vesicles was shown to be
important for apical polarity complexes and the maintenance of
apical junctions. Deletion of the dynein activator and lissencephaly
gene Lis1, or Rab6, disrupts this transport leading to the loss of
apical AJ and cell delamination (Brault et al., 2022).

Mutations in ARFGEF2 are associated with microcephaly and
PVH in patients. Inhibition of the ARFGEF2 encoded protein
BIG2 in MDCK cells led to the disruption of trafficking of
E-cadherin and β-catenin from the Golgi apparatus to the cell
surface, showing that vesicular trafficking is important for
normal human cerebral cortical development (Sheen et al., 2004).
It seems likely that apical trafficking in RG may be disrupted
explaining the PVH phenotype. As mentioned above, Eml1 loss
of function in mouse impaired post-Golgi vesicular trafficking,
including of selected PC proteins such as SSTR3 and PKD2,
which will have an impact on RG structure and function
(Uzquiano et al., 2019; Zaidi et al., 2024). Thus, there are
multiple examples suggesting a link between intracellular
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trafficking and RG morphology, attachment, polarity and
corticogenesis (see also below Local translation section).

4 Extracellular components in the
generation andmaintenance of polarity

Apart from intracellular factors required for the formation and
maintenance of RG polarity, it is important to mention extracellular
factors which also contribute to these processes, impacting RG
structure and morphology. Owing to the presence of their apical
and basal processes terminating in the CSF and at the pial surface
respectively, as well as extracellular factors across whole RG cell
surfaces, these cells can receive many signals [for review see (Ferent
et al., 2020)].

4.1 Signalling factors influencing
RG structure

RG structure is clearly influenced from signals received in the
CSF, e.g., through PC (Figure 3A). In addition, cell-cell and cell-
environment contribute in shaping their structure.

Growth factors such as FGF2, EGF, IGF, BDNF and TGF-β1
were shown to influence the proliferation and maintenance of RG
(Bartkowska et al., 2007; Kang et al., 2009; Lamus et al., 2020;
Raballo et al., 2000; Stipursky et al., 2015; Zappaterra and Lehtinen,
2012). As an example, injection of TGF-β1 into the embryonic
ventricles at E14 led to notably disorganized RG fibres (Stipursky
et al., 2015).

Other secreted factors from distant sources e.g., found in
embryonic CSF, such as Bmp, Wnt, Shh, and from more local
sources e.g., nearby cells producing for example, Neuregulins,
Retinoic acid and Reelin, can also influence RG behaviour and
maintenance [see (Ferent et al., 2020) for further details]. Glial
growth factor secreted by neurons migrating along RG fibres was
shown to positively influence the growth of the RG fibre which is
critical for neuronal migration (Anton et al., 1997).

Biallelic missense mutations in endothelin converting
enzyme-2 (ECE2) have been found to be associated with PVH
in human (Buchsbaum et al., 2020). Knockdown and
overexpression of ECE2/Ece2 in human cortical organoids and
developing mouse tissue led to changes in the bipolar
morphology of RG and the mispositioning of ectopic neurons
in the VZ. Proteomic analyses of ECE2 KO human cortical
organoids revealed downregulation of ECM components and
receptors such as laminins, lumican, decorin and six different
collagens (Buchsbaum et al., 2020).

Cajal-Retzius neurons are found in the most superficial layer of
the developing cortex, in the MZ. Reelin, a glycoprotein secreted
from Cajal-Retzius cells was shown to influence apical-basal radial
processes (Hartfuss et al., 2003; Supèr et al., 2000; Zhao et al., 2004)
and branching of the basal processes (Chai et al., 2015). Other
secreted factors from Cajal-Retzius cells almost certainly also
influence these processes [e.g., see (Borello and Pierani, 2010)].

BDNF is known to influence the growth of the basal process and
therefore the RG scaffold by activating a Ca2+ activated chloride
channel Anoctamin 1. Lack of radial process extension in Ano1-KO

mice leads to disorganization of cortical layers and significantly
reduced cortical thickness (Hong et al., 2019).

4.2 Contact with the meninges:
maintenance of polarity and cell survival

Expression of ECM components identified through several
mouse and human transcriptome and proteome analyses, such as
laminins, proteoglycans, dystroglycans and collagens (also
mentioned above) were shown to influence the proliferation of
apical and basal progenitors (Buchsbaum et al., 2020; Fietz et al.,
2012; Florio et al., 2015; Kalebic and Huttner, 2020; Pollen et al.,
2015). In addition, they also play a role in the formation and
maintenance of the RG scaffold. Indeed, the basal process
terminates with an endfoot that contacts the meningeal basement
membrane (BM) and these contacts are mediated by the above
mentioned proteins (Graus-Porta et al., 2001; Haubst et al., 2006;
Myshrall et al., 2012; Radakovits et al., 2009) (Figure 3C).

Laminin is important for maintaining the structural integrity of
the BM. Mutations in Laminin beta-1 (LAMB1) lead to cobblestone-
lissencephaly in patients, caused by over-migration of neurons upon
detachment of the basal endfeet of RG (Radmanesh et al., 2013).
Similarly, targeted deletion of the nidogen-binding site within the
laminin γ1 chain and deletion of perlecan in mice also lead to
disruption of the BM and formation of neuronal ectopias that
resemble the cobblestone-lissencephaly phenotype (Haubst et al.,
2006) (Figure 2C).

Upon loss of β1 integrin, basal endfeet lose their anchoring to
the BM and RG fibres appear irregular (Graus-Porta et al., 2001;
Haubst et al., 2006; Radakovits et al., 2009). Moreover, in β1 integrin
mutants this is followed by RG death, as observed with apoptotic
markers as well as live imaging. These phenotypes are undetectable
after E15, suggesting that signals from the meninges are crucial for
RG survival, particularly in early development, which ultimately
affects proper cortex development (Haubst et al., 2006; Radakovits
et al., 2009). Later on, attachment to the BM becomes crucial for RG
integrity and neuronal composition as observed in a laminin mutant
where GABAergic interneurons populate the outer regions of the
cortical plate, where Math2+ pyramidal neurons are not detected
(Haubst et al., 2006; Myshrall et al., 2012).

Examples of signals downstream of β1 integrin include kinases
MAPK, shown to influence cell survival of neural stem cells in
culture (Campos et al., 2004), and ILK, that has been shown to
regulate neuronal polarity, as its inhibition led to perturbed axon
formation, but did not affect dendrites (Niewmierzycka et al., 2005).
FAK, a non-receptor tyrosine kinase, also regulates cell growth and
survival, and its deletion in the mouse brain leads to perturbed basal
endfeet, either unattached to the BM or protruding into neuronal
ectopias resembling cobblestone lissencephaly (Beggs et al., 2003).
Blocking the fixation of laminin to its ligand β1 integrin in mouse
cerebral cortex also led to the detachment of RG apical processes,
suggesting the similar importance of the laminin-integrin
interaction for the maintenance of apical process (Loulier
et al., 2009).

Dystroglycan, another ECM component and a cell surface
laminin receptor protein, is essential for the maintenance of BM
integrity (Henry and Campbell, 1998). Conditional inactivation of
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Dag-1 encoding dystroglycan in mouse embryonic cortex led to pial
BM disruption and formation of neuronal ectopias in the meninges
(Myshrall et al., 2012). Similarly, patients showing defective
O-glycosylation of α-dystroglycan display several brain
abnormalities including neuronal over-migration causing a
cobblestone cortex (Van Reeuwijk et al., 2005) (Figure 2C).

TAG1/contactin-2 (Transient axonal glycoprotein-1),
mentioned previously, is a cell surface molecule expressed in the
basal region of the cortical wall. It is important for the maintenance
of RG basal processes and knockdown of TAG1 was shown to cause
basal process retraction and ectopic progenitors in mouse (Okamoto
et al., 2013). Activation of Notch was also shown to promote radial
morphology of RG clones through increased expression of BLBP and
the cell adhesion molecule nidogen, which binds to laminin (Li H.
et al., 2008).

Finally, deletion of Gpr56, a GTPase expressed in basal endfeet,
leads to disruption of the BM and endfeet breakout through the
broken meninges (Li S. et al., 2008), suggesting that it might regulate
proper endfeet anchorage at the pial surface. GPR56 mutations in
human give rise to cobblestone lissencephaly and polymicrogyria
(Jaglin and Chelly, 2009) (Figure 2C). Furthermore, with the
inhibition of Follistatin like-1, a secreted glycoprotein from the
pial BM, the RG basal processes were no longer found to be parallel
to each other and their basal endfeet exhibited greater density and
branching (Liu et al., 2015). For further human genetic information
please see Ferent et al. (2020).

Thus, pial surface interactions are critical for retaining RG
morphology and function, influencing brain development. These
multiple examples show the importance of short and long-distance
extracellular molecules influencing RG structure and polarity.

5 Local translation at distal sites of RG

mRNA localization and local translation are key mechanisms
that a polarized cell requires to quickly reply to local stimuli acting
far away from the soma. This has been thoroughly studied in highly
polarized cell types such as neurons and astrocytes (Holt et al., 2019;
Mazare et al., 2021).

Recent evidence is emerging supporting a role of local
translation in RG as well. Using live imaging in organotypic
mouse brain slices, Pilaz et al. observed mRNA and RNA
binding proteins (RBP) moving along the basal process of RG, in
a MT-dependent fashion (Figure 3C). After microdissection of RG
basal endfeet, the authors used photoconvertible proteins to
demonstrate local translation: these protein constructs bear a
fluorescent tag that change colour upon exposure to UV light
(e.g., green to red). Recovery of green fluorescence demonstrated
local translation of several mRNAs (Ccnd2, Kif26a). A set of FMRP-
bound transcripts was also identified in these microdissected regions
(Pilaz et al., 2016), likely to have been transported along the basal
process. In a following study by the same authors, Arghap11a was
also shown to be localized and translated basally, this being crucial
for basal endfeet morphology (Pilaz et al., 2023).

More recently, a basal endfeet proteome was obtained through
in vivo proximity labelling, and identified proteins specifically
enriched in basal endfeet (e.g., Myh9 and Myh10), as well as
their transcripts, suggesting that they might also be locally

translated. Loss of these basal proteins leads to a reduction in
endfeet branching and their protrusion through the BM (MYH9),
as well as loss of apical and basal attachment (MYH10) (D’Arcy
et al., 2023). Overall this shows how local translation can be critical
to dictate and maintain RG structure and polarity.

Local translation in apical endfeet has not yet been
demonstrated. Nevertheless, it is known that some transcripts
and proteins are apically enriched, suggesting that these might be
locally translated as well. The RNA-binding protein Staufen2
(Stau2), known to regulate asymmetric RNA localization in
Drosophila neuroblasts (Chia et al., 2008) is also asymmetrically
distributed in RG, being enriched apically in a complex with
Pumillio2 (Pum2), a translational repressor, and Ddx1, an RNA
helicase. β-actin and Prox1 mRNAs were found associated with
Stau2 from E12.5 brain cortices and were shown to be localized
apically. Knockdown of either of the proteins in the complex leads to
mislocalization of Prox1 mRNA and results in increased
neurogenesis and reduction of the RG pool. Interestingly,
Prox1 protein expression increases upon Stau2 knockdown,
suggesting that the mRNA is translationally repressed in the
complex and this helps maintain the RG in a precursor state.
Moreover, Stau2 segregates asymmetrically in cells in mitosis and
accumulates, with its cargo RNAs, in the daughter cell that will later
give rise to Tbr2+ IPs (Kusek et al., 2012; Vessey et al., 2012). More
RNAs are likely to be involved in this process as suggested by Kusek
et al. (2012). A set of RNAs identified by Stau2-RNA
immunoprecipitation are already known to play a role in cell fate
decision, such as Hes6, Cdk5 and Insm1 (known to influence cell
adhesion, see Asymmetric distribution section). Another subset of
identified mRNAs code for proteins of the Bardet-Biedl Syndrome
complex, an apical complex associated with centrosomes and crucial
for PC formation. As mentioned previously, dysfunctioning of PC
can lead to SH (e.g., via apical process detachment) and
overexpression of Stau2 causes PVH, possibly linking these two
observations (Kusek et al., 2012).

Recently, a neural specific centrosome proteome was obtained
(O’Neill et al., 2022). RNA binding and RNA processing proteins
were enriched, with factors involved in RNA transport and
translation regulation. This suggests the possibility of RNA
regulation at the centrosome, in accordance with previous studies
that identified RNAs at this location (Safieddine et al., 2021;
Sepulveda et al., 2018), as well as at the mitotic spindle (Hassine
et al., 2020), and their transport in a co-translational dependent
manner. RNAs at the RG apical centrosome could be locally
translated (Iaconis et al., 2017) and this might have a role in
maintaining the growing MT stemming from the MT-organizing
centre (MTOC), or perhaps also components of the PC or AJ.

These examples highlight the importance of basally and apically
localized proteins andmRNAs in regulating the balance between RG
maintenance and differentiation, as well as impacting attachment
and structure. Further investigation on apical and basal mRNA and
protein localization and translational control is needed.

6 Conclusion and perspectives

In this review, we summarize and highlight different factors that
influence the polarity of RG. We focus on canonical apical RG
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exhibiting apical and basal processes. Correct polarity is crucial for
proliferation, appropriate neurogenesis and neuronal migration, and
any disturbance in these processes lead to cortical malformations as
discussed in this review. The unique morphology of RG exposes
them to multiple extracellular cues at different levels across the
developing neural tissue, in addition to the intracellular factors that
define them. Although much knowledge is available in the field of
neural progenitor cell polarity, certain interesting understudied
topics are gaining more attention and we have attempted to
highlight a number of these. For example, the importance of
organelles such as mitochondria and the Golgi apparatus, as well
as local translation, are emerging as important for RG structure,
polarity and function, even if further studies will be necessary to
decipher their roles.

Live imaging studies by Rash and colleagues (Rash et al., 2018) as
discussed in this review, identified the enrichment of mitochondria
at endfeet locations and it would be interesting to know the
particular functional relevance of this phenomenon, even if a
general disturbance in mitochondrial transport was already
associated with collapse of the RG scaffold. It is further
interesting to note that studies involving changes in
mitochondrial inheritance, as well as fission and fusion dynamics
in neural progenitor cells were shown to impact cell fate (Feng et al.,
2023; Iwata et al., 2020). Further elucidating mitochondrial and
other organelle states, distribution and roles could shed light on the
regulation of polarity.

It is an interesting finding that the Golgi apparatus is confined
to the apical process of RG but not the basal process (Taverna
et al., 2016). Post-Golgi trafficking has been shown to be crucial
for maintenance of apical polarity complexes and junctions
(Brault et al., 2022), and defects in post-Golgi trafficking were
also found in Eml1 mutant situations leading to SH (Uzquiano
et al., 2019; Zaidi et al., 2024). This paves the way for much
needed investigations of Golgi position and post-Golgi
trafficking defects in RG in different cortical malformations to
understand the importance of this polarized localisation. Trans-
Golgi network outposts in varicosities (Coquand et al., 2021) are
nevertheless required in basal processes. This remarkable
adaptation to suit RG morphology and function requires
further fine exploration.

Although local translation is a well-studied phenomenon in
neurons and astrocytes, local translation in polarized RG has gained
attention only recently. Indeed, it can be expected that there might
be local translation at RG extremities of the known apically and
basally located proteins. Basal endfeet transcriptome and proteome
studies confirmed the occurrence and importance of local
translation in the basal endfeet (D’Arcy et al., 2023; Pilaz et al.,
2016; 2023). Also, apically localized mRNAs have been identified in
the apical endfeet and near the centrosomes of RG (Kusek et al.,
2012; O’Neill et al., 2022; Vessey et al., 2012) suggesting the
occurrence of local translation. Overcoming the technical
challenges of apical endfeet isolation in the future will firmly
show the importance of such a phenomenon in these cell
compartments. Local translation could also occur in regions
surrounding the centrosomes, and locally generated proteins

could then have multiple roles in apical processes. Perturbations
of local translation are expected to greatly impact polarity.

We describe here multiple changes impacting bipolar RG. It is
clear that resulting changed cells in some cases may still exhibit
polarity (for example, apical RG converted into basal RG often
showing a monopolar form) (discussed also by Kalebic and Namba,
2021). In physiological situations, multiple RG states are indeed
likely to exist, including SNPs, truncated RG and SAPs [not
mentioned here, Arai and Taverna (2017); Nowakowski et al.
(2016); Pilz et al. (2013)]. In mutant situations, changes can be
dramatic, potentially impacting both apical and basal processes.
Multiple pathways may impact attachment, changing cell position
and/or morphology. Apical detachment could also influence basal
attachment (and vice versa), although this is not well understood. It
is clear though that for apical RG, remaining attached is important
for retaining correct polarization and function.
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