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Cell polarity is essential for cellular function. Directional transport within a cell is
called polarized transport, and it plays an important role in cell polarity. In this
review, we will introduce the molecular mechanisms of polarized transport,
particularly apical transport, and its physiological importance.
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Introduction

Cells have unique shapes. For example, epithelial cells that cover the lumen of epithelial
tissues such as the intestine and the kidney have a directionality between the apical surface
close to the lumen and the basolateral surface on the opposite side (Figure 1). These
directions are called cell polarity. Cell polarity is not limited to epithelial cells, but exists in
various cells. For example, neurons have two types of processes: that is, axons and dendrites.
Thus, they can be considered to have cell polarity. In addition, lymphocytes are usually
spherical and appear to have no directionality. However, when they attach to antigen-
presenting cells and obtain information about antigens, polarity is required, i.e., an attached
side and a non-attached side. Therefore, almost all types of cells have polarity.

In the intestine, cell polarity plays an important role in functions such as digestion and
absorption of nutrients These functions as well as exocytosis of enzymes are performed at
the apical plasma membrane. On the other hand, cell adhesion molecules (e.g., cadherins)
and nutrient receptors (e.g., LDL receptor) are mainly localized at the basolateral plasma
membrane. To generate and maintain cell polarity, selective transport to the apical or
basolateral plasma membranes, collectively called polarized transport, is necessary.

In transport to the plasma membrane, transmembrane or secreted cargos are
synthesized in the ER, transported to the Golgi. After glycosylation or other
posttranslational modifications in the Golgi, cargos exit from the trans Golgi network
or TGN. Some cargos directly go to the plasma membrane whereas other cargos go to the
recycling endosome and then to the plasma membrane (Ang et al., 2004). In polarized
epithelial cells, there are some specialized compartments for polarized transport, such as the
apical recycling endosome (ARE), the apical sorting endosome (ASE), the basolateral
sorting endosomes (BSE), the common recycling endosome (CRE) (Rodriguez-Boulan
et al., 2005; Stoops and Caplan, 2014). In this review, we presented a simplified cartoon
(Figure 1) to depict the organelles involved in the polarized transport because we have not
determined the exact localization of the molecules in these specialized compartments.

During the vesicular transport including polarized transport, cargos synthesized in the
ER have to be transported from the ER by vesicles budded from the ER exit sites. During this
process, COPII (Sec13, 31, 23, 24) and their associated molecules (Sec16, Sar1, etc.) are
known to be involved. After budding, vesicles are transported to the perinuclear Golgi by
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microtubule-dependent motor proteins, particularly cytoplasmic
dynein. In the Golgi, COPI and associated molecules are involved
in the intercisternal transport. Up to transport to the Golgi,
molecular mechanisms are relatively clarified.

After modification such as glycosylation in the Golgi, cargos are
sorted in the Golgi, the TGN, or the recycling endosomes. There are
so many ambiguities during and after this sorting process. There are
a number of candidate molecules involved after the sorting process
as shown in the left figure of Figure 1 and Table 1 at the end of 20th
century. Here, there are several types of molecules involved in
polarized transport. Rab8, 10, and 11 belong to Rab family, one
family of small GTPases. They are known to localize on the vesicles

and the organelles to tether the donor membrane to the acceptor
membrane. SNAP23, syntaxin3, VAMP7, and VAMP8 belong to
SNARE family which are essential for fusing the donor membrane to
the acceptor membrane. Munc18-2 are a regulatory protein for
SNARE. During our research, other proteins have been identified to
be involved in apical transport. EHBP1L1, Bin1, and dynamin1 are
largely involved in the formation of apically-destined vesicles at the
recycling endosomes. Also, a microtubule-dependent motor protein,
cytoplasmic dynein, and an actin-dependent motor protein, myosin
Vb, are important proteins for polarized transport to the apical
plasma membrane. Other researchers pointed out the importance
for lipids and glycosylation for polarized transport. For lipids, from
many years ago, the raft, a lipid domain enriched with
sphingomyelin and cholesterol are known to be involved in
sorting apical cargos (Simons and Ikonen, 1997). In addition,
family of phosphoinositides are selectively enriched in the apical
or basolateral plasma membranes indicating their importance in
polarized transport. Also, glycosylation has been known to be
required for cargo sorting (Fiedler and Simons, 1995; Urquhart
et al., 2005; Potter et al., 2006). Part of these molecules are shown in
Figure 1. Current findings concerning these molecules are described
in more detail in the following sections.

As shown in Figure 1, the biological significance of many genes
previously known to be involved in polarized transport became
obscure. The main reason for this comes from the experimental
system used to verify the function of these molecules. Formerly, a
number of researchers preferred to use MDCK cells, which are
believed to be derived from distal tubules of canine kidney, to study

FIGURE 1
(A) Candidate genes involved in apical transport in 2000. (B) Genes involved in apical transport confirmed by gene knockout in 2024. Genes in red
are newly identified genes in apical transport since 2000. Budding at the recycling endosome in a red square is magnified in Figure 2.

FIGURE 2
Budding at the recycling endosome to form a vesicle for apical
plasma membrane. Proteins involved in budding are shown.
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the mechanism of cell polarity because cell polarity can be easily
established in vitro. In the past, the plasmamembrane of this cell line
was solubilized, and antibodies or short oligonucleotides against
molecules important for cell polarity were introduced into the

cytoplasm to investigate the importance of these molecules
(Huber et al., 1993). Previously, we generated knockout mice for
the tau gene, which was thought to be necessary for axonal
elongation based on results in cultured cells, but no major

TABLE 1 The phenotypes of knockout mice of genes involved in apical transport. Yellow cells (lanes) shows the results from other laboratories.

Targeted gene Type of knockout mouse Phenotype References

Rab8a KO Systemic, intestine-specific (Villin-Cre) Accumulation of apical proteins, microvillus
trucation

Sato et al. (2007)

Rab8b KO Systemic No overt phenotype Sato et al. (2014)

Rab8ab DKO +
Rab10 KD

MEF (mouse embryonic fibroblast) Reduction of number of cilia + MEFs Sato et al. (2014)

Rab11a KO Systemic Embryonic lethal Sobajima et al. (2014)

Neuron-specific (Nestin-Cre) No overt phenotype Sobajima et al. (2014)

Intestine-specific (Villin-Cre) Accumulation of apical proteins, microvillus
trucation

Sobajima et al. (2014)

Rab6a KO Systemic Embryonic lethal Iwaki et al. (2020)

Intestine-specific (Villin-Cre) Accumulation of milk in lysosomes of enterocytes Iwaki et al. (2020)

Rab6b KO Systemic No overt phenotype Zhang et al. (2024)

Rab6ab DKO Neuron-specific (Nestin-Cre) Purterbation of neuronal polarity Zhang et al. (2024)

EHBP1L1 KO Systemic Reduced enucleation efficiency, centronuclear
myopathy

Wu et al. (2023)

Rab10 KD Erythroblast Reduced enucleation efficiency Wu et al. (2023)

SNAP23 KO Systemic Embryonic lethal Kunii et al. (2016)

Exocrine pancreas-specific (Elastase-Cre) Reduced exocytosis of secretory granules Kunii et al. (2016)

Endocrine pancreas-specific (Ins-Cre,
Pdx1-Cre)

Increased exocytosis of insulin granules Kunii et al. (2016)

Neuron-specific (Nestin-Cre) Purterbation of polarity of neuronal stem cells Kunii et al. (2020)

VAMP7 KO Systemic Slight reduction in axonal length Sato et al. (2011)

VAMP8 KO Systemic Reduced exocytosis in exocrine pancreas and
kidney

Wang et al. (2004), Wang et al. (2010)

syntaxin3 KO Systemic Embryonic lethal manuscript in preparation

Neuron-specific (Nestin-Cre) No overt phenotype manuscript in preparation

Intestine-specific (Villin-Cre) Accumulation of apical proteins, microvillus
trucation

manuscript in preparation

myosin Vb KO Systemic, intestine-specific (Villin-
CreERT2)

Accumulation of apical proteins, microvillus
trucation

Cartón-García et al. (2015); Schneeberger et al.
(2015)

MAL KO Systemic Paranodal malformation in the central nervous
system

Schaeren-Wiemers et al. (2004)

MAL2 KO Systemic No overt phenotype our unpublished observation

Annexin13b KO Systemic No overt phenotype our unpublished observation

PKD1 KO Systemic No overt phenotype Atik et al. (2014), Avriyanti et al. (2015)

PKD2 KO Systemic No overt phenotype Atik et al. (2014), Avriyanti et al. (2015)

PKD1,2 DKO Systemic Embryonic lethal, neuronal polarity defect Atik et al. (2014), Avriyanti et al. (2015)

FAPP1 Systemic No overt phenotype Venditti et al. (2019)

FAPP2 Systemic No overt phenotype D’Angelo et al. (2013)

*Yellow cells indicate results from other laboratories.
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abnormalities were observed (Harada et al., 1994). From this
experience, we felt it necessary to re-examine the results obtained
in cell lines using knockout mice. In addition, as cell polarity is
important for the development and functions of tissues, we
generated and analyzed knockout mice for these molecules to
investigate when and where they were required. As expected to
some extent, the results obtained in cell lines could not be confirmed
in vivo for many of the molecules (Figure 1; Table 1). However, we
found that somemolecules were indeed involved in cell polarity, and
we were able to further investigate their molecular mechanism.
Examples of these are the small GTP-binding proteins Rab8, 10, and
11, as well as the SNARE proteins syntaxin3 and SNAP23 which we
alreadymentioned above.We will provide an overview of research in
this field, especially on apical transport, focusing on the phenotypes
of these knockout mice and the analysis of the molecules that bind to
them (Figure 1).

The apical and basolateral signals

Before explanation of each molecule for apical transport, it is
necessary to briefly explain the sorting signals for apical and
basolateral transport because it will give us reasons why apical
transport has been difficult to analyze. Please refer to other good
reviews for more information (Stoops and Caplan, 2014; Rodriguez-
Boulan and Macara, 2014)

Previous studies have identified the basolateral signals (tyrosine-
based, dileucine, and monoleucine signals) (Matter et al., 1992;
Hunziker and Fumey, 1994; Wehrle-Haller and Imhof, 2001) at
the cytoplasmic tails of the cargoes. An adaptor protein AP1B binds
to many of these signals (Ohno et al., 1999; Sugimoto et al., 2002).
Thus, clathrin-coated vesicles which includes AP1B, are considered
to be involved in the transport of basolateral cargos (Deborde
et al., 2008).

In contrast, for apical sorting signals, GPI-anchor, N- and O-
glycosylation, and transmembrane domains (Lisanti and Rodriguez-
Boulan, 1990; Fiedler and Simons, 1995; Urquhart et al., 2005; Potter
et al., 2006) have been identified. Many of them cofractionates with
lipid “raft” (Simons and Ikonen, 1997), a region enriched with
cholesterol and sphingomyelin. However, it was unclear how apical
signals interact with rafts because it is difficult to measure or
quantitate specific interaction between lipids and proteins. For
glycosylated molecules, proteins called galectins are known to
bind them (Delacour et al., 2008; Brocca et al., 2022). Therefore,
they are the only proteins involved in apical transport. However, not
all apical proteins are able to bind galectins. Thus, the molecular
mechanism for most apical proteins have long been elusive.

The role of Rabs in apical transport

Rab8

Rab8a is localized on the recycling endosomes and plays a role in
budding of vesicles destined for the apical plasma membrane as
described later (Nakajo et al., 2016). Rab8a has paralogues, Rab8b,
Rab10, and Rab13. Rab8b, quite similar to Rab8a, is thought to be
localized on the recycling endosomes. Rab10 is localized on the

recycling endosomes as well (Khan et al., 2022). Rab13 is also known
to be localized on the recycling endosomes in addition to the TGN
and the plasma membrane (Ioannou et al., 2015). We discovered
that apical transport was perturbed in the small intestine of
knockout mice of Rab8a (Sato et al., 2007), which was previously
reported to be necessary for basolateral transport in MDCK cells
(Huber et al., 1993). However, this phenotype was limited to the
small intestine and was not observed in other epithelial cells (kidney,
trachea, retina, etc.). Rab8a expression was very high in the small
intestine, suggesting its importance in the small intestine. This
suggests that the Rabs involved in apical transport may differ
depending on the type of epithelium. In addition, since
abnormalities in apical transport in the small intestine are
observed from about 2 weeks after birth, other Rabs (such as
Rab11: see below) may be involved in apical transport until then.
The 2-week postnatal period is the time when mice switch from
breast feeding to solid food and when the digestive enzyme in the
small intestine is replaced from lactase to sucrase. Therefore, it is
likely that Rab8a is mainly involved in the apical transport of newly
synthesized sucrase. Moreover, the intestinal phenotype of Rab8a
knockout mice is very similar to that of a human disease, microvillus
atrophy. When we sequenced the Rab8a gene from human patients,
we were not able to detect mutations in this gene. However, when we
stained the small intestinal tissue from a human patient, the amount
of Rab8a was clearly reduced. Thus, we concluded some genes
associated with Rab8a might be responsible for this disease (Sato
et al., 2007). Though mutations in Rab8 have not yet been reported,
the Myosin Vb gene, a binding molecule of Rab8, was mutated in a
large proportion of patients of this disease (Müller et al., 2008). The
phenotype was also confirmed in Myosin Vb KO mice (Cartón-
García et al., 2015; Schneeberger et al., 2015). Myosin Vb has been
known to bind to both Rab8 and 11 (Roland et al., 2007). In addition,
Rab8, 11, and Myosin Vb KO mice show similar apical phenotypes
in the intestine suggests that all of these are important for apical
transport. The BBsome complex is important for cilia formation,
and the presence of Rabin8, known as a Rab8 GEF, within the
complex implicated a relationship between Rab8 and cilia
formation. As cilia are localized on the apical surface, it is quite
conceivable that Rab8 is involved in cilia formation as well (Nachury
et al., 2007). A number of papers has been published stating that
Rab8 is important for ciliogenesis (Yoshimura et al., 2007; Omori
et al., 2008). However, since four molecules, namely, Rab8a, 8b, 10,
and 13, belong to Rab8 family, we generated Rab8a+8b DKOmice to
investigate whether there is functional redundancy among these
Rabs. Contrary to our expectations, although the phenotype of DKO
mice was more severe than that of Rab8a, no abnormalities were
observed in cilia formation. Therefore, we further knocked down
Rab10 and 13 in DKOMEFs and observed cilia. We found that cilia
formation was perturbed in DKO + Rab10 KD (Sato et al., 2014).
From the above, it became clear that Rab8a, b, and 10 are all required
for cilia formation, and that if any of them remain, cilia can still
grow. Regarding Rab10, though a previous observation in the
intestine of nematodes has suggested that Rab10 is important for
basolateral recycling (Chen et al., 2006), our results suggest that in
mammals, Rab10 is involved in transport to the apical plasma
membrane. In order to resolve this apparent discrepancy, we
generated small intestine specific knockout mice of
Rab10 because Rab10 KO mice are embryonic lethal (Lv et al.,
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2015). Preliminary data showed that there were no significant
phenotypes in either the apical or basolateral regions. This
indicates that the discrepancy results from difference in species.

It has recently been found that both Rab8 and Rab10 might be
associated with the pathogenesis of Parkinson’s disease. Both of
them are specifically phosphorylated by LRRK2, a responsible gene
for Parkinson’s disease (Steger et al., 2016). There is a paper
reporting that LRRK2 may at least affect recruitment of
Rab8 and Rab10 to lysosomes to prevent lysosomal dysfunction
(Eguchi et al., 2018). However, it is unclear to what extent this is
related to cell polarity.

Involvement of Rab8 binding protein in
apical transport

To know the molecular mechanism of Rab8 in apical transport,
we created a cDNA library of the small intestine and used the yeast
two-hybrid system to search for Rab8a binding molecules. We
discovered that a molecule called EHBP1L1 binds to Rab8a via
its C-terminus (Nakajo et al., 2016). Furthermore, EHBP1L1 is
localized to the recycling endosome with Rab8 and molecules
involved in membrane deformation such as Bin1 and dynamin
which bind to the proline-rich domain of EHBP1L1. It suggests that
EHBP1L1 plays a role in the formation of vesicles from the recycling
endosome to the apical plasma membrane. When EHBP1L1 KO
mice were created, the length of the microvilli in the small intestine
was reduced as expected. Interestingly, EHBP1L1 KO mice died
within a few hours after birth due to severe anemia. When we
examined the differentiation process of erythrocytes in the KOmice,
we found that there was no abnormality in the differentiation
capability to erythroblasts, although the final process from
erythroblasts to erythrocytes was selectively impaired. This
process is called enucleation in which the nucleus moves toward
the plasma membrane and is expelled from the cytoplasm. In other
words, EHBP1L1 was found to be important not only for epithelial
apicobasal polarity, but also for the polarized movement of nuclei in
one direction during the enucleation process (Wu et al., 2023).
Nuclear polarization occurs not only during enucleation, but also
during the differentiation process of striated muscle cells. While we
were analyzing EHBP1L1, EHBP1L1 mutations were discovered in
dogs with muscular dystrophy and anemia (Shelton et al., 2022;
Jensen et al., 2022). The same phenotype in the striated muscles was
also observed in our KO mice. The nuclei of the muscles did not
localize at the periphery of the cell but remained in the center.
Enucleation was inhibited not only by EHBP1L1 but also by KD of
Bin1 and by dynamin inhibitors. However, the Rab involved was
Rab10, not Rab8 probably because of the fact that Rab10 is much
more abundantly expressed than Rab8 in erythroblasts. It is also
worth noting that mutations in Bin1 and dynamin2 have been
widely known as causative genes for human centronuclear
myopathy (Jungbluth and Voermans, 2016; Hohendahl et al.,
2016). Based on these facts, we propose that the Rab8/Rab10-
EHBP1L1-Bin1-dynamin axis is necessary for cells to acquire
polarity in a number of systems (Figure 3). In addition,
considering that all of these gene products are localized to the
recycling endosome (Nakajo et al., 2016) and that Rab11 is essential
for apical transport as mentioned below, the recycling endosome is

assumed to be important as a hub for apical transport (Figures 1, 2).
To further investigate the function of EHBP1L1, we searched for
binding molecules of EHBP1L1 and identified CD2AP (Iwano et al.,
2023). CD2AP binds to molecules that regulate the actin
cytoskeleton and the formation of cilia. This supports the idea
that vesicles transported to the apical region interact with
abundant actin filaments just below the apical plasma membrane.
EHBP1L1 itself and its related molecule EHBP1 both have a domain
called the calponin homology domain that has a potential to bind
actin filaments. Therefore, it is possible that EHBP1, EHBP1L1, and
CD2AP is involved in the formation of microvilli and the cortical
plate where the actin filaments are abundantly localized by coupling
the apical transport with actin polymerization and localization. In
addition to EHBP1 and EHBP1L1, there are a number of proteins
which have EH (Eps15-Homology) domain. Most of them also bind
to Rab8 family. Among them, EHBP1 has been reported to be
important for basolateral recycling in Caenorhabditis elegans
together with Rab10 (Shi et al., 2010). However, since
EHBP1L1 does not exist in nematodes, its role should be
interpreted with caution. In addition, other EH domain proteins,
theMICAL family, are known to bind to the Rab8 family, but there is
currently no data showing their association with apical transport. At
least, MICAL1 knockout mice showed no gross abnormalities (Van
Battum et al., 2014). There were no reports for MICAL2, 3, L1, and
L2 knockout mice.

Rab11

Rab11 is localized to the recycling endosomes and is important
for cargo recycling. It has been known that an increase in the area of
the plasma membrane is necessary for bladder expansion, and that
this is due to vesicle fusion in bladder epithelial cells (Khandelwal
et al., 2008). Since it was known that Rab11 is necessary for this
fusion process, we hypothesized that Rab11 may be necessary for the
fusion of vesicles with the apical plasma membrane in epithelial cells
in general. There are three genes in the Rab11 family: Rab11a, b, and
Rab25, and it was known that the phenotype of Rab25 KO mice was
mild (Nam et al., 2010), showing no abnormalities in apical
transport. When we generated Rab11a KO mice, conventional (or
systemic) KO was embryonic lethal. We generated small intestine-
specific knockout mice and found that apical markers began to
accumulate in the cells immediately after birth. This was earlier than
the time when apical markers accumulate in Rab8a, b DKO mice
(approximately 1 week after birth) (Sato et al., 2014) and Rab8a KO
mice (approximately 2 weeks after birth) (Sato et al., 2007). This
indicates that Rab11 is required for apical marker transport earlier
than Rab8. To elucidate the molecular mechanism, we identified a
novel effector of Rab11, RELCH. RELCH was found to be involved
in non-vesicular lipid tranfer from the recycling endosome to the
TGN rather than in vesicle transport (Sobajima et al., 2018). Thus,
we did not observe its involvement in apical transport. Therefore, it
is likely that Rab11 is involved in apical transport via a molecular
mechanismmediated by other molecules, probably byMyosin Vb. It
has been previously shown that the recycling endosome acts as a hub
for transport from the Golgi to the plasma membrane (Ang et al.,
2004), so it is likely that Rab11, like Rab8, is involved in some
process in the recycling endosome for apical transport.
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The role of Rab8, 11 and its GEF in
unconventional transport

Recently, Lin’s group has suggested that Rab8 and its GEF are
important for unconventional transport in nematodes, and that apical
transport is carried out by this pathway. Here, unconventional
transport is defined as a transport that does not pass through the
Golgi (Wang et al., 2022). Furthermore, the same group has reported a
paper that Rab11 is also involved in this pathway (Li et al., 2024).
However, it should be noted that the phenotypes of Rab8 KO in
nematodes and mammals are slightly different. Thus, in mammals,
the involvement of unconventional transport in the apical transport is
still elusive.

Rab6

Previous studies reported that Rab6 is mainly localized on the
trans-Golgi and the TGN and is involved in both anterograde and
retrograde transport from and to the Golgi apparatus in cells (White
et al., 1999; Mallard et al., 2002; Grigoriev et al., 2007). In flies, it has
been pointed out that Rab6 is important for transporting
photoreceptors to the apical plasma membrane (Iwanami et al.,
2016). In mammals, KO studies in MDCK cells and mouse
embryos have shown that Rab6 is required for the anterograde and
retrograde transport of basolateral proteins (Shafaq-Zadah et al., 2016;
Homma et al., 2019). However, when we created a small intestine-
specific knockout of Rab6a, no abnormalities were observed in the
distribution of apical and basolateral markers in the small intestine
(Iwaki A et al., 2020). Recently, we and the other group showed the

importance of Rab6 for cell polarity in central nervous system (CNS).
In CNS, two Rab6 paralogs, Rab6a and Rab6b, are expressed and CNS-
specific deletion of both of them (Rab6 DKO) revealed that Rab6 is
necessary for the apical transport of Crumbs3, a component of apical
junctional complex, in neural progenitor cells (Brault et al., 2022). In
addition, Rab6 DKO resulted in the loss of neuronal cell polarity. We
found the accumulation of synaptic vesicle precursors (SVPs) adjacent
to theGolgi apparatus in Rab6DKOneurons. Therefore, we concluded
that Rab6a+6b are involved in neuronal polarity through the
regulation of axonal transport of SVPs (Zhang et al., 2024).

SNAREs and their associated proteins in
apical transport

We observed that syntaxin3, one of the t- (Q-) SNAREs, was
essential for apical transport by analyzing intestine-specific
conditional knockout mice (manuscript in preparation). Missense
mutations in syntaxin3 have also been reported in some human
patients with microvillous inclusion disease (MVID) (Wiegerinck
et al., 2014). Since null mutant mice generated in our laboratory die
soon after implantation (manuscript in preparation), we believe that
human syntaxin 3 mutants retain some function. Munc18 is known
to bind strongly to syntaxin and affect the binding of syntaxin to
other SNAREs. In contrast to Munc18-1, a Munc18 family protein,
which is abundant in the nervous system, Munc18-2 is localized on
the apical surface of epithelial cells and is known to inhibit the
binding of syntaxin3 to SNAP23 in in vitro experiments (Riento
et al., 2000). A mutation in Munc18-2 (STXBP2) was also found in
MVID patients (Stepensky et al., 2013; Dhekne et al., 2018),

FIGURE 3
Rab8/10-EHBP1L1-Bin1-dynamin axis is involved in various polarization processes from apicobasal polarity to nuclear polarity.

Frontiers in Cell and Developmental Biology frontiersin.org06

Kunii and Harada 10.3389/fcell.2024.1477173

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1477173


suggesting complex formation between syntaxin3 and Munc18-2 is
essential for apical transport, particular, at the stage of fusion of
apically transported vesicles to the apical plasma membrane.

Another candidate t-(Q-) SNARE involved in apical transport is
SNAP23. This is supported by its apical localization in epithelial cells,
and by the fact that amylase secretion from the exocrine pancreas is
almost completely blocked in our acinar-cell specific KO mice (Kunii
et al., 2016). As the exocrine secretion is performed by fusion of the
secretory granules to the apical plasmamembrane, SNAP23 is likely to
be involved in this process. Interestingly, endocrine secretion of
insulin is enhanced in pancreatic beta cell-specific KO mice. The
main reason for this apparent discrepancy between endocrine and
exocrine secretion is because SNAP25, orthologue to SNAP23, is
expressed in addition to SNAP23 in the insulin-secreting endocrine
cells. As SNAP25 is more competent in fusion than SNAP23, after
SNAP23 depletion, remaining SNAP25 increases secretion efficiency
(Kunii et al., 2016). We also showed that SNAP23 is necessary for
apical transport of neural stem cells (Kunii et al., 2020).

So what are v-(R-)SNAREs? VAMP7 was previously considered to
be required for apical transport in cells (Martinez-Arca et al., 2000).
However, as VAMP7 KO mice show almost no abnormalities in cell
polarity (Sato et al., 2011). It is known that VAMP8 is co-
immunoprecipitated with syntaxin3 and SNAP23 in vitro (Pombo
et al., 2003), and that VAMP8 KO mice, like SNAP23, show reduced
pancreatic exocrine secretion (Wang et al., 2004) and reduced transport
of AQP2 in the kidney collecting duct to the apical surface, resulting in
hydronephrosis (Wang et al., 2010). In addition, our KD and KO
studies revealed that VAMP8 is also required for apical transport of
N-cadherin in neural stem cells (Kunii et al., 2020). Therefore,
VAMP8 is likely to be most important for apical transport at least
in exocrine glands and collecting ducts (Figure 1).

Motor proteins

By screening using nematodes C. elegans, cytoplasmic dynein and
dynactin components are important for the apical transport of
recycling endosomes and the localization of apical markers (Winter
et al., 2012). However, since the microtubules carrying cytoplasmic
dynein run long distances, such as from the Golgi apparatus to the
plasma membrane and from the apical membrane to the basolateral
membrane, it is thought to be involved in long-distance transport
within the cell. As mentioned above, Myosin Vb, crucial molecule for
apical transport, is also a motor molecule. However, since it binds to
actin, it is likely to be involved in short-distance transport from the
subapical cytoplasm to the apical plasmamembrane on actin filaments,
which is abundant in the subapical cytoplasm.

The role of glycans in apical transport

Galectin-3 is a cytoplasmic protein that binds to glycans, and
there is an abnormal distribution of apical markers the intestine of
galectin-3 knockout mouse (Delacour et al., 2008). Galectin-4 is also
localized apically, but no major abnormalities have been observed
throughout the body in KO (Brocca et al., 2022).

In addition, a number of apical proteins have been known to be
heavily glycosylated. As previously observed, mutations in the

glycosylation sites prevent apical transport (Potter et al., 2006;
Vagin et al., 2009). Interestingly, heavy glycosylation generates
membrane deformation to cause the membrane to generate
protrusions (Shurer et al., 2019; Kuo and Paszek, 2021). Given
these findings, glycans are likely to be involved both in the apical
transport and in the formation of microvilli, apical protrusions at the
plasma membrane. To further investigate the glycosylation process,
we need the information how and where proteins and lipids are
glycosylated in the Golgi apparatus. However, we still do not have
sufficient information because of lack of antibodies and insufficient
spatial resolution of light microscopy. As we have recently reported
the endogenous localization and dynamics of various glycosylation
enzymes (Harada et al., 2024), we will be able to get insights on this
issue in the future.

The role of lipids in apical transport

More than 20 years have passed since the raft hypothesis was
proposed, which states that proteins transported to the apical region
are selected by going to a compartment called raft, which is rich in
sphingomyelin (SM) and cholesterol (Simons and Ikonen, 1997).
Since then, the relationship between various lipids and polarized
transport has been known. Recently, as a probe, Equinatoxin, that
labels SM, has been developed, its distribution has become clear (Deng
et al., 2016). In addition, a Golgi luminal protein, Cab45, is particularly
abundant in SM-rich vesicles (von Blume et al., 2012). As it has been
shown in vitro that Cab45 is important for transport to the apical
region (Liu et al., 2023), analysis of the function of Cab45 in vivo is
awaited. In addition to SM and cholesterol, the relationship with PIPs
has been well studied. PI(4,5) P2 (Martin-Belmonte et al., 2007) and
PI(3,4) P2 (Román-Fernández et al., 2018) have been shown to be
enriched in the apical plasma membrane.

Other candidate molecules involved in
apical transport

FAPP2 (Vieira et al., 2005), annexin13b (Astanina et al., 2010),
MAL (Takiar et al., 1995; Zacchetti et al., 1995), and MAL2 (de Marco
et al., 2002) have been shown to be important for apical transport
in vitro, but no phenotype regarding polarity was observed in knockout
mice (Schaeren-Wiemerse et al., 2004; D’Angelo et al., 2013; Atik et al.,
2014; Avriyanti et al., 2015; Venditti et al., 2019) (Table 1).

FAPP2 has been proposed to be involved in non-vesicular
transport of lipids via membrane contact sites (MCS) (D’Angelo
et al., 2007; D’Angelo et al., 2013). Recently, it has been found that
OSBP, which is involved in non-vesicular lipid transport at the ER-
TGN membrane contact site, is involved in polarized transport
(Kovács et al., 2024), suggesting close relationship between
membrane contact sites and polarized transport. Regarding the
ER-TGN membrane contact site, it has been also reported that it
is a source of calcium ions for activating Cab45, which is involved in
the export of cargo from the TGN (Ramazanov et al., 2024), so in the
future, we may have to pay more attention to the involvement of the
MCS between the ER and TGN in polarized transport.

Recently, zebrafish has been frequently used for forward genetic
screening. There are several advantages for using it. First, their
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intestines are easily observed from the outside, enabling large-scale
forward genetics screening and live imaging. Second, their genes are
more homologous to those of vertebrates than those of flies and
nematodes. Studies of apical transport using zebrafish have already
shown that acidification of the organelle lumen is important for apical
sorting (Levic et al., 2020). An acidic luminal environment may
promote clustering of O-glycosylated membrane proteins. Luminal
O-glycans are a common sorting signal for apical membrane proteins.
The authors speculated that V-ATPase–dependent acidification
promotes neutralization of charges in O-glycans of apical
membrane proteins and possibly also in glycolipids, thereby
facilitating glycan clustering at the TGN. Alternatively, they
considered pH may also influence binding of lectins such as
galectin-3 which was shown to be involved in apical transport.

The role of phase separation in
apical transport

Phase separation or liquid-liquid phase separation (LLPS) has
been drawn attention to explain many biological phenomena,
including the biogenesis of secretary granule biogenesis (Parchure
et al., 2022), unconventional protein secretion (Mendes et al., 2024),
and short-distance synaptic vesicle transport at synapses (Qiu et al.,
2024). Among them, it is interesting that phase separation by
chromogranin B is presented to be involved in insulin sorting at
the TGN (Parchure et al., 2022). As we mentioned in the previous
section, discrete sorting signals have been elusive in a number of
apical cargos. As LLPS does not need specific sorting signals,
involvement of LLPS in sorting of apical cargos from cargos to
other destinations should be considered in the future.

Conclusion and perspectives

Wehave been studying cell polarity formore than 20 years, and the
molecular mechanism of apical transport hasmade great progress since
we first started. It is now becoming clear that apical transport by
Rab8 and Rab11 families and their binding proteins play amajor role in
the molecular mechanism of cell polarity in general. In addition, they
are likely to be involved in unconventional transport that does not pass
through the Golgi. Based on their localization, we also revealed that the
recycling endosome plays a central role in apical transport. However,
there are still many to be investigated, in particular, about the sorting
mechanism to the apical plasma membrane, such as the molecular
entity of the apical signal. This will be a major challenge in the future.
To do this, it is necessary to identify other molecules involved in apical
transport. Our initial screening using nematodes was unsuccessful
partly because many of the genes of nematodes and mammals were
not so homologous. In the future, molecules involved in apical
transport should be screened in mammalian experimental systems.

What was also unexpected was that the genes involved in apical
transport are closely associated with many diseases. It was
completely unexpected that Rab8 and its binding protein Myosin
Vb are responsible genes for microvillous atrophy. In addition,
phosphorylation of Rab8 and 10 may be associated with
Parkinson’s disease. Rab8 binding proteins EHBP1L1, Bin1, and
dynamin are the causative genes for anemia and centronuclear

myopathy. These findings indicate the biological and pathological
importance of the Rab8 family.

Another challenge is the relationship between apical transport and
actin. The apical plasma membrane has microvilli which include a
number of actin filaments. It has been questioned how microvilli are
generated and what relationship is considered between microvilli and
apical transport. As already mentioned, it is known that Rab8 effectors,
Myosin Vb, EHBP1L1, and EHBP1, are likely to bind actin filaments.
In addition, CD2AP, a binding protein of EHBP1L1, also binds to actin
filaments. These findings suggest that apical transport is closely
associated with actin filaments which are enriched in subapical
region. However, how microvilli are formed still remains a mystery.
In recent years, it has been reported that as glycosylation increases, fine
protrusions like microvilli grow on the cell surface (Shurer et al., 2019).
As already mentioned, it has been suggested that glycosylation is
important for apical transport and that apical proteins are heavily
glycosylated, so it is highly probable that glycosylation is involved not
only in apical sorting but also in the morphogenesis of the apical
plasma membrane. For this reason, it is important to revisit the apical
sorting of glycans using a number of modern techniques. To do this,
basic knowledge is required on the localization of glycosylation
enzymes and raft in the Golgi apparatus and the recycling
endosome and the molecular mechanisms underlying their
localization. To achieve this, we need to utilize tools such as live
imaging of fine structures using super-resolutionmicroscopes and FIB-
SEM, as well as techniques to identify the localization of endogenous
molecules by knockin of genes using CRISPR/Cas9, and to identify
binding molecules by proximity labeling using TurboID or APEX.
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