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Background: Prostate cancer (PCa) is a prevalent malignant tumor in males, with
a significant incidence of biochemical recurrence (BCR) despite advancements in
treatment. Adipose tissue surrounding the prostate, known as periprostatic
adipose tissue (PPAT), contributes to PCa invasion through adipocytokine
production. However, the relationship between adipocytokine-related genes
and PCa prognosis remains understudied. This study was conducted to
provide a theoretical basis and serve as a reference for the use of
adipocytokine-related genes as prognostic markers in PCa.

Methods: Transcriptome and survival data of PCa patients from The Cancer
Genome Atlas (TCGA) database were analyzed. Differential gene expression
analysis was conducted using the DESeq2 and limma packages. Prognostic
genes were identified through univariate Cox regression and least absolute
shrinkage and selection operator (LASSO) regression. A prognostic model was
developed and validated utilizing receiver operating characteristic (ROC) and
Kaplan-Meier (K-M) curves. Assessments of immune cell infiltration and drug
sensitivity were also carried out. Subsequently, the function of BNIP3L gene in
PCa was verified.

Results: A total of 47 adipocytokine-related differentially expressed genes (DEGs)
were identified. Five genes (PPARGC1A, APOE, BNIP3L, STEAP4, and C1QTNF3)
were selected as prognostic markers. The prognostic model demonstrated
significant predictive accuracy in both training and validation cohorts. Patients
with higher risk scores exhibited poorer survival outcomes. Immune cell
infiltration analysis revealed that the high-risk group had increased immune
and ESTIMATE scores, while the low-risk group had higher tumor purity. In
vitro experiments confirmed the suppressive effects of BNIP3L on PCa cell
proliferation, migration, and invasion.

Conclusion: The prognostic model independently predicts the survival of
patients with PCa, aiding in prognostic prediction and therapeutic efficacy. It
expands the study of adipocytokine-related genes in PCa, presenting novel
targets for treatment.
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Introduction

Prostate cancer (PCa) is not the only most prevalent malignant
tumor in males worldwide, but also has the second greatest
incidence internationally and is the fifth largest cause of death
from cancer (Sung et al., 2021). The prognosis of patients with
PCa has greatly improved with advances in radical prostatectomy
and radical radiation therapy (Faria et al., 2020).

However, approximately 20%–60% of these patients experience
biochemical recurrence (BCR) within 10 years (Van den Broeck et al.,
2019). Although androgen deprivation therapy is an effective treatment
modality for advanced PCa, it can eventually lead to drug resistance and
the development of more invasive and metastatic castration-resistant
prostate cancer (CRPC) (Sridhar et al., 2014). PCa, a highly
heterogeneous malignancy, warrants considerable attention due to
its increasing incidence and mortality rates (Desai et al., 2022).
Although early diagnosis can lead to favorable outcomes, patients
with advanced CRPC often still have unsatisfactory prognoses
despite the implementation of various comprehensive treatment
strategies (Sandhu et al., 2021). The adipose tissue enveloping the
prostate, known as periprostatic adipose tissue (PPAT), has been shown
to contribute to the invasion of prostate cancer through the production
of adipocytokines (Nassar et al., 2018). Although key adipocytokines
known to play a role in prostate cancer include leptin, adiponectin,
visfatin, fibroblast growth factor 21 (FGF21), and bone morphogenetic
proteins (BMPs) (Adesunloye, 2021), there is a paucity of prognostic
studies exploring the relationship between adipocytokine-related genes
and PCa. Therefore, focusing on potential prognostic research into the
relationship between PCa and adipocytokines is of paramount
importance. Moreover, identifying more reliable and effective
therapeutic targets is crucial for devising personalized treatment
plans for patients with various forms of PCa.

Adipokines, which are biologically active molecules secreted by
adipose tissue, play a significant role not only in metabolic
regulation but also in the onset and progression of cancer (Calle
and Kaaks, 2004). These molecules influence cellular behavior,
including the proliferation, migration, and apoptosis of tumor
cells, by binding to specific receptors and activating cellular
signaling pathways.

The role of adipokines is particularly noteworthy in the context
of PCa (Mistry et al., 2007). In individuals with obesity, the levels of
inflammatory adipokines such as leptin, adiponectin, interleukin-6
(IL-6), heparin-binding epidermal growth factor-like growth factor
(HB-EGF), and vascular endothelial growth factor (VEGF), which
are secreted by adipose tissue, are elevated (Baillargeon and Rose,
2006). These factors may play an important role in cancer by
modulating the activity of inflammatory cells and impacting the
tumor microenvironment (Cancel et al., 2022). Moreover, the levels
of adiponectin, an adipokine with anti-inflammatory and anti-
atherogenic properties, are typically lower in individuals with
obesity and diabetes. Several studies have found there to be a
negative correlation between adiponectin levels and the risk of
prostate cancer, suggesting its potential role in inhibiting cancer
progression (Hu et al., 2019; Kashiwagi et al., 2024). However, the
relationship between adipokines and PCa is complex, with different
adipokines potentially playing opposing roles. For instance, leptin,
which is primarily produced by adipose tissue, is elevated in
individuals with obesity and has been associated with an

increased risk of various cancers, including PCa (Xu et al., 2020).
Additionally, adipokines may increase cancer risk by affecting the
insulin and insulin-like growth factor (IGF) signaling pathways
(Pollak, 2008).

Understanding the specific mechanisms by which adipokines act
in PCa is crucial for developing new therapeutic strategies.
Modulating the levels of adipokines or their signaling pathways
may offer new avenues for PCa treatment. Furthermore, adipokines
could potentially serve as biomarkers for PCa, aiding in its early
diagnosis and prognostic assessment. An in-depth study of the
biological functions of adipokines and their mechanisms of
action in PCa is essential for fully understanding the complexity
of cancer and devising new preventative and therapeutic strategies.
However, the role of adipocytokines in the progression of PCa has
not been fully investigated.

In this study, we performed differential gene expression analysis
using PCa genomic data from The Cancer Genome Atlas (TCGA)
and established a risk model according to univariate Cox analysis
and least absolute shrinkage and selection operator (LASSO)
regression to identify five adipocytokine-related genes as
prognostic markers. The effectiveness of the risk model was
validated using receiver operating characteristic (ROC) and
Kaplan‒Meier (K–M) curves. Subsequently, a series of analyses
were conducted on patients with varying risk scores to
investigate their immune cell infiltration, potential for
immunotherapy, and drug sensitivity. Finally, experiments with
frozen human tissue samples confirmed the differential
expression of five prognostic genes. In vitro experimental results
validated the suppressive effects of BNIP3L on the proliferation,
migration, and invasion of PCa cells. In conclusion, our study
provides a novel prognostic biomarker for patients with PCa and
offers valuable guidance for treatment decisions.

Materials and methods

Data acquisition

Transcriptome and survival data of patients with PCa were
acquired from TCGA database (https://portal.gdc.cancer.gov/). A
total of 481 primary tumor (PCa) and 51 normal samples in TCGA
PCa dataset were selected for analysis; of these 481 PCa samples,
476 had effective disease-free survival (DFS) data. The GSE46602,
GSE116918, and GSE69223 datasets were obtained from the Gene
Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/).
GSE46602 has 36 PCa samples and 14 normal samples. The
validation set GSE116918 has 248 samples with available DFS
data. The GSE69223 dataset (15 PCa and 15 normal samples)
was used for expression validation. In the GeneCards database
(https://www.genecards.org/), there were 368 adipocytokine-
related genes (Supplementary Table S1).

Differential expression and functional
enrichment analysis

Differentially expressed genes (DEGs) between 481 PCa and
51 normal samples were identified using the DESeq2 (v 1.32.0)
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package (Love et al., 2014) (P < 0.05 and |log2-fold change (FC)| >
0.5). Differential expression analysis was subsequently conducted on
36 PCa and 14 normal samples via the limma (v 3.44.2) package
(Ritchie et al., 2015) in the GSE46602 dataset (P < 0.05 and |log2FC | >
0.5). Volcano plots and heatmaps were generated with the ggplot2 (v
3.3.2) (Ito and Murphy, 2013) and pheatmap (v 0.7.7) packages,
respectively. To identify adipocytokine-related DEGs, we selected
common genes that exhibited consistent expression patterns in
both the TCGA and GSE46602 datasets and were known to be
related to adipocytokines. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses of the
adipocytokine-related DEGs were performed with the
clusterProfiler (v 3.16.0) package (Wu et al., 2021) (P < 0.05).

Screening of prognostic genes

TCGA dataset was randomly divided at a 7:3 ratio into a training
set, consisting of 334 samples, and a testing set, comprising
142 samples. Subsequently, univariate Cox regression analysis
was conducted on the identified adipocytokine-related DEGs to
identify key genes (P < 0.05). Based on the key genes, LASSO
regression was implemented using the glmnet (v 4.0-2) package
(Friedman et al., 2010) (family = cox) to select prognostic genes.
Furthermore, prognostic gene expression was validated across
TCGA and GSE46602 datasets and depicted through boxplot
visualization. Immunohistochemistry images from the Human
Protein Atlas (HPA) database were subsequently utilized to
further determine the protein expression levels of prognostic
genes in normal (NC) and PCa tissues.

Evaluation of the risk regression model

The risk score for each patient with PCa in both the training and
validation cohorts was calculated based on the following formula:

Risk score � 0.049 * C1QTNF3( ) + 0.156* APOE( )
+ –0.198( ) * PPARGC1A( ) + –0.192( ) * BNIP3L( )
+ –0.149( ) * STEAP4( )

Moreover, an optimal threshold was assessed by relying on the
risk value to split patients with PCa into high- and low-risk groups.
K‒M curves were plotted for the two groups. Receiver operating
characteristic (ROC) curves were constructed for 1-, 3-, and 5-year
survival predictions. Additionally, the relationships between clinical
characteristics, such as age and TNM stage, and the risk model were
statistically analyzed using the chi-square test, with significance set
at P < 0.05. Finally, the same operation was performed on the
GSE116918 dataset.

Independent prognostic analysis

The clinicopathological characteristics from TCGA training set
samples were subjected to univariate Cox regression analysis to
investigate the risk model and its clinical significance. Following this,
the factors identified as significantly different in the univariate Cox

analysis were incorporated into a multivariate Cox analysis,
accompanied by tests for the proportional hazards (PH)
assumption. Additionally, a nomogram was developed to predict
the 1-, 3-, and 5-year survival rates of patients with PCa. Moreover,
the accuracy of the nomogram’s predictions was assessed using
calibration curves. We then categorized various clinical traits within
TCGA training set and analyzed any significant differences in risk
values among these groups. Finally, the disparities between these
groups were illustrated using boxplots for visual representation.

Immune infiltration analysis

To investigate the immune infiltration status in PCa, first,
ESTIMATE analysis was performed with the ESTIMATE (v
1.0.13) package, and the immune score, stromal score,
ESTIMATEScore, and tumor purity of each sample were
obtained. Furthermore, the single sample gene set enrichment
analysis (ssGSEA) algorithm was used to determine the rank
value of each gene based on the expression profile. The Wilcoxon
test was then applied to compare the differences in immune cell
infiltration abundance between the two groups (P < 0.05).
Subsequently, Spearman correlation analysis was conducted to
investigate the relationships between prognostic genes and
differential immune cells (P < 0.05). To assess the relationship
between the risk score and immune cells, the differences in the
expression of 28 immune cells between the two groups were also
analyzed using Wilcoxon analysis (P < 0.05).

Analysis of immune function and drug
sensitivity prediction

The expression levels of prognostic genes at immune
checkpoints (ICs) were evaluated and are presented in the form
of a boxplot. In parallel, the SubMap algorithm was implemented to
predict the response of immune checkpoint receptors. Furthermore,
the pRRophetic (v 0.5) package (Geeleher et al., 2014) was used to
calculate a variety of drugs contained in the Genomics of Drug
Sensitivity in Cancer database (www.cancerrxgene.org). Moreover,
the half-maximal inhibitory concentration (IC50) values of different
drugs for each sample were assessed. Concurrently, survival analysis
was performed following the stratification of common drugs into
high and low IC50 groups, which were determined based on their
median IC50 values.

Verification of the expression of
prognostic genes

A total of five pairs of frozen tissue samples, including both
cancerous (CA) and normal samples, were utilized in this study.
Total RNA from the samples was then separated and purified via
TRIzol (Invitrogen, Carlsbad, USA) in accordance with the
instructions provided by the manufacturer. Then, a
NanoPhotometer N50 was used to measure the concentration of
the extracted RNA. Next, reverse transcription was conducted using
a standard PCR apparatus and a SureScript First-strand cDNA
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Synthesis Kit (Servicebio; Wuhan; China). After that, 5–20 times as
much ddH2O (RNase/DNase-free) was applied to dilute the cDNA
before performing PCR amplification (CFX96 real-time quantitative
PCR apparatus) under the following conditions: predenaturation for
1 min at 95°C, denaturation for 20 s at 95°C, annealing for 20 s at
55°C, and elongation for 30 s at 72°C. Supplementary Table S2
presents the primer sequences (Tsingke; Beijing; China). Using
GAPDH as an internal control, gene expression was calculated
using the 2−ΔΔCT method.

Cell culture and transfection

Two human PCa cell lines, DU145 (Procell Pricella
Biotechnology Co., Ltd.; Wuhan; China) and PC3 (Procell
Pricella Biotechnology Co., Ltd.; Wuhan; China), were
maintained in MEM (G4550; Solarbio; Beijing; China) and Ham’s
F-12K (G4560; Solarbio; Beijing; China), respectively, supplemented
with 10% FBS (G4201; Gibco; Thermo Fisher Scientific, Inc.) at 37°C
in an atmosphere of 5% CO2. Subsequently, the cells were
transfected according to the manufacturer’s protocol. BNIP3L
(oe-BNIP3L) and its negative controls were purchased from
Genomditech (Shanghai; China) Co., Ltd.

Western blotting

Cells were washed with phosphate buffered saline (PBS) and
then lysed with 300 μL of RIPA (P0013B; Beyotime; Shanghai;
China) lysis buffer on ice for 15 min. The supernatant was
collected after centrifugation, after which the protein
concentrations were determined using the BCA assay. Forty
micrograms of protein were loaded and subjected to
electrophoresis, followed by transfer onto a polyvinylidene
fluoride (PVDF) membrane. After blocking with 5% skim milk,
the membrane was incubated with the primary antibody overnight
at 4°C and then with the secondary antibody for 2 h at room
temperature. Bands were detected using a chemiluminescence
imaging system.

CCK-8 assay

Cells were plated in a 96-well plate and cultured overnight. At
various time points (0, 12, 24, 48 h), 10 μL of CCK-8 (BS350C;
Biosharp; Hefei; China) solution was added, and the plates were
incubated in the dark at 37°C for 2 h. The optical density (OD)
of each well was measured at 450 nm using a microplate
reader. Cell viability (%) was calculated as
(ODof control wells − ODof blankwells)/ (ODof experimental

wells − ODof blankwells) × 100%.

Transwell assay

Matrigel (C0372; Beyotime; Shanghai; China) was thawed
overnight at 4°C, and all pipette tips, Transwell inserts, and 24-
well plates used in the coating process were precooled at 4°C. Fifty

microliters of Matrigel were added to each Transwell insert and
allowed to polymerize at 37°C for 30 min. The cells were trypsinized
with 0.25% trypsin (Gibco; Thermo Fisher Scientific, Inc.) and then
harvested, after which 100 μL of cell suspension was seeded into
Transwell inserts coated with Matrigel, followed by incubation in a
cell culture incubator for 48 h. Two hundred microliters of 4%
paraformaldehyde fixative were added, and the cells were fixed at
room temperature 20°C for 30 min. After the Matrigel was carefully
removed, the inserts were placed into wells containing 500 μL of
crystal violet staining solution and stained at room temperature 20°C
for 15 min. After rinsing with PBS (Gibco; Thermo Fisher Scientific,
Inc.), the cells were observed for invasive capacity under a 100x
microscope (Olympus; Tokyo; Japan) and photographed for
documentation.

Wound healing assay

Cells were trypsinized with 0.25% trypsin (Gibco; Thermo
Fisher Scientific, Inc.) and collected, after which the cell
concentration was adjusted to 2.5 × 104 cells/mL. The cells were
then plated into Ibidi wound-healing inserts, 100 μL of cell
suspension was added to each side of the insert, and each group
was tested in triplicate. After overnight culture until the confluence
reached 95%, the plate was removed, the basic culture medium was
aspirated once, and then the basic culture medium was added.
Images were taken at 0 and 48 h for observation.

Statistical analysis

Bioinformatic analysis were conducted in the R program. The
experimental data were assessed using GraphPad Prism version
8 software. T-tests were utilized to compare the two data sets.
Differences in different goups was significant at p < 0.05.

Results

Identification of DEGs related to
adipocytokines and functional enrichment
analysis in PCa

The process diagram of this study is presented in Figure 1. A
total of 14,310 DEGs1 were screened in TCGA-PRAD dataset,
including 8,076 upregulated genes and 6,234 downregulated genes
(Figures 2A, B). A total of 3,654 DEGs2 were screened in the
GSE46602 dataset, including 1,812 upregulated genes and
1,842 downregulated genes (Figures 2C, D). By taking the
intersection of DEGs1 and DEGs2, 47 adipocytokine-related
genes were obtained (Figure 2E). We also investigated the
functions and related pathways of the identified adipocytokine-
related DEGs. GO analysis revealed that the adipocytokine-related
DEGs were related to the response to peptide hormones and
insulin. In terms of cellular constituents, the primary
associations were identified as being with the collagen-
containing extracellular matrix and the neuronal cell body.
From a molecular functional perspective, these DEGs are
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involved in heme binding and tetrapyrrole binding (Figure 2F;
Supplementary Table S3). Moreover, KEGG analysis revealed that
the adipocytokine-related DEGs participated in the ErbB signaling
pathway and insulin resistance (Figure 2G;
Supplementary Table S4).

Construction and validation of an
adipocytokine-related risk signature

Based on the above 47 adipocytokine-related DEGs, we
identified six key genes (PPARGC1A, APOE, BNIP3L, STEAP4,
C1QTNF3, and FOXO1) through univariate analysis (Figure 3A;
Supplementary Table S5). Then, five prognostic genes, namely,
PPARGC1A, APOE, BNIP3L, STEAP4, and C1QTNF3, were
identified through LASSO regression analysis (Figure 3B).
Ultimately, a prognostic model for patients with PCa was
established utilizing these five adipocytokine-related DEGs.

The expression trends of five genes in TCGA-PRAD and
GSE46602 datasets were consistent and significant. As depicted
in Figure 3C, compared to those in normal tissues, APOE,
STEAP4, and C1QTNF3 expressions were upregulated in tumor
tissues, whereas BNIP3L and PPARGC1A expressions were
downregulated. Moreover, from the HPA database, we retrieved
related immunohistochemistry images to further ascertain

alterations in prognostic gene expression at the protein level.
Notably, the HPA database does not provide information on the
expression of STEAP4 and PP ARGC1A in PCa tissues. As
demonstrated in Supplementary Figure S1, we discovered that the
protein expression levels of BNIP3L were reduced, whereas those of
APOE and C1QTNF3 were increased in patients with PCa
compared to those in normal controls.

To evaluate the prognostic value of the model, each patient’s risk
value in the training set (334 samples) was computed by considering
their gene expression levels. Patients with PCa were stratified into
high- and low-risk groups based on a risk threshold value of 0.941.
In the training set, there were notable differences in survival between
the two risk groups (P < 0.05). The relationships between the risk
score and survival time, survival status, and stratification are
illustrated in Figure 4A. K–M survival curve analysis revealed a
greater survival rate in the low-risk group (Figure 4B). Subsequently,
the area under the ROC curve (AUC) values were calculated to
evaluate the accuracy of the prognostic risk model in predicting 1-,
3-, and 5-year DFS, and were determined to be 0.674, 0.726, and
0.697, respectively. These results indicate that the constructed risk
regression model had a certain predictive ability (Figure 4C).
Moreover, we discovered that age, N (lymph node status), and T
(tumor size) varied significantly across groups (Supplementary
Table S6). The links between the risk factors, clinical traits and
the expression of the five genes are shown in a heatmap (Figure 4D).

FIGURE 1
Process diagram of study.
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In summary, these findings substantiate the robustness of our risk
model in predicting the prognosis of patients with PCa.

In the testing set, there was a substantial survival disparity
between the two risk groups (P < 0.05) (Figures 5A, B).
Undoubtedly, the high-risk group had a higher risk score.
Moreover, we found that the area under the curve (AUC)
was >0.65, proving that the risk regression model was effective
(Figure 5C). Subsequently, in the GSE116918 validation set, the
survival rates of the two risk groups differed considerably, with
patients with PCa in the high-risk group having a shorter survival
rate (Figures 5D, E). Through the ROC curves, we found that the

area under the curve (AUC) was >0.65 for 1-, 3-, and 5-year survival,
suggesting that the constructed risk regression model could be used
as a prognostic model (Figure 5F).

Construction of a nomogram and
correlation analysis between the riskScore
and clinical traits

The P-values of two factors (T stage and riskScore) were less
than 0.05 according to the univariate Cox analysis (Supplementary

FIGURE 2
Analysis of differential expression and functional enrichment of adipocytokine-related genes from TCGA and GSE46602 datasets. (A) Volcano plot
of DEGs1 in TCGA-PRAD. (B) Heatmap of DEGs1 in TCGA-PRAD cohort. (C) Volcano plot of DEGs2 in GSE46602. (D) Heatmap of DEGs2 in the
GSE46602 dataset. (E) Venn diagrams of adipocytokine-related DEGs. (F) GO enrichment bar graph. (G) KEGG enrichment bar graph.
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Figure S2A; Table 1) and multivariate Cox analysis, suggesting
that both have important significance in survival prognosis
(Supplementary Figure S2B; Table 2). Thereafter, a nomogram
for survival prediction in patients with PCa was constructed
based on T stage and the riskScore (Supplementary Figure
S2C). In addition, the slope was closest to 1 at 1 year,
indicating that the prediction results were most accurate at
this time point (Supplementary Figure S2D). Additionally,
there were significant differences in the riskScore among the
groups for age and M, N, and T stage. Specifically, patients aged
60 years or older with M1, N1, or T4 disease all had higher risk
scores than their respective groups (Supplementary
Figures S2E–H).

Immune cell infiltration landscape and drug
sensitivity prediction

The tumor purity, immune scores, and ESTIMATE scores were
notably different between the two groups. The high-risk group had
increased immune and ESTIMATE scores, while the low-risk
group had increased tumor purity (Supplementary Figures

S3A–D). The different cell contents are shown in a heatmap
(Supplementary Figure S3E). The results revealed a significant
difference in the proportions of eight types of cells (activated
CD8 T cells, CD56dim natural killer cells, effector memory
CD4 T cells, eosinophils, myeloid-derived suppressor cells
[MDSCs], immature dendritic cells, helper type 2 T [Th2] cells,
and neutrophils) between the different groups (Supplementary
Figure S3F). Additionally, there was a significant negative
correlation between STEAP4 and CD56dim natural killer cells
(|cor| = −0.377649058, P < 0.01) and between STEAP4 and central
memory CD4 T cells (|cor| = −0.356259969, P < 0.01). There was a
strong positive correlation between natural killer cells and
PPARGC1A (cor = 0.524079876, P < 0.01) (Supplementary
Figure S3G; Supplementary Table S7). Immunological
checkpoint molecules are necessary for immunological function.
Therefore, we studied the potential correlation between PCa and
immune checkpoint molecule expression. The immune checkpoint
molecules of seven genes (ICOS, TIGIT, CD27, HAVCR2, PDCD1,
LAG3, and IDO1) were significantly different between the two risk
groups (Supplementary Figure S4A). Anti-PD1 therapy was
anticipated to have a greater impact on the high-risk group,
whereas the low-risk group was predicted to be more

FIGURE 3
Statistical analysis of prognostic genes in prostate cancer. (A) Univariate Cox regression forest plot. (B) LASSO logistic regression coefficient penalty
plot. (C) Boxplot of the prognostic genes in TCGA-PRAD and GSE46602 datasets. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

Frontiers in Cell and Developmental Biology frontiersin.org07

Fan et al. 10.3389/fcell.2024.1475980

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1475980


susceptible to anti-CTLA4 therapy (Supplementary Figure S4B).
Survival increased in the group treated with docetaxel at a
high IC50 (Supplementary Figure S4C). These insights
have significant implications for the therapeutic
management of PCa.

BNIP3L is decreased in cancer
tissue samples

Ultimately, our objective was to identify genes that play a role in
prognosis and have not yet been extensively investigated in the
context of PCa research. According to the RT‒qPCR verification
results using five pairs of frozen samples, APOE and C1QTNF3 were
upregulated in CA samples, and BNIP3L and PPARGC1A were
downregulated in CA samples, consistent with the above
analysis (Figure 6A).

Overexpressing BNIP3L in prostate cancer
cells decreases viability and invasion

Given the extensive research conducted on PPARGC1A, APOE,
STEAP4, and C1QTNF3 in PCa, there remains a gap in fully
elucidating the association between BNIP3L and PCa. One of the
primary objectives of our study is to identify biomarkers that have
not been thoroughly explored in the context of PCa. To this end, we
have undertaken in vitro assays aimed at investigating the potential
role of BNIP3L in the progression of PCa. Initially, BNIP3L was
overexpressed in the DU145 and PC3 cell lines, and BNIP3L
overexpression was confirmed through WB (Figure 6B).
Subsequently, we assessed the impact of BNIP3L upregulation on
the proliferation of PCa cells using a CCK-8 assay. The CCK-8 assay
demonstrated that BNIP3L overexpression reduced the proliferative
capacity of DU145 and PC3 cells compared to the empty vector
control (Figure 6C). Transwell assays also demonstrated that

FIGURE 4
Evaluation of the risk regressionmodel using the training set. (A) Risk curve for the two risk groups. (B) K–M survival curve. (C) ROC curves for the risk
models. (D) Heatmap of the correlation between clinical features and the riskScore. **P < 0.01; ***P < 0.001.
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FIGURE 5
Assessment of the risk regression model using the testing and validation sets. (A) Risk curve for the two risk groups in the testing set. (B) K–M survival
curve in the testing set. (C) ROC curves for the risk models in the testing set. (D) Risk curve for the two risk groups in the validation set. (E) K–M survival
curve in the validation set. (F) ROC curves for the risk models in the validation set.

TABLE 1 Results from the univariate analysis.

Variable coef HR HR.95L HR.95H p-value

Age 0.02653395 1.02688911 0.98299955 1.07273828 0.23381515

N 0.60573615 1.83260079 0.9815868 3.42142504 0.0572209

T 1.04772665 2.85116207 1.60841083 5.05413478 0.00033446

riskScore 0.52059275 1.68302497 1.31250617 2.15814076 4.07E-05

TABLE 2 Results of the multivariate analysis.

Id coef HR HR.95L HR.95H p-value

T 0.89716895 2.45264969 1.38225842 4.351929 0.00216665

riskScore 0.44227114 1.55623765 1.20031886 2.01769354 0.00084371
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overexpression of BNIP3L significantly inhibited the invasive
capacity of DU145 and PC3 cells (Figure 6D), while wound
healing assays indicated that upregulation of BNIP3L significantly
delayed wound healing (Figure 6E). These findings suggest
that BNIP3L inhibits the proliferation, migration, and invasion of
PCa cells, suggesting that BNIP3L is a potential target for
PCa therapy.

Discussion

In this study, we identified 47 adipocytokine-related DEGs
and used LASSO regression to demonstrate that PPARGC1A,
APOE, BNIP3L, STEAP4, and C1QTNF3 were associated with
patient survival, thereby developing a validated prognostic
model. According to our ROC and K–M analyses, our
findings indicate that the model is independent of clinical
factors and holds promise as a prognostic factor for PCa.
External validation using the GSE46602 dataset further
substantiated the effectiveness of our prognostic model in

differentiating patients with high- and low-risk PCa. This
study demonstrates that the five prognostic signatures related
to adipocytokines, identified using machine learning algorithms,
have significant independent implications for predicting the
prognosis of patients with PCa. Compelling evidence suggests
that PPARGC1A may play a dual role in promoting and
inhibiting the development of prostate tumors under certain
conditions (Zheng et al., 2022). Recent studies (Bancaro et al.,
2023) have indicated that APOE secreted by prostate tumor cells
binds to triggering receptor expressed on myeloid cells 2
(TREM2) on neutrophils, thereby promoting their senescence.
Both APOE and TREM2 exhibit increased expression in PCa and
are associated with poor prognosis. Reports indicate (Li et al.,
2021) that silencing STEAP4 leads to the activation of the
cGMP-PKG signaling pathway, which inhibits
lipopolysaccharide-induced proliferation in PCa cells.
Investigations into the mechanism by which
C1QTNF3 stimulates prostate cell proliferation have shown
that it exerts antiapoptotic effects through the protein kinase
C (PKC) signaling pathway (Hou et al., 2015). According to the

FIGURE 6
Verification of potential prognostic genes. (A) Relative mRNA expression of prognostic genes (APOE, BNIP3L, C1QTNF3, PPARGC1A, and STEAP4) in
PCa tissue and paracancerous tissues. (B) The overexpression efficiency of the BNIP3L gene in DU145 and PC3 cells was assessed usingWestern blotting.
(C)CCK-8 cell proliferation assay after BNIP3L overexpression in the DU145 and PC3 cell lines. The invasive andmigratory abilities of DU145 and PC3 cells
overexpressing the BNIP3L gene were investigated using Transwell assays (D) and wound healing assays (E). *P < 0.05; **P < 0.01; ***P < 0.001; ns:
Not significant.
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RT‒qPCR results, APOE and C1QTNF3 were upregulated, while
BNIP3L and PPARGC1A were downregulated in CA samples,
which is generally consistent with the findings of the
aforementioned studies. Notably, our RT-qPCR results
showed no significant difference in STEAP4 expression
between CA samples and normal samples, which is
inconsistent with TCGA database and the aforementioned
studies, possibly due to the heterogeneity of the tumors.

BNIP3L is a Bcl-2 family protein (Matsushima et al., 1998)
that is essential for both apoptosis and mitophagy (Diwan et al.,
2009), the latter being a process that degrades mitochondria and
can potentially limit tumor growth (Chang et al., 2017).
Dysregulation of mitophagy-related proteins, such as
FUNDC1, Parkin, BNIP3, BNIP3L/NIX, and p62/SQSTM1, has
been shown to be correlated with cancer (Drake et al., 2017).
Reports indicate that BNIP3L knockout can prevent p53-
dependent apoptosis under hypoxic conditions, thereby
promoting tumor development (Fei et al., 2004). BNIP3L
recruits TR3 to mitochondria, leading to autophagic cell death
in melanoma (Wang et al., 2014). Furthermore, the oncogenic
microRNA mir-30d facilitates tumor progression and adversely
affects the expression of autophagy-related genes, including
BNIP3L (Yang et al., 2013). Ultimately, another study has
demonstrated that the endogenous degradation of BNIP3L
confers survival to Ewing’s sarcoma cells (Gallegos et al.,
2019). These observations suggest that BNIP3L-mediated
autophagy/ferroptosis accelerates the demise of cancer cells.
However, research on BNIP3L in PCa has predominantly
focused on bioinformatics analysis (Liu et al., 2008; Cheng
et al., 2012; Liu et al., 2020; Wen et al., 2022; Watanabe et al.,
2024), and there is scant evidence from in vitro or in vivo
experimental investigations. Consequently, we selected BNIP3L
for subsequent experimental validation. Both TCGA database
analysis and the RT-qPCR results indicate that BNIP3L is
underexpressed in PCa tissues. We then explored whether
enhancing its expression could inhibit the progression of PCa
cells by conducting in vitro experiments, including WB, CCK-8,
Transwell, and wound healing assays. The results of these assays
demonstrated that overexpression of BNIP3L can suppress the
proliferation, migration, and invasion of PCa cells. Although our
in vitro experimental results are consistent with the
aforementioned studies and are likely mediated through the
regulation of mitophagy, the specific regulatory mechanisms
require further investigation. Nevertheless, BNIP3L remains a
promising prognostic marker and therapeutic target related to
PCa and adipocytokines.

Overall, this study systematically analyzed the role of
adipocytokine-related genes in PCa and successfully constructed
and validated a prognostic model with potential clinical
application prospects, identifying new molecular markers and
therapeutic targets for precision medicine in PCa. Future
research should focus on exploring the specific mechanisms of
these genes in the development of PCa, as well as how to translate
these findings into practical clinical applications. Our study, while
providing notable results, still has some limitations. This study was
retrospective, and our model’s ROC analysis showed only
moderate accuracy in predicting PCa prognosis. Furthermore,
the small sample size may have affected the outcomes.

Additionally, our cellular experiments may have been
inadequate because we only preliminarily investigated the
functional phenotypes of BNIP3L in PCa cells; therefore, future
in vivo experiments should be undertaken for further validation. In
summary, the utilization of adipocytokine-related gene signatures
for independent prognostic prediction in patients with PCa may
provide valuable insights for therapeutic targets in patient
management.
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