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In recent years, artificial intelligence (AI), especially deep learning models, has
increasingly been integrated into diagnosing and treating diabetic retinopathy
(DR). From delving into the singular realm of ocular fundus photography to the
gradual development of proteomics and other molecular approaches, from
machine learning (ML) to deep learning (DL), the journey has seen a transition
from a binary diagnosis of “presence or absence” to the capability of discerning
the progression and severity of DR based on images from various stages of the
disease course. Since the FDA approval of IDx-DR in 2018, a plethora of AI models
has mushroomed, gradually gaining recognition through a myriad of clinical trials
and validations. AI has greatly improved early DR detection, and we’re nearing the
use of AI in telemedicine to tackle medical resource shortages and health
inequities in various areas. This comprehensive review meticulously analyzes
the literature and clinical trials of recent years, highlighting key AI models for DR
diagnosis and treatment, including their theoretical bases, features, applicability,
and addressing current challenges like bias, transparency, and ethics. It also
presents a prospective outlook on the future development in this domain.
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1 Introduction

In the prelude to our discourse, it is foretold that by the year 2045, the count of adults
aged 20 to 79 afflicted with diabetes will soar to no less than 235 million souls, with the
regions of greater structural poverty bearing the heaviest burden of both diagnosed and
undetected cases (Joanne et al., 2012; Lm et al., 2013; Tan and Wong, 2022; Harreiter and
Roden, 2023; Home, Resources, diabetes, L. with, Acknowledgement, FAQs, Contact, 2024).
Diabetic retinopathy (DR), as the most common and fundamental ocular complication of
diabetes, is projected to increase to a global burden of 160.5 million cases by 2,045 (Teo
et al., 2021; Yao et al., 2024). It is a chronic eye disease influenced by a multitude of factors,
often lurking in the shadows of the early non-proliferative stage without overt clinical
symptoms, yet detectable through a series of examinations (Tien et al., 2009). As DR
progresses, with the formation of neovascularization and other developments, it can lead to
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a cascade of complications, such as diabetic macular edema (DME)
and other macular diseases, which are among themost severe vision-
threatening conditions but not easily detected by machines in their
early stages (Sundaram et al., 2023; Wu et al., 2024). To prevent
irreversible vision loss, early detection and ongoing monitoring of
diabetic retinopathy are extremely important (Sussman et al., 1982;
Pedro et al., 2016; Wei and Acy, 2018; Resnikoff et al., 2020).

AI stands as a beacon of hope, adept at mitigating the challenges
of substandard healthcare and scarce resources in regions where the
incidence of DR runs rampant (Varadarajan et al., 2020; Dong et al.,
2022). So far, AI models powered by machine learning and
algorithms have been used to help diagnose and treat diabetic
retinopathy. The models, combined with various diagnostics,
offer increased sensitivity and specificity, greatly assisting doctors
in DR detection and management. Yet, the journey is not without its
trials; biases, cost-effectiveness, and transparency are but a few of the
many hurdles that lay before us (Dsw et al., 2017; Andrzej et al.,
2020; Anand et al., 2023).

In this comprehensive treatise, we delve into the current state of
AI in diabetic retinopathy diagnosis, treatment, and surveillance,
with the goal of exposing existing shortcomings and mapping out a
strategy for enhancement and creative advancement (Figure 1).

2 Applications of artificial intelligence in
diabetic retinopathy

2.1 AI models based on imagistic output
approaches

Diabetic retinopathy is characterized by a relatively clear chronic
ocular fundus disease course (Table1, 2). Common methods for
examining diabetic retinopathy include fundus photography,
fluorescein angiography (FFA), optical coherence tomography
(OCT), and even retinal smartphone photography is gradually
being applied in the examination of diabetic retinopathy. AI
models primarily diagnose the severity of diabetic retinopathy by
analyzing the results of these examination methods, thereby
suggesting corresponding treatment plans. AI assistance in
diabetic retinopathy now also focuses on evaluating treatment,
forecasting disease outcomes, and predicting the course of retinal
lesions. Table 3 provides a detailed display of the advantages and
disadvantages, applicability, and corresponding AI models used for
these diagnostic methods.

The main models and their characteristics are as
follows (Figure 2).

FIGURE 1
Introduction for AI in DR.
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2.1.1 Fundus photography
Analyzing fundus photographs is one of the most advanced

directions in DR AI models, with many approved or in-use models
relying on this approach for diagnosis or staging. Here are the
translations of some prominent models.

IDx-DR, approved by the FDA in 2018, is the first medical
device to use artificial intelligence to detect more than mild DR in

adults with diabetes (Rajesh et al., 2023). This software utilizes deep
learning algorithms, particularly convolutional neural networks, to
analyze fundus images taken with the Topcon NW400 retinal
camera (Andrzej et al., 2020; Commissioner, 2020).
Convolutional Neural Networks (CNNs), a form of deep learning
architecture, are extensively applied in areas like image and video
recognition, as well as natural language processing. They adeptly

TABLE 1 International clinical diabetic retinopathy severity grading criteria (Antonetti et al., 2012; Stitt et al., 2016).

Disease severity Seen on examination of mydriatic eye disease

No significant DR No abnormalities

Mild NPDR Microaneurysms only

Moderate NPDR Between mild NPDR and severe NPDR

Severe NPDR Presence of any of the following changes but no signs of PDR: (1) more than 20 intraretinal hemorrhages in any of the four quadrants, (2)
venous beading changes in 2 or more quadrants, (3) significant intraretinal microvascular abnormalities in at least one quadrant, and no

changes in PDR

PDR One or more of the following changes: (1) neovascularization (2) vitreous hemorrhage or preretinal hemorrhage

DR, diabetic retinopathy; NPDR, non-proliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy.

TABLE 2 Stages of diabetic retinopathy in China (Xiaoxin, 2023).

Type Stage Seen on an eye examination

Simplicity I Have a micro-hemangioma or have a small hemorrhage

Ⅱ There is a yellow “hard oozing” or bleeding

Ⅲ There is a white “soft oozing” or bleeding

Proliferative IV There is neovascularization in the fundus or vitreous hemorrhage

V There is neovascularization and fibrous hyperplasia in the fundus

VI There is neovascularization and fibrous hyperplasia in the fundus, complicated by retinal detachment

TABLE 3 Characteristics and applications of imaging examination (Gulshan et al., 2016).

Imaging tests Peculiarity Suitable situations Corresponding to AI models

Fundus
photography

Non-invasive, most widely used and less costly;
However, the field of view is limited, making it

difficult to detect minor lesions

Initial screening, grading of diagnosis IDx-DR, EyeArt, Retmarker, Google, SELENA,
Bosch DR algorithm (Pritam et al., 2017), EasyDL,
DeepDR (Ling et al., 2021), DeepDR Plus (Ling et al.,
2024), Medios AI, PhelcomNet (Paisan et al., 2016;

Hasan and Siddiqui, 2023)

FFA Invasive, highly sensitive, easy to observe changes
in microa and microvasculature, showing

leakage; However, it is time-consuming, and the
dye may cause adverse reactions

Screening for DR in tolerable populations,
particularly for early lesions and observation

of macular edema and leakage

ResNet18 models (Gao et al., 2023), etc., as well as
unnamed models

Ultrasound It is not commonly used and it is difficult to
directly observe fundus lesions

Concurrent refractive interstitial opacity
assists in the diagnosis of retinal detachment

or hyperplastic traction

Not yet

OCT It can quantitatively measure retinal thickness,
check macular edema and epiretinal membrane,
and cannot directly show vascular lesions, but can

be stratified with AI

There are no significant PDR changes but
significant visual acuity loss, mainly for DR

macular degeneration

VGG16 CNN models (Ibrahim et al., 2020), CAD
systems, etc

OCTA Vascular details are visualized and quantified, but
projection artifacts are formed

When retinal vascular lesions need to be
analyzed in specific studies

VGG19 architecture (Le et al., 2020), etc.,

Ultra-wide-angle
retinal imaging

High resolution, wide field of view; But the
perimeter is distorted

Fundus examination RETFound model, DeepUWF-Plus system (Liu
et al., 2023), etc.,

FFA, fluorescein fundus angiography; OCT, optical coherence tomography; OCTA, optical coherence tomography angiography.
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extract features from input data through a structured sequence of
layers. The fundamental workflow, as shown in Figure 3,
encompasses: ingesting input data, identifying local features via
convolutional layers, applying non-linear transformations with
activation layers, downsizing feature dimensions through pooling
layers, possibly bolstering generalization with normalization layers,
synthesizing features in fully connected layers, and concluding with
predictions made by the output layer. Throughout training, CNNs
use loss functions to assess the difference between predicted and
actual labels, adjusting weights through backpropagation.
Optimization techniques such as gradient descent are employed
to fine-tune parameters, ensuring consistent validation
performance. Post-training, the model undergoes assessment on
the test set and is subsequently ready for deployment in real-world
visual tasks like image classification and object detection. The
algorithm, trained on a large dataset of annotated images, can
identify and classify retinal lesions such as microaneurysms,
hemorrhages, and neovascularization. Doctors upload digital
images of the patient’s retina to a cloud server running the IDx-
DR software (Goldstein et al., 2023). If the image quality meets the
standards, the software provides one of two results: 1) “More than
mild DR detected: refer to an eye care professional” or 2) “More than
mild DR not detected; rescreen in 12 months” (Commissioner,
2020). Compared to stringent human grading standards, the

algorithm has a sensitivity of 87.2% and a specificity of 90.7%.
Currently, the IDx-DR algorithm has been rebranded as
LumineticsCore (Rajesh et al., 2023). In contrast to the IDx-DR
2.0, the IDx-DR X2.1 represents an advanced hybrid system that
employs several Convolutional Neural Networks (CNNs). These
networks are trained to identify signs of bleeding, exudates, and
other pathological changes, in addition to the regular anatomy of the
retina. They are seamlessly incorporated into a traditional
framework akin to other prototype IDPs. The analytical software
categorizes results into four distinct outputs: 1) Negative: suggesting
an absence or only a mild degree of diabetic retinopathy (DR), 2)
rDR: indicating the presence of referable diabetic retinopathy, 3)
vtDR: indicating vision-threatening diabetic retinopathy, 4) Low
image quality: signifying issues with the examination protocol or
substandard image quality. This apparatus applies a suite of CNN-
based detectors to each image captured during the examination.
These detectors are meticulously trained and calibrated to discern
both the normal anatomy, such as the optic disc and fovea, and the
telltale signs of DR, including hemorrhages, exudates, and
neovascularization (Michael et al., 2016). The latest FDA-
approved version, IDx-DR 2.3, shows improved capability in
reading ungradable images and higher processing speed
compared to version 2.0, although the DR classification
algorithm remains unchanged (Libres, 2024). However, its

FIGURE 2
Main AI options in DR.
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performance varies with different detection standards, primarily
influenced by factors such as image quality, ethnicity, and the
graders (Hansen et al., 2015; Andrzej et al., 2020).

Besides IDx-DR, EyeArt, as another extensively tested model
approved by the FDA in 2020, is a deep learning-based classification

tool developed by Eyenuk (Yingfeng et al., 2012). It is primarily
designed for healthcare providers to automatically detect more than
mild diabetic retinopathy (mtmDR) and vision-threatening diabetic
retinopathy (vtDR) in adults who have not been previously
diagnosed with these conditions (Businesswire, 2024). This

FIGURE 3
Steps for diagnosing DR with CNN.
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detection is performed using fundus images taken with Canon CR-2
AF and Canon CR-2 Plus AF cameras. EyeArt is the first FDA-
approved autonomous AI technology capable of simultaneously
detecting mtmDR and vtDR in both primary care and eye care
settings through a single test. Additionally, EyeArt is the first FDA-
approved autonomous AI technology that can provide diagnostic
outputs for both eyes of a patient. The accuracy and sensitivity of
EyeArt have been subjects of debate. According to clinical trials
conducted by the developers, EyeArt demonstrated a sensitivity of
96% and specificity of 88% for detecting mtmDR, and a sensitivity of
92% and specificity of 94% for detecting vtDR. All eyes with an
ETDRS score of 43 or higher were accurately identified as mtmDR
positive. In a clinical study conducted in the UK, EyeArt showed a
sensitivity of 95.7% and a specificity of 54.0% (Heydon et al., 2021).
In a prospective study in the US, the sensitivity for mtmDR was
95.5% and the specificity was 85.0% (Eli et al., 2021). In a recent
community screening, the diagnostic accuracy was 81% (101/
124 eyes), and the referral accuracy was 83% (103/124 eyes)
(Vought et al., 2023). These results indicate that EyeArt’s
performance can vary significantly depending on the tested
population and reference standards.

In addition to EyeArt and IDx-DR, several other AI models have
received Class IIa certification (CE Mark) in the European Union
(EU), including Retmarker, Google, and the Singapore Eye Lesion
Analyzer (SELENA) (Anand et al., 2023). Here are some brief
introductions.

RetmarkerDR uses a feature-based machine learning model to
screen for DR and detect biomarkers such as microaneurysms
(MAs) (Retmarker, 2024b). It primarily relies on fundus images
for diagnosis and is distinguished by its ability to compare current
images with previous ones to assess disease progression (Andrzej
et al., 2020). Although angiography is the gold standard for detecting
microaneurysms, it is an invasive procedure that not all patients can
tolerate. There is a significant correlation between MA turnover
rates based on angiography and those based on retinal imaging
(Rajesh et al., 2023). RetmarkerDR employs an advanced proprietary
co-registration algorithm that automatically overlays retinal images
and complements state-of-the-art MA detectors to calculate
important rates related to MA turnover (formation and
disappearance rates) (Haritoglou et al., 2014; Pappuru et al.,
2019). This software can detect the rate of new microaneurysm
formation and the disappearance of old microaneurysms, known as
“microaneurysm turnover” (Pappuru et al., 2019; Li et al., 2019).
This capability not only helps in detecting DR progression but also
in evaluating the efficacy of treatments such as dexamethasone
(Takamura et al., 2023). The specificity and sensitivity of
RetmarkerDR’s early DR screening function have varied across
different trials, but generally, both specificity and sensitivity have
exceeded 90% (Sa, 2024a; Sa, 2024b; Retmarker, 2024a), although
further research on its biomarker detection capabilities is needed.

Google developed a convolutional neural network-based
algorithm for detecting DR in 2016, similar to IDX-DR (Gulshan
et al., 2016). The algorithm was validated on multiple datasets,
including EyePACS, Messidor-2, and a nationwide DR screening
program in Thailand (Gulshan et al., 2019). On the Messidor-2
dataset, the algorithm achieved a sensitivity of 96.1% and a
specificity of 93.9% in high-sensitivity settings, and a sensitivity
of 87.0% and a specificity of 98.5% in high-specificity settings

(Andrzej et al., 2020). In Thai primary care centers, the
algorithm showed 91.4% sensitivity and 95.4% specificity in
detecting severe non-proliferative DR, proliferative DR, or
referable DME, surpassing a U.S. retinal specialist panel’s
consensus (Paisan et al., 2022). User feedback suggests the AI
system’s prompt results are helpful for referrals, yet uploading
images can be difficult. Additionally, the algorithm occasionally
deems images ungradable, requiring re-imaging or manual review
(Ian Gerard et al., 2024).

SELENA, developed by the Singapore Eye Research Institute
(SERI), is a deep learning-based system designed to enhance the
efficiency of DR screening by analyzing fundus photographs
(Gulshan et al., 2016). It also provides referral recommendations
and grades the severity of DR. It was based on VGGNet, which is also
a type of Convolutional Neural Network (CNN) like that of IDx-DR.
The development of SELENA utilized multi-ethnic datasets to
ensure its applicability across different ethnic groups (Wong
et al., 2021). From (Wong et al., 2021), in primary validation
datasets, SELENA demonstrated outstanding performance in
detecting referable DR, with an AUC of 0.936, sensitivity of
90.5%, and specificity of 91.6%. For vision-threatening DR,
SELENA achieved an AUC of 0.958, sensitivity of 100%, and
specificity of 91.1%. Additionally, SELENA can detect glaucoma
and age-related macular degeneration (AMD), showing high
efficiency in these areas as well (Andrzej et al., 2020). To assess
real-world viability, SELENA was evaluated in a mobile unit in
Zambia, achieving an AUC of 0.973, 92.25% sensitivity, and 89.04%
specificity for detecting referable DR, proving its effectiveness across
different populations and limited-resource environments (Valentina
et al., 2019). Furthermore, SELENA has shown excellent
performance in epidemiological studies, significantly reducing the
time and cost required for manual assessments. In one trial,
SELENA was 360 times faster than manual evaluation, and the
risk factors identified by SELENA, including diabetes duration,
HbA1c levels, and systolic blood pressure, were consistent with
those identified manually (Rajesh et al., 2023). The outcomes were
comparable, underscoring SELENA’s strength in handling large
datasets. The Singapore team intends to broaden SELENA’s use,
integrating OCT for enhanced glaucoma detection and forecasting
myopia, aiming for personalized healthcare (Wong et al., 2021).

Beyond the FDA and EU-approved models above, other
promising models are yet to receive market release approval.

For instance, the Bosch DR algorithm can generate AI outputs
based on non-mydriatic, single-field fundus images, as well as
perform grading assessments using seven-field stereoscopic,
mydriatic ETDRS imaging on the same eye (Pritam et al., 2017).
EasyDL, developed by Baidu, utilizes the publicly available Kaggle
diabetic retinopathy dataset and employs transfer learning
techniques to establish an AI diagnostic model for fundus image
analysis. It has demonstrated good performance in both training and
testing sets, achieving an accuracy rate of over 91% and an AUC of
0.935 (Cao et al., 2022).

It is noteworthy that the model DeepDR along with its evolved
version DeepDR Plus, can be considered a significant breakthrough
in AI research for diabetic retinopathy (DR) lesions.

DeepDR, developed by Professor Jia Weiping’s team from the
Department of Endocrinology and Metabolism at the Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University, the Shanghai
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Diabetes Institute, and the Shanghai Diabetes ClinicalMedical Center,
is based on the world’s largest fundus image database. The system
comprises three subsidiary networks: an image quality assessment
network, a lesion detection network, and a diabetic retinopathy (DR)
grading network. It employs a pre-trainedmodel known as ResNet for
feature extraction and leverages Mask-RCNN for task-specific
architecture design, catering to image classification or
segmentation tasks. By applying transfer learning techniques,
DeepDR is fine-tuned on a labeled DR grading dataset, thereby
enhancing its capabilities in lesion detection and segmentation
performance. It employs a multi-task learning framework with
enhanced transfer learning to automatically diagnose the full
spectrum of DR, from mild to proliferative stages. Additionally, it
provides real-time feedback on the quality of fundus images and
performs lesion segmentation (Ling et al., 2021).

DeepDR Plus, a recent advancement in AI for DR diagnostics by
Shanghai Jiao Tong University and Tsinghua University, has created
an early warning system for DR complications. This system uses
deep learning to analyze retinal image sequences and accurately
predict DR progression, potentially informing new global screening
and prevention strategies. From their new article (Ling et al., 2024),
DeepDR Plus evolved from its predecessor, DeepDR, and has been
developed, validated, and externally tested. The system encompasses
a metadata model, a fundus image model, and a combined model.
The fundus image model utilizes the ResNet-50 architecture as a
feature extractor and enhances significant parts of the feature map
through a self-attention mechanism. Initially, the system was pre-
trained using 717,308 retinal images from 179,327 diabetic patients.
Following this, a multiethnic dataset comprising 118,868 images of
29,868 diabetic patients was employed to train and validate the
DeepDR Plus system. The system predicts event timings by
estimating survival functions, using a fixed-size Weibull mixture
model to simulate individual survival distributions. The deep
learning network’s parameters are optimized by maximizing the
likelihood function through self-supervised pre-training with MoCo
v2, improving feature extraction. In predicting DR progression, the
system achieved concordance indexes ranging from 0.754 to
0.846 and integrated Brier scores between 0.153 and 0.241 for all
time points up to 5 years. The system’s validation in real-world
studies showed that DeepDR Plus’s personalized screening intervals
could extend the average interval to 31.97 months, from 12, and
reduce the delayed detection rate of DR progression to 0.18%. This
capability allows DeepDR Plus to support individualized risk
assessment and management of DR by predicting the risk of DR
progression within the next 5 years from a single retinal
examination. The system can reduce unnecessary screenings,
increase screening efficiency, potentially extend screening
intervals, and minimize delayed detection of severe DR
progression. Furthermore, its integration into clinical and digital
workflows can facilitate personalized intervention strategies for the
management of diabetic retinopathy.

Moreover, the process of uploading and processing images has
become increasingly convenient and affordable. Systems such as
Medios AI, EyeArt, and PhelcomNet have achieved high accuracy in
diagnosing fundus images captured by smartphones (Pedro et al.,
2016; Hasan and Siddiqui, 2023).

In summary, as the most mainstream and cost-effective method
in current research, AI based on fundus photography has achieved

many results in the early screening, prognosis, and disease
progression monitoring of DR, but still needs to further improve
its sensitivity and specificity.

2.1.2 OCT and OCTA
Optical Coherence Tomography (OCT) serves as a primary

diagnostic tool with high-quality equipment that makes it easy to
detect any harmful changes. OCT is particularly effective for
visualizing various retinal layers and has been extensively
researched for diagnosing retinal diseases. For instance, by
integrating features manually extracted from Regions of Interest
(ROI) with the VGG16 Convolutional Neural Network (CNN)
model, OCT imaging has been used to diagnose conditions such
as macular edema, macular hole, central serous retinopathy,
choroidal neovascularization and pigment epithelium detachment
(Ibrahim et al., 2020). Many AI models based on OCT are primarily
used for monitoring conditions such as edema and degeneration in
the macula (Gulshan et al., 2019; Sheng et al., 2022; Lam et al., 2024).
With the introduction of network for automatic quantification of
macular edema (Tsuboi et al., 2023) and integration networks that
segment multiple layers of the retina, the detection and grading of
DR using OCT scans have achieved high accuracy and specificity
(ElTanboly et al., 2017; Sandhu et al., 2018; Li et al., 2019; Ghazal
et al., 2020).

A recent study (Elgafi et al., 2022) segmented retinal layers,
extracted 3D features (including first-order reflectivity and the 3D
thickness of each OCT layer), and employed a backpropagation
neural network for classification. The results showed that the system
achieved an accuracy of 96.81% using Leave-One-Subject-Out
(LOSO) cross-validation. Integrating multi-layer features
enhances DR detection accuracy. 3D features provide better
lesion detail capture than 2D, surpassing single-feature and other
ML methods.

Additionally, Optical Coherence Tomography Angiography
(OCTA) can be used to identify retinal diseases. OCTA provides
detailed views of the eye’s vasculature and retina. Research (Eladawi
et al., 2018) has created a DR detection system utilizing OCTA
images, extracting features like FAZ area, vessel density, and caliber
through segmentation. These features were analyzed using a Support
Vector Machine (SVM) classifier, achieving an accuracy of 94.3%,
sensitivity of 97.9%, and specificity of 87%. Another study (Heisler
et al., 2020) using integrated deep learning techniques trained a
network on the VGG19 architecture, achieving a best accuracy of
92%, outperforming other architectures. Research (Le et al., 2020)
using the VGG16 CNN architecture to diagnose DR with OCTA
reported an accuracy, specificity, and sensitivity of 87.27%, 90.82%,
and 83.76%, respectively.

Further studies have combined OCT and OCTA modalities to
identify different levels of DR. For example, one study (Sandhu et al.,
2020) used both OCTA and OCT to grade Non-Proliferative
Diabetic Retinopathy (NPDR) in 111 patients. For OCTA, they
extracted features such as vessel density, FAZ size, vessel caliber, and
the number of intersections and bifurcations. For OCT, they
performed retinal layer segmentation and extracted features from
each layer, represented by thickness, reflectivity, and curvature.
Finally, a Random Forest classifier was used for classification,
achieving an accuracy of 96%, sensitivity of 100%, and
specificity of 94%.
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In summary, OCT offers high accuracy, particularly in cases
where there is suspicion of a series of macular complications caused
by vascular changes. However, due to its relatively higher cost and
the already high accuracy of fundus photography, the widespread
adoption of OCT models is comparatively limited.

2.1.3 FFA
Fluorescein Fundus Angiography (FFA) is also a common

method for fundus examination in detecting DR. Under an
ophthalmoscope, what is deemed a “normal” fundus may reveal
microaneurysms and microvascular changes during angiography.
Early neovascular buds and areas of non-perfusion are not easily
detectable with an ophthalmoscope, but they can be clearly observed
through FFA, which is currently still the gold standard for retinal
vasculature (Yang et al., 2022). However, due to its invasive nature
and complexity, AI models using FFA for early DR screening are
less common.

The earliest researchers proposed an automatic method for
detecting Neovascularization of the Posterior Pole (NPA) in FFA
images of patients with diabetic macular edema, laying the
foundation for intelligent guidance in laser applications (Jin
et al., 2020). Additionally, there is also research on a Multi-Path
Cascade U-net (MCU-net) architecture for blood vessel
segmentation in FFA sequence images, indicating its potential
application in the quantitative analysis of vascular morphology in
FFA sequence images (Gang et al., 2021; Ghassemi et al., 2021; Gao
et al., 2023). Deep learning algorithms have been used to detect
leakage points in Central Serous Chorioretinopathy (CSC) from
dynamic FFA images (Chen et al., 2021).

In the most recent study (Gao et al., 2023), a research team
collected and annotated a large number of FFA images, training a
CNN model to recognize image quality, localization, eye side,
imaging phase, and various lesions associated with DR. The
results showed that the ResNet18 model performed excellently in
pre-diagnostic assessment and lesion detection, with accuracy
comparable to junior ophthalmologists. This study not only
underscores AI’s potential to improve ophthalmic diagnostics but
also suggests the model could enhance medical services, especially in
resource-limited areas.

Despite some limitations, such as the singularity of the dataset
source and the restriction of lesion types, the study lays the
groundwork for future multi-center, multi-disease type FFA
image analysis and automatic report generation.

In addition to AI models based on the aforementioned fundus
photography, OCT, and FFA, alternative approaches include AI
models for ultra-widefield retinal imaging, such as DeepUWF-plus
and RETFound, which extend traditional fundus photography.
However, these newer models lack extensive clinical trials.
Moreover, there are hybrid approaches that combine one or two
of the aforementioned techniques, like OCT and FFA. Due to
limitations in length, these are not further discussed here.

2.2 AI model based on pathophysiological
characteristics

In addition to diagnosing and treating DR through direct
imaging of retinal lesions, AI can also be utilized based on other

pathophysiological characteristics of DR. However, research in this
area is relatively limited. These models support comprehensive and
differential DR diagnosis from a mechanistic perspective. These
models support comprehensive and differential DR diagnosis from a
mechanistic perspective. This field warrants further research and
investment.

2.2.1 Blood glucose
Hyperglycemia, one of the primary causes of DR, is crucial for

early screening and referral. Continuous glucose monitoring (CGM)
systems, supported by portable devices, facilitate a deeper
understanding of patients’ blood glucose level trends, including
the amplitude, direction, timing, and frequency of glucose
fluctuations (Jan et al., 2016). However, due to the multifactorial
nature of DR, it is necessary to incorporate multiple metrics [such as
Time in Range (TIR) andMean Blood Glucose (MBG)] within CGM
systems to accurately reflect the relationship between complications
and CGM data (Irl, 2015; Yang et al., 2021).

Moreover, DR’s nonlinear nature challenges traditional risk
models (Keith et al., 2014), a challenge that traditional risk
prediction models cannot adequately address. To overcome the
limitations of CGM data analysis in constructing risk forecasting
models, researchers from the School of Information Science and
Engineering at Northeastern University, in collaboration with the
Sixth People’s Hospital of Shanghai Jiao Tong University and the
Shanghai Diabetes Clinical Center, have proposed the consideration
of deep learning techniques, which can effectively uncover nonlinear
relationships (Tao et al., 2023).

In July 2023, they introduced a novel model known as the
Double Deep Latent Autoencoder (DDLA) (Tao et al., 2024). From
(Tao et al., 2024), this model uses CNN and Long Short-Term
Memory (LSTM) networks to analyze time-series data, improving
feature extraction and classification. The process involves feature
extraction, handling missing data, feature fusion, and diagnosis
through a fully connected network, culminating in the use of a
softmax layer to output the most likely type of the current sample
(either DR or non-DR in T2D patients). Preliminary results show
an accuracy of 0.89 and a specificity of 0.97 for T2D patients.
Further clinical trials are needed to validate its effectiveness in
managing DR.

2.2.2 Proteomics
DR is driven by multiple factors, including hyperglycemia,

inflammation, and vascular dysfunction. Proteomic analysis can
identify various cell-specific protein markers involved in these
processes, providing auxiliary insights into the cellular drivers of
DR and their roles at different disease stages (Wolf et al., 2023).
Initially, aqueous humor (AH) and vitreous fluid samples are
collected from patients for liquid biopsy (Gold et al., 2010).
High-resolution proteomics via aptamer assays identifies
numerous proteins, which are then integrated with scRNA-seq
data from diverse ocular and extraocular cells (Tavé van et al.,
2020; Joseph et al., 2021; Pradeep et al., 2021; Wolf et al., 2022; Wolf
et al., 2023). This integration allows for the identification of the
detected proteins’ cellular origins, thereby pinpointing markers
unique to specific cells. AI models can extract local spatial
features and global temporal dependencies, enabling the
prediction of disease progression.
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From Wolf et al. (2023) we can see that in the aqueous fluid of
individuals with DR, changes in the expression of marker proteins
from immune cells (B cells, macrophages, neutrophils, T cells, and
mast cells), vascular endothelial cells, pericytes, and retinal glial cells,
as well as liver proteins, have been observed. Studies have identified
liver-derived proteins in DR as being associated with the acute phase
response, acute inflammatory response, coagulation, and wound
healing (Wolf et al., 2023). Immune cells, particularly macrophages,
play a key role in the progression of late-stage DR in humans (Lee
et al., 2015). Regarding the key factor of neovascularization used for
staging DR, 58 angiogenic proteins showed different expression
levels in DR. Twenty-nine of these proteins were elevated in both
stages of the disease, whereas the remaining 29 were uniquely
elevated in PDR and not in NPDR. Detecting these proteins
through the model helps provide a comprehensive understanding
of the current stage of DR. Additionally, therapeutic targets such as
VEGFA for both PDR and NPDR can help guide more targeted
treatment strategies.

In summary, this model provides a comprehensive risk
assessment, distinguishing between NPDR and PDR based on the
expression of angiogenic proteins and other markers. This approach
provides a thorough molecular risk assessment for DR and aids in
detecting other diseases for differential diagnosis and broad
screening. Current research in this area is still relatively limited,
warranting further attention and investment. In addition to these
markers used in AI models, numerous studies are currently
exploring similar markers. For instance, we can analyze
angiogenic properties through core proteins and proteoglycans to
predict the efficacy of anti-VEGF drugs (Low et al., 2021), all of
which could be incorporated into future AI models for predicting
and monitoring disease progression and treatment status.

The aforementioned models primarily focus on analyzing
various retinal surface or cross-sectional images, which generally
have inherent limitations. Firstly, building a large and diverse
database is essential for the model’s broad training and
applicability. Sample diversity, including ethnic variations, image
clarity, and pupil dilation status, is critical for ensuring model
accuracy and generalization to new images.

In practical applications, to enhance the model’s accuracy and
reliability, choose AI models trained on similar databases or adjust
input image resolution, capture conditions, and parameters to
match the training data.

Furthermore, the model’s interpretability and robustness should
be considered, ensuring that the model can still provide stable and
accurate analytical results in the face of poor image quality or noise.
This may necessitate further algorithm optimization and model
tuning to enhance the model’s adaptability to various image
variations.

3 Prospects and challenges of AI in the
diagnosis of DR

3.1 AI technology issues and challenges

3.1.1 Bias and prejudice issues
AI algorithms necessarily undergo pre-training and training

through databases, which may involve statistical methods

(Valentina et al., 2019). Since the essence of a database is a
sample derived from the population, it can possess all kinds of
biases that can occur in samples and statistical processes, such as
selection bias and confounding bias, etc., (Sheng et al., 2022). To
boost the algorithm’s accuracy, we need to expand the dataset,
diversify sample types, and adjust the algorithm for optimal sample
sizes. Also, integrating multi-parameter and regression analyses, as
well as managing standardized variables and parameters, is crucial.
Addressing algorithmic biases, such as those from dataset
imbalances, requires more and varied samples (Popescu Patoni
et al., 2023). Feature selection bias mainly occurs because some
important clinical indicators are ignored in the feature extraction,
which requires cooperation with clinical doctors to comprehensively
enter or select the most symbolic reference indicators (Sheng et al.,
2022). The algorithm excels on familiar datasets but struggles with
new ones, highlighting the need for continuous training to improve
its generalization (Poly et al., 2023). In the improvement of
algorithms, the “black box” poses a substantial challenge. AI
models, especially deep learning models, are usually inexplicable
to the outside world, and their decision-making process lacks
transparency (Dey et al., 2022). This implies that while these
models can precisely detect image patterns and diagnose, their
reasoning process remains unclear. This lack of transparency
makes it hard for users, including doctors and patients, to grasp
the model’s mechanisms, limiting deep understanding, utilization,
and enhancement of the AI. It also complicates the oversight of the
machine’s decision-making, affecting its accountability and
verifiability (Ghassemi et al., 2021). To solve these problems,
researchers and developers are exploring explainable AI (XAI),
local interpretation, model simplification, etc., At the same time,
the government and related departments also need to formulate
relevant policies and regulations, requiring AI systems to provide a
certain degree of transparency and interpretability (Muhammad and
Bendechache, 2024). A range of strategies is required to establish a
rigorous and orderly AI environment.

3.1.2 More development directions of AI
Multimodal imaging, combining data from various imaging

modalities, will be an important area of growth, providing richer
data for AI analysis (Zhenwei et al., 2024). Integrating various
examination results such as OCT, FFA, and fundus photography
into comprehensive analysis will offer a more detailed perspective on
retinal conditions and improve the sensitivity and specificity of
diagnosis (Xinyu et al., 2023). AI can analyze big data by integrating
various factors like imaging with blood sugar levels and risk factors,
using deep learning to identify image features such as vascular
abnormalities, exudation, retinal edema, etc., to jointly calculate the
DR risk probability. AI algorithms enhance analysis accuracy by
preprocessing images through noise reduction, contrast adjustment,
and normalization (Moor et al., 2023). Additionally, they utilize
multimodal data to predict the progression of DR, patient responses
to treatment, and assess the risk of other difficult-to-detect diabetes-
related complications, such as diabetic nephropathy, which are
based on microvascular lesions like DR (Lakshminarayanan et al.,
2021). We can develop AI models capable of identify patterns of
comorbidities such as diabetic nephropathy and cardiovascular
diseases. In summary, there are too many areas worth improving
and innovating.

Frontiers in Cell and Developmental Biology frontiersin.org09

Xu et al. 10.3389/fcell.2024.1473176

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1473176


3.2 Clinical improvement

In advancing AI technology, the collaboration between computer
professionals and clinical doctors is crucial. Clinicians play a significant
role, as many AI models are tested by comparing their performance
against doctors’ diagnoses, using existing cases as training data
(Nakayama et al., 2023). The accuracy of these models, including
their specificity and sensitivity, is often evaluated based on clinician
outcomes, which directly impacts test effectiveness. While the primary
DR grading system follows international standards, if these do not
support effective AI training, alternative grading methods can be
considered (Gulshan et al., 2016). Moreover, AI should enhance DR
diagnosis and monitoring, particularly by refining the referral process
upon detecting suspicious lesions, to leverage AI’s potential for efficient
screening. Additionally, Though there is no definitive evidence that
different diabetes types cause unique retinopathy symptoms, some
studies have shown that they may have different incidence rates,
disease courses, pathogenic mechanisms, metabolomic characteristics,
variable response to treatments (Romero-Aroca et al., 2017; Eid et al.,
2019; Matuszewski et al., 2020; Nakayama et al., 2021). The need for AI
model design to distinguish between types like Type 1 and Type
2 diabetes for detailed analysis is an important area for healthcare
professionals to advance AI in clinical settings. Continuously refining
DR diagnostic methods is essential for enhancing its detection rate.
Additionally, we need to focus more on pathophysiological and
biochemical mechanisms at the molecular level to discover more
biomarkers for diagnosis and prediction. All of these require
ophthalmologists, endocrinologists, and radiologists to work together
to find appropriate solutions.

3.3 Selection of AI model

Once an AI model is created, we must not only know how to
improve it but also how to utilize it effectively. When selecting a
model, fully consider the actual situation. For example, in the early
stages of diabetes, if resources and patient health allow, an AI model
based on FFA (Joseph et al., 2021) can be chosen for its accuracy.
However, for convenience and non-invasive screening, an AI model
based on fundus photography might be more appropriate (Lam et al.,
2024). If you want to monitor the course of DR development, you can
use the Singapore model SELENA (Wong et al., 2021) or the DeepDR
Plus (Lam et al., 2024) from China. And if you want to make a
differential diagnosis or evaluate the effectiveness of treatment targets
in the case of multiple eye diseases, you can use molecular diagnostic
models (Wolf et al., 2022). For long-term screening and management
of early and mild cases of diabetes, you can first use a DR diagnostic
model based on (Liu et al., 2023) for screening and then refer.

3.4 Cost-effectiveness solution of AI
model research

AI in DR diagnosis streamlines preliminary screening for
doctors, particularly useful for high-volume medical facilities
(Chung et al., 2024). It automates and continuously performs
preliminary diagnostic tasks, ensuring accuracy and sensitivity,
reducing misdiagnosis and related medical costs (Chung et al.,

2024). Additionally, AI enables telemedicine, benefiting remote
patients by reducing travel expenses and time (Gunasekeran
et al., 2020).

However, despite the long-term cost savings, the initial
investment in AI systems can be substantial. This includes
software licensing, hardware procurement (such as high-
performance computing resources), and professional training
costs (Nakayama et al., 2023). Besides this, AI models must
regularly incorporate new medical findings and data,
necessitating ongoing research and development, maintenance,
and upgrades to maintain their precision and efficacy
(Ruamviboonsuk et al., 2021).

Research suggests that in DR screening, the most cost-effective
approach is a semi-automated system where AI performs an initial
assessment, followed by human review of DR-positive cases.
However, in low-income regions, where AI screening is most
needed, the cost-effectiveness of AI may be diminished by
technology investment challenges, hindering AI adoption
(Cleland et al., 2023). Addressing the affordability of AI is a
critical issue that must not be overlooked.

3.5 Ethical issues

Beyond technical and efficacy concerns, ethical issues also merit
attention. This includes data privacy and security, the “black box”
challenges of technical safety and responsibility, trust in AI by both
medical professionals and patients, and algorithmic bias (Abdullah
et al., 2021). These are all significant considerations in the AI realm.

4 Conclusion

After an integrated analysis of the current literature and clinical
trials, we have reached the conclusion that AI for DR diagnostics is
evolving positively, enhancing diagnostic efficiency and accuracy while
easing the workload and facilitating remote healthcare. Yet, challenges
and opportunities lie ahead. To propel the further development of AI in
DR treatment, wemust foster interdisciplinary cooperation to innovate
and integrate AI into clinical practice, addressing ethical, legal, and
trust issues to ensure AI genuinely aids medical professionals and
serves the wellbeing of the populace.
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