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The 5-year survival rate for hepatocellular carcinoma (HCC), a deadly formof liver
cancer, is quite low. Although drug therapy is successful, patients with advanced
liver cancer frequently develop resistance because of the significant phenotypic
and genetic heterogeneity of these cells. The overexpression of drug efflux
transporters, downstream adaptive responses, malfunctioning DNA damage
repair, epigenetic modification, the tumor microenvironment, and the
extracellular matrix can all be linked to drug resistance. The evolutionary
process of autophagy, which is in charge of intracellular breakdown, is
intimately linked to medication resistance in HCC. Autophagy is involved in
both the promotion and suppression of cancer by influencing treatment
resistance, metastasis, carcinogenesis, and the viability of stem cells. Certain
autophagy regulators are employed in anticancer treatment; however, because
of the dual functions of autophagy, their use is restricted, and therapeutic failure is
increased. By focusing on autophagy, it is possible to reduce HCC expansion and
metastasis, and enhance tumor cell reactivity to treatment. Macroautophagy, the
best-characterized type of autophagy, involves the formation of a sequestering
compartment termed a phagophore, which surrounds and encloses aberrant or
superfluous components. The phagophore matures into a double-membrane
autophagosome that delivers the cargo to the lysosome; lysosomes and
autophagosomes fuse to degrade and recycle the cargo. Macroautophagy
plays dual functions in both promoting and suppressing cancer in a variety of
cancer types.
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Introduction

The predominant liver cancer subtype, which ranks second in terms of approximate
mortality after pancreatic cancer, is hepatocellular carcinoma (HCC) (Siegel et al., 2020).
The survival rate after 5 years for HCC is 18%. Treatments for HCC include surgical
resection, liver transplantation, chemotherapy, radiofrequency ablation, targeted therapy,
transarterial chemoembolization, and immunotherapy (Villanueva, 2019). Nevertheless,
the majority of individuals with advanced or intermediate stages of HCC do not effectively
react to anticancer medications, and only a small percentage of individuals are susceptible to
these treatments. In HCC patients where medication resistance has already developed, the
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total survival rate is decreased (Llovet et al., 2008). To save HCC
patients, it is crucial to understand HCC’s mechanism of drug
resistance, pinpoint the targets of drug resistance, and optimize
the therapy regimen.

HCC is a naturally drug-resistant tumor. Drug resistance is
caused by the transmembrane ATP-binding cassette (ABC)
transporter protein, which prevents anticancer medications from
penetrating cells. Drugs are delivered to cancer cells by inhibition of
the solute carrier (SLC) family, which also leads to multidrug
resistance (MDR) development in HCC cells (Lei et al., 2024),
chemotherapeutic medications typically have little effect on HCC
patients. During treatment, the associated tumors are likely to
develop MDR, which lowers survival and worsens the prognosis
(Wang et al., 2014; Koltai, 2022). The restricted accumulation of
anticancer medicines within tumors is one of the factors behind
resistance to these medications. In this sense, pharmaceuticals are
transported across the cellular membrane via membrane
transporters, which are primarily responsible for the influx
(mostly by members of the SLC transporter family) and efflux
(primarily by members of the ABC transporter family). Thus,
transporters control the concentrations of drug at the target site
in both healthy tissues and cancer cells, which has an impact on
therapeutic results. One of the main challenges in anticancer drug
delivery and a major factor in the failure of cancer medication
therapy is transporter-mediated drug resistance. Because SLC
transporters are essential for the drug’s intracellular absorption
drug therapy may be rendered ineffective if cancer cells exhibit
downregulated expression and function of SLC transporters, which
restricts the absorption of medications into the tumor cells. The
phenomenon known as multidrug resistance occurs when a high
percentage of patients become non-responsive to numerous
functionally and structurally varied anticancer medications as a
result of developing drug resistance to chemotherapy and
molecularly targeted therapies (Puris et al., 2023). Exogenous and
intrinsic factors are the two main causes of medication failure in
cancer patients. For example, the result of genetic changes that were
already present in tumor cells prior to the initiation of therapy is
considered intrinsic resistance, sometimes referred to as primary
resistance. Included in this are treatment resistance linked to cancer
stem cells/CSCs (Chan et al., 2015), as well as elevated expression of
drug efflux transporters (Alisi et al., 2013), which bind and eliminate
chemotherapeutic agents. Exogenous resistance, sometimes referred
to as developed resistance, occurs when cancer cells that are
originally responsive to drugs later become resistant to them
following a course of chemotherapy (Chan et al., 2015).

Autophagy is a system that has been maintained over evolution.
It plays a role in the turnover of organelles and proteins, as well as in
the regulation of metabolism and cell quality control (Kumariya
et al., 2021; Raudenska et al., 2021). Lysosomes are necessary for the
process of autophagy, which has as its primary objectives
maintaining cellular quality control and the production of energy
and nutrition through the breakdown and release of cytoplasmic
substituents. To maintain cellular health and balance, the
autophagy-lysosomal system—a combination of autophagy and
the lysosomal system—eradicates waste products from cells,
including protein aggregates, damaged organelles, and invasive
microbes. Consequently, dysfunction of the autophagy-lysosomal
system contributes to several pathophysiological states, including

neurological disorders, cancer, inflammatory and immunological
diseases, and metabolic abnormalities (Kumar et al., 2021).

Additionally, autophagy is regulated to protect cells from
various types of stress. Including malnutrition, hypoxia, DNA
damage, chemotherapeutic exposure, and meeting cells’ metabolic
demands to keep organelles and cellular signaling pathways intact
(Glick et al., 2010; Parzych and Klionsky, 2014). The human body
uses autophagy frequently in response to different stimuli (Huang F.
et al., 2018). The primary routes of autophagy can be broadly
categorized into five stages: initiation, expansion, closure,
maturation, and degradation; the final step involves the release of
breakdown products back into the cytoplasm (see below under
Autophagy basic mechanism). Cellular homeostasis is maintained
through autophagy by the elimination of improperly folded and
aggregated proteins, and damaged organelles (He and Klionsky,
2009). Autophagy also plays a crucial role in the immune response,
for example, by regulating the activation of inflammasomes by
primary macrophages generated from bone marrow (Jabir et al.,
2014; Jabir et al., 2021).

Hepatocellular carcinoma

In terms of mortality, hepatocellular carcinoma, a type of
primary liver cancer, is ranked second and according to the
frequency of occurrence is the seventh globally (Bray et al., 2018;
Katherine et al., 2021). HCC is the most prevalent kind of liver
cancer, comprising up to 75% of cases. The top rates of liver cancer
occurrence are discovered in Asia and Africa (Zhang et al., 2023). Up
to a half million new cases of HCC are identified each year,
contributing to a high mortality rate (Tsochatzis et al., 2014;
Petrick et al., 2020). Five percent of patients with HCC survive
longer than 5 years after the initial diagnosis, which is a relatively
poor survival rate. This poor prognosis is connected to the fact that
only 15% of these patients are eligible for or capable of undergoing
surgery and liver transplantation due to the late identification of
HCC. Thirty-five percent or more of HCC patients receive the
greatest care at the time of diagnosis, and fifty percent have non-
surgical therapy (El-Serag, 2011; Yun et al., 2020). In hepatotoxicity,
usually associated with different liver injuries (Hashemi et al., 2023),
the oxidative process, which is thought to be the primary factor
causing a shift toward inflammation, fibrosis, and hepatocellular
damage, is triggered by free radical damage and many other factors,
which lead to HCC (Mohamed et al., 2020a; Mohamed et al., 2020b).
Race, gender and age are factors that affect the chance of getting
HCC. Men are two to four times more likely than women to develop
HCC. Up to 75 years of age, HCC exhibits a positive relationship
with age (Petrick et al., 2020). Hepatitis virus infection, alcohol
consumption, nonalcoholic fatty liver disease and cirrhosis are
among the risk factors for this disease (Mohamed et al., 2022).

HCC progression is influenced by various molecular pathways
and processes (Deldar Abad Paskeh et al., 2021; Yu et al., 2021). For
example, FIS1 (fission, mitochondrial 1) provides one example of
how the cellular machinery for mitochondrial fission intersects with
HCC. This protein was thought to have a critical role in
mitochondrial fission; however, mammalian cells lacking FIS1 do
not exhibit an obvious defect in this process (Yamano et al., 2014;
Wong S. W. et al., 2018). Nonetheless, FIS1 phosphorylation via
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MET (MET proto-oncogene, receptor tyrosine kinase) at
Y38 facilitates mitochondrial fission by recruiting the
mitochondrial fission GTPase DNM1L/Drp1 (dynamin 1 like) to
mitochondria (Yu et al., 2021; Zhang et al., 2021); however, it has not
been established that FIS1, an outer mitochondrial membrane
protein, is a DNM1L receptor (Otera et al., 2010). HCC cells can
metastasize both in vitro and in vivo by the development of
lamellipodia or invadopodia, which is facilitated by fragmented
mitochondria that drive actin filament remodeling. By activating
MET kinase, which directly affects mitochondrial fission as
described above, HGF (hepatocyte growth factor) plays a crucial
role in the migration and invasion of cancer cells in the HCC
microenvironment. Based on this, MET-targeted inhibitors have
been used in HCC clinical trials, and FIS1 has been identified as a
novel, significant downstream target that is regulated byMET kinase
(Deldar Abad Paskeh et al., 2021).

The inflammatory state of the HCC microenvironment makes
HCC immunotherapy modalities such as immune checkpoint
inhibitors, anti-CTLA4 (cytotoxic T-lymphocyte associated
protein 4), and anti-PDCD1/PD-1 (programmed cell death 1)
potentially helpful. These alterations may result in changes in the
number of regulatory T cells, the induction of dendritic cells, and the
release of immune-modulating factors (Shokoohian et al., 2021;
Minaei et al., 2023). However, the effectiveness of chemotherapy and
radiation therapy in extending the life expectancy of HCC patients is
hindered by the formation of several resistance mechanisms during
treatment (Niu et al., 2020; Xia et al., 2021; Seydi et al., 2023).

The plasma membrane protein CD44 (CD44 molecule (IN
blood group)), which functions as a cell-cell and cell-stromal
adhesion protein and is frequently overexpressed in tumor cells,
is a marker of poor survival in the majority of solid tumors (Wan
et al., 2014). CD44 is linked to tumor malignancy and denotes a poor
prognosis for a number of cancers, including liver cancer (Dhar
et al., 2018). One of the main factors contributing to a worse
prognosis is extrahepatic metastasis (EHM), which can happen
when a patient has advanced HCC at the time of presentation or
at the time of recurrence (Becker et al., 2014; Yoon et al., 2020). One
major obstacle to increasing HCC patients’ overall survival (OS) is
the existence of EHM. For individuals with HCC, CD44 is a strong
predictor of both EHM and OS. In HCC cells and patient specimens
with a high risk for malignancy, CD44 is abundantly expressed.
Patients with HCC who overexpress CD44 have a lower OS and a
greater cumulative recurrence rate compared to those with low levels
of CD44 expression. Experiments conducted in vitro and in vivo
demonstrate that CD44 downregulation inhibits the formation,
migration, invasion, growth, and metastasis of HCC cells.
Additionally, the pro-metastasis effect of CD44 is mediated
through the MAPK/ERK (mitogen-activated protein kinase)-
AKT/protein kinase B (AKT serine/threonine kinase)-CXCR4
(C-X-C chemokine receptor 4) axis. The aggressive clinical
characteristics of HCCs are compatible with CD44’s documented
ability to stimulate CXCR4 expression and increase the tendency of
tumors to infiltrate and metastasize to distant organs (Xie et al.,
2022). Finally, in HCC, the overexpression of CD44 facilitates the
growth and migration of HCC cells through the action of oncogenic
YAP1 (Yes1 associated transcriptional regulator), a crucial
downstream regulator in the Hippo pathway. These results imply
that CD44-YAP1 is most likely a significant axis in the

pathophysiology of HCC, offering insights into the etiology of
HCC and possible targets for HCC treatments (Yu et al., 2021).
Obesity, PIK3CG/PI3Kγ (phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit gamma) ablation, ZRANB1 (zinc finger
RANBP2-type containing 1), and ADORA2A-AS1 (ADORA2A
antisense RNA 1) all contribute to HCC development. There are
genetic factors that contribute to the development of HCC. PIK3CG/
PI3Kγ, a type of phosphatidylinositol 3-kinase, is often
overexpressed in HCC and promotes tumorigenesis. ZRANB1, a
zinc finger protein, is downregulated in several types of cancer,
including HCC. ADORA2A-AS1, an antisense RNA, is an oncogenic
factor that regulates gene expression and is associated with
tumorigenesis. Abnormalities in these genes may play a crucial
role in the development of HCC. To fully understand their roles,
further research is needed (Becattini et al., 2021; Zhang et al., 2021).

Autophagy basic mechanism

Autophagy is a self-degradation and internal recycling
mechanism that is highly evolutionarily conserved, carrying out
metabolic requirements and upholding homeostasis (Li Q. et al.,
2021). As a homeostatic mechanism, autophagy facilitates the
proteolytic breakdown of large cytosolic cellular constituents and
aggregates in lysosomes, particularly those that are not susceptible to
ubiquitin-proteasome pathway-mediated degradation (Pu et al.,
2021). Different kinds of cellular stressors, such as cellular injury,
the synthesis of defective proteins, and hunger, and the presence of
excess or damaged organelles, pathogens and some microorganisms
can trigger the autophagic process (White et al., 2015). Chaperone-
mediated autophagy (CMA), microautophagy, andmacroautophagy
are the three primary forms of autophagy (Figure 1).
Microautophagy is a particular kind of direct autophagy in which
cargo is captured and cytosolic components are invaginated directly
at the lysosomal membrane (Jabir et al., 2018). Lysosomal
membrane receptors, that include LAMP2A (lysosomal associated
membrane protein 2A), detect and translocate cargo in the form of
individual proteins that are complexed with chaperone proteins
(such as HSPA8/HSC70 [heat shock protein family A (Hsp70)
member 8]); these substrates are unfolded as they cross the
membrane into the lysosomal lumen during CMA, a type of
selective autophagy that involves the recognition of a KFERQ
amino acid motif within the cargo (Yun and Lee, 2018).

The best characterized of these autophagic processes is
macroautophagy (referred to as autophagy hereafter). Once
cytoplasmic cargo is isolated and incorporated into phagophores, the
latter mature into double-membrane autophagosomes. Phagophore
nucleation, which is the first step in autophagy, is brought on by the
stimulation of the ULK1 (unc-51 like autophagy activating kinase 1)
kinase complex, which includes ATG13 (autophagy related 13),
ATG101 and RB1CC1/FIP200 (RB1 inducible coiled-coil 1).
Expansion of the phagophore involves additional ATG (autophagy
related) proteins including the ubiquitin-like proteins ATG12 and yeast
Atg8 homologs (composed of the MAP1LC3/LC3 [microtubule
associated protein 1 light chain 3] and GABARAP [GABA type A
receptor-associated protein] subfamilies) and associated components
that are required for their conjugation. The ATG2 (autophagy related
2)-ATG9 (autophagy related 9) complex also plays a critical role in
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delivering lipids for membrane expansion. Upon completion of
sequestration, autophagosomes form. The autophagosomes fuse with
lysosomes to create autolysosomes, which perform the breakdown and
recycling of the cargo (Yorimitsu and Klionsky, 2005). It has been
proposed that ATG2, a rod-shaped protein, is necessary for phagophore
expansion because it tethers phosphatidylinositol-3-phosphate-
enriched phagophores to the endoplasmic reticulum (ER) (Maeda
et al., 2019). Because ATG2 mediates lipid transfer and re-
equilibrates membranes in conjunction with ATG9 to facilitate
autophagosome formation, it plays a crucial function in autophagy
(Wang et al., 2024).

Small vesicles containing the membrane protein ATG9 seed the
creation of the phagophore (Maeda et al., 2020; Guardia et al., 2020).
ATG9A scramblase moves phospholipids delivered by ATG2 across
both sides of the phagophore membrane. Furthermore, it appears from
molecular dynamics simulation that lipids can flip across the bilayers
because a central pore in Atg9 widens laterally to make room for lipid
headgroups. Based on cryo-EM, fungal Atg9 forms a homotrimer
containing two linked pores that create a pathway between the two
membrane leaflets: one pore at the protomer opens laterally to the
cytoplasmic leaflet, while the second pore at the trimer center travels
vertically through the membrane (Matoba et al., 2020). At the growing
margin of the phagophore, where Atg2 obtains phospholipids from the
endoplasmic reticulum, Atg2 and Atg9 colocalize. Lipid scrambling by
ATG9A is necessary formembrane growth, as evidenced by the fact that
mutations in the pore decrease scrambling activity and result in
noticeably smaller autophagosomes.

Although autophagy is primarily a cytoprotective mechanism,
cell death may eventually ensue from an overabundance of
autophagy and cellular self-consumption brought on by cellular

damage—autophagy is considered as one type of programmed cell
death (Oku and Sakai, 2018).

A number of autophagy-related proteins, including BECN1 (beclin
1), MAP1LC3/LC3 (microtubule associated protein 1 light chain 3), and
ULK1/ULK2 (Table 1) play a critical role in this process. The
development of the autophagosome requires ATG7, the
ATG12–ATG5 conjugate, Atg8-family proteins such as LC3, and
SQSTM1/p62 (sequestosome 1). RABs, SNAREs, and tethers work
together to cause lysosomes to fuse with autophagosomes so they
can break down cargo and return nutrients to the cytoplasm (Huang
F. et al., 2018). Autophagy breaks down the multifunctional protein
SQSTM1, which is important in cell development, survival, and death.
Tumor development has been linked to SQSTM1 gene amplification as
well as abnormal SQSTM1 accumulation and phosphorylation. By
activating the transcription factor NFE2L2/Nrf2 (NFE2 like bZIP
transcription factor 2), phosphorylation of SQSTM1 at Ser349 routes
glutamine into glutathione production and glucose toward the
glucuronate pathway. These alterations confer proliferative potency
and resistance to anti-cancer medications on HCC cells. An inhibitor
of phosphorylated SQSTM1-dependent NFE2L2 activation blocks HCC
growth and resistance to anticancer drugs. In individuals with HCV-
positive HCC, an NFE2L2 inhibitor may be able to reduce cancer cell
resistance to anticancer medications (Saito et al., 2016).

Linkage of the KEAP1 (kelch like ECH associated protein 1)-
NFE2L2 system to autophagy is implied by the assembly of
SQSTM1 on specific autophagic cargos, such as ubiquitinated
organelles, and its subsequent phosphorylation in an MTORC1-
dependent manner. The development of HCCs is facilitated by the
continuous activation of NFE2L2 caused by the buildup of
phosphorylated SQSTM1. Therefore, inhibitors of the connection

FIGURE 1
Types of autophagy. See the text for details.
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TABLE 1 Key molecules related to autophagy.

Functional units Role or function Ref.

• The components of ULK1 kinase complexes

ATG13 An adaptor that mediates the interaction between RB1CC1 and
ULK1 and increases the activity of ULK1 kinase

Li Y. et al. (2021), Alers et al. (2014)

RB1CC1/FIP200 A scaffold protein that interacts with both ATG13 and ULK1 and is
necessary for proper localization, stability, and kinase activity of
ULK1

Chano et al. (2010), Li et al. (2018), Yi et al. (2023)

ULK1 A protein kinase essential for triggering autophagy in response to
different signals. When ATG13 and ULK1 are phosphorylated by
MTORC1, bulk autophagy cannot begin. ULK1 activates PtdIns3K
via phosphorylating BECN1, a subunit of the complex

Yuan et al. (2019), Lin and Hurley (2016)

• The components of BECN1 core complexes

BECN1 Autophagy regulation and its role in cancer
Important autophagy regulator in a cascade that controls apoptosis,
vacuolar protein sorting, endocytic trafficking, and cellular
homeostasis

Tran et al. (2021), Ye et al. (2023)

PIK3C3 ARF transcription is inhibited by PIK3C3, which also makes EGFR
nuclear transport and binding to the ARF promoter easier
Liver CSC expansion is facilitated by PIK3C3 overexpression, but
siRNA-induced PIK3C3 knockdown has the reverse effect

Chu et al. (2021), Song et al. (2023)

PIK3R4 A crucial molecule that is involved in many cancers through
controlling autophagy. Potentially stops neuronal deterioration and
the development of amyotrophic lateral sclerosis

Song et al. (2023), Zou et al. (2023)

• The regulators of BECN1 core complex activity

ATG14 Through BATS domain, a membrane curvature sensor can target
the membrane structures of phagophores

Xiong et al. (2012), Yuan et al. (2024)

BCL2 Binds to BECN1 and blocks apoptosis Kelekar and Thompson (1998)

RUBCN A crucial component of autoimmunity and the immune response
Regulates endosome maturation and acts as a negative regulator of
autophagy and endocytic trafficking

Wong Y. et al. (2018), Yamamuro et al. (2022)

UVRAG Its novel function in regulating autophagic and endosomal
maturation is involved in the development of autophagosomes
UVRAG operates by modulating autophagy through two sequential
processes: BECN1-UVRAG is involved in the biogenesis of
autophagosomes, whereas the class C/Vps complex is involved in
the formation of autolysosomes

Liang et al. (2008), Shi et al. (2023)

• Phagophore expansion-associated proteins

ATG12 E3-like complex that combines Atg8-family proteins to PE
Ubiquitin-like protein; forms isopeptide bond with ATG5 during
cell cycle progression and apoptosis

Rubinstein et al. (2011)

ATG16L1 An essential part of the E3-ligase-like phagophore expansion
complex, which is necessary for autophagy’s catabolic process
Interacts with the ATG12–ATG5 conjugate complex to generate a
bilayer membrane that is necessary for phagophore expansion and
autophagosome formation, hence playing a crucial part in the
autophagy pathway

Salem et al. (2015), Ma et al. (2021), Taraborrelli et al. (2023)

ATG5 Performs roles in the development of autophagosomes and the
regulation of autophagy. Acts as a mediator between serum-
starvation-induced autophagy activation conditions and normal
culture conditions

Li S. et al. (2021)

ATG7 E1-like enzyme; activation of Atg8-family proteins and
ATG12 allowing conjugation to PE and ATG5, respectively

Collier et al. (2021)

• Atg8-family proteins

GABARAP Involved in the response to various cellular circumstances it is
integrated into membranes, resulting in the development and

Park et al. (2019), Iriondo et al. (2023)

(Continued on following page)
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TABLE 1 (Continued) Key molecules related to autophagy.

Functional units Role or function Ref.

maturation of autophagosomes. Also involved in cargo detection
during selective autophagy

GABARAPL1 Involved in the movement of proteins or vesicles connected to
several processes, including autophagy, tumor development, cell
death, and proliferation
Trafficking of receptors. Might support OPRK1 (opioid receptor
kappa 1) and potentially other proteins by acting as a chaperone
The LC3/GABARAP proteins have a variety of roles in autophagy,
such as intracellular trafficking, phagocytosis, oncogenic/tumor
suppressive actions, and cell motility. Enhance the susceptibility of
cancer cells to ferroptosis, an iron-dependent form of programmed
cell death; this prevents the development of metastasis by interfering
with EMT

Grand et al. (2011), Beaumont et al. (2024)

GABARAPL2 Involved in reducing septic shock and inflammation brought on by
CASP4/CASP11 (caspase 4; non-canonical inflammasome) that is
dependent on GBP (guanylate binding protein). Acts at the end of
autophagy by encouraging phagophore closure or autophagosome
fusion with lysosomes

Mohan and Wollert (2018), Di et al. (2023)

• LC3 processing-related proteins

ATG3 Improved E3 contact with the membrane, which permits liposome
tethering in its early stages. A stress-induced autophagic enzyme
that resembles an E2 that facilitates the conjugation of Atg8-family
proteins to phosphatidylethanolamine (PE)

Popelka and Klionsky (2021), Iriondo et al. (2023)

ATG7 A target in the development of treatments that control autophagy, in
cell biology and human illness, and in membrane trafficking
processes that rely on LC3 lipidation. Inactivating ATG7 increases
the efficacy of anti-cancer medicines in the treatment of lung and
breast cancer cells by attenuating its capacity to sensitize tumor cells
to cancer treatments

Collier et al. (2021)

ATG4A Acts as an autophagy modulator Nguyen et al. (2020), Li and Zan (2022)

ATG4B Involved in autophagy signaling and associated with the
advancement of several cancer types

Hu et al. (2023)

ATG4C When additional ATG4 proteins are absent, in the priming and
delipidation of Atg8-family proteins

Tamargo-Gómez et al. (2023)

• Autophagic selectivity

BNIP3 BNIP3 (BCL2 interacting protein 3) overexpression in myeloma
cells, with special reference to its impact on mitochondria and
apoptosis. Suggested as a tumor marker. It is thought to be a viable
target for stopping residual hepatocellular carcinoma from growing
quickly and spreading after radiation therapy but is insufficient to
ablate the cancer. Breast cancer growth metastasis linked to obesity
is significantly reduced by BNIP3, thereby slowing the cancer’s
progression

Macher-Goeppinger et al. (2017), Niu et al. (2019), Xu et al. (2019),
Xiao et al. (2023)

BNIP3L In the mitochondrial degradation pathway and PRKN (parkin RBR
E3 ubiquitin protein ligase)-mediated mitophagy throughout the
maturation phase of reticulocytes. Can inhibit MTORC1 to cause
hypoxia colon cancer, brain ischemia, and autophagy

Gao et al. (2015), Han et al. (2020), Li et al. (2022)

NBR1 Involved in controlling the production of protein aggregates, the
spread of malignant cells, and immune evasion

Marsh et al. (2020), Song et al. (2024)

PINK1 The PINK1 (PTEN induced kinase 1) signaling system regulates a
number of essential processes in the biology of cancer cells,
particularly those related to mitochondrial homeostasis and
dynamics, such as fission and fusion, bioenergetics, and mitophagy,
which, depending on the cellular context, can either promote or
suppress tumor growth

Celis-Pinto et al. (2023)

PRKN Involved in both mitophagy-dependent and -independent growth
and metastasis of a number of cancer types

Zhang et al. (2024)

SQSTM1 Abdel-Moety et al. (2022)

(Continued on following page)
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between KEAP1 and phosphorylated SQSTM1 show potential as
therapeutic drugs against human HCC. The KEAP1-NFE2L2
pathway and selective autophagy are interdependent (Ichimura
et al., 2013; Inami et al., 2011).

The role of autophagy in the
development of tumors

Autophagy suppresses tumorigenesis by preserving physiological
homeostasis and preventing cell conversion to malignancy in part by
lowering the quantity of damaged mitochondria; the elimination of the
latter helps prevent the formation of reactive oxygen species that can
further cause damage of cellular components including DNA (Nazio
et al., 2019; Jawad et al., 2023). Accordingly, inhibition of autophagy
promotes oncogenesis and malignant transformation, and a high
carcinogenic incidence (Takahashi et al., 2007; Jabir et al., 2015; Yun
et al., 2020). BECN1 has been linked to the start of autophagy as well as
a number of other cellular functions, including cell death, development,
aging, and stress adaptation. Furthermore, BECN1 controls autophagic
activity via interacting with other ATG proteins, the class III
phosphatidylinositol 3-kinase (PtdIns3K) complex, and TP53/p53
(tumor protein p53), among other autophagy mediators, which in
turn affects the initiation and progression of cancer (Yun et al., 2020). A
reduction in BECN1 expression leads to both cancer growth and
tumorigenesis (Vara-Perez et al., 2019), whereas BECN1 regulates
autophagic activity to prevent the growth of tumors.
BECN1 promotes autophagy and inhibits the growth of
malignancies that are mediated by ERBB2/HER2 (erb-b2 receptor
tyrosine kinase 2). Mitophagy is a crucial type of selective autophagy
of mitochondria, removing damaged or abnormal organelles to
maintain mitochondrial homeostasis (Chang et al., 2017). Defects in
mitophagy can lead to mitochondrial damage, tumorigenesis, and
tumor growth in different types of cancer (Vara-Perez et al., 2019).
Mitophagy function varies depending on tumor stage, with mutations
or functional changes causing an accumulation of impaired
mitochondria and tumorigenesis (Yun et al., 2020). Mitophagy
inhibits cancer during the early stages of carcinogenesis while
maintaining the metabolic needs of healthy cells. Conversely,
mitophagy promotes cell tolerance and accelerates tumor growth
during the later stages of tumor development (Wang et al., 2020).

Autophagy’s dual role in cancer

As discussed above, autophagy breaks down and recycles long-
lived, misfolded or damaged proteins, and aberrant or damaged
organelles to preserve cellular homeostasis (Huang T. et al., 2018;
Onorati et al., 2018). Moreover, autophagy regulation protects

against various types of cellular stressors, including starvation,
hypoxia, DNA damage, and chemotherapeutic exposure, as well as
fulfilling the metabolic needs of cells to maintain the functionality of
organelles and cellular communication channels. As an integral process
of cell physiology, both the maintenance of health and the development
of diseases can be linked to autophagy or defects in the autophagy
pathway. Numerous illnesses, such as cardio-related diseases (Zhang
et al., 2023), neurological disease (Chu, 2019), gastrointestinal diseases
(Zhang et al., 2023), lung diseases (Yun et al., 2020), cancer (Raudenska
et al., 2021), and type II diabetes (Hashemi et al., 2023), are linked to
abnormal autophagy. Both the initiation and spread of malignant
tumors are influenced by tumor-suppressive autophagy. In contrast,
the removal of aberrant cells and organelles, as well as the limitation of
cell division and genetic instability in cancer, due to normal autophagy
produce tumor inhibitory effects (Dong et al., 2019).

Numerous studies have suggested that autophagy has a dual role
in the onset and progression of cancer (Li et al., 2020). However, there
is an ongoing debate as to whether autophagy functions primarily as a
pro- or anti-tumor mechanism (Zhang et al., 2023). Autophagy is
involved in the quality control of proteins and organelles during the
early stages of tumorigenesis (Barnard et al., 2016). It does this by
preserving genomic stability, guarding against tissue damage over
time, and preventing the accumulation of oncogenic proteins linked to
inflammation. These actions prevent the initiation, proliferation,
invasion, and metastasis of tumors (Guo et al., 2013). Research has
shown that artificially limiting autophagy (for example, by atg5
deletion in mice) enhances the early development of liver cancers,
suggesting that tumor suppression is a key function of autophagy in
hepatocytes (Takamura et al., 2011).

In contrast, when a tumor reaches an advanced stage, autophagy
becomes a shield for the tumor cells, protecting against DNA
damage and increasing the survival of cancer cells by causing
resistance to drugs (Wu et al., 2012; Zhang et al., 2023). Thus,
autophagy promotes cancer cells by triggering chemoresistance and
satisfying the growing metabolic requirements of cancer cells
(Anderson and Macleod, 2019; Xiong et al., 2019). According to
Liu et al. (2018), autophagy increases the expression of the
transcription factor NANOG (Nanog homeobox) and suppresses
TP53, encouraging hepatocarcinogenesis in benign liver tumors in a
process involving hepatoma stem cells (Liu et al., 2018). The dual
roles of autophagy in cancer, both supporting and suppressing
tumor growth, are illustrated in Figure 2 (Yun et al., 2020).

Roles of autophagy in HCC

In HCC, autophagy has a conflicting function, both in preventing
early-stage carcinogenesis and in accelerating the growth of tumors in
later stages (Ni et al., 2014). This dual role demonstrates how difficult

TABLE 1 (Continued) Key molecules related to autophagy.

Functional units Role or function Ref.

A crucial molecule connected to several signaling pathways,
oxidative reactions and inflammation that plays a role in autophagy.
SQSTM1 accumulation is indicative of compromised autophagy,
which is linked to the development of several malignancies,
including HCC, and carcinogenesis
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it is to target autophagy in the treatment of HCC. Autophagy and the
control of the development and progression of HCC are mediated by
autophagy-associated genes, non-coding RNAs, and associated
signaling pathways (Figure 3) (Yang et al., 2019). Autophagy has
two roles in the onset and progression of hepatocellular cancer and
many factors trigger the activation of hepatic autophagy. First,
autophagy can function as a tumor suppressor during the
initiation stage of hepatoneogenesis by reducing inflammation,
SQSTM1 accumulation, the oxidative stress response, and
ultimately genomic instability and through autophagic cell death.
Second, however, at other stages of hepatoneogenesis, autophagy can
promote cancer through its cytoprotective functions (Lee and Jang,
2015). Autophagy’s precise role in HCC is debatable and remains
incompletely understood. Extensive investigation is necessary to
comprehend the function of autophagy in the progression of HCC.

Autophagy and proteins associated
with autophagy in HCC

In order to maintain the equilibrium of cell component
production and breakdown, autophagy involves the following
steps: phagophore formation, autophagosome maturation,
autolysosome formation, and cargo degradation (Levy et al., 2017).
Autophagy contributes to the preservation of the nitrogen balance and
the equilibrium of the cell environment by using the lysosomal route

to break down macromolecules when the cell is malnourished (Kim
and Lee, 2014; Wu et al., 2021). Based on the transport pathways and
on their capacity to break down specific cargo, they can be categorized
as reticulophagy (endoplasmic reticulum), pexophagy (peroxisomes),
ribophagy (ribosomes), xenophagy (invasive microbes), mitophagy
(mitochondria), etc. (Chu, 2019; Kirkin, 2020). Cargo sequestration,
autophagosome development and autolysosome-dependent
degradation are the three main components of autophagy.
ATG101, ATG13, RB1CC1, and ULK1/ULK2 make up the ULK1/
ULK2 complex during the early stages of autophagy development.
The PtdIns3K complex, which has the lipid kinase PIK3C3/VPS34 at
its core, plays a critical role by synthesizing phosphatidylinositol-3-
phosphate on the phagophore, allowing the recruitment of other
proteins leading to the autophagosome’s development. Subsequently,
LC3-I is converted into LC3-II through conjugation to
phosphatidylethanolamine, along with ATG12–ATG5 conjugation,
and the action of specific receptors such as SQSTM1 to promote
autophagosome maturation. Ultimately, the autophagosome fuses
with a lysosome under the direction of RAB proteins to carry out
the cargo breakdown and release (Figure 4) (Wu et al., 2021).

Autophagy and HCC drug resistance

Chemoresistance in HCC has proven to be a difficult problem in
recent years, but it can be overcome by stimulating oxidative stress

FIGURE 2
The dual roles of autophagy in tumor suppression and promotion in cancer cells. DAMPs: Danger/damage associated molecular patterns.
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FIGURE 3
Autophagy’s role in hepatocellular carcinoma (HCC). In the early stages of cancer, autophagy suppresses tumors by removing damaged
mitochondria and abnormal proteins, controlling hepatic lipid metabolism, and reducing inflammation (represented by the red line). However, once
cancer has taken hold, autophagy becomes a tumor promoter by controllingmetabolism and preserving the oxygen equilibrium, which helps cancer cells
survive. Additionally, autophagy promotes the progression of the disease by inducing the epithelial-mesenchymal transition (EMT).

FIGURE 4
Autophagy and autophagic proteins. See the text for details.
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and inhibiting mitochondrial respiration. In addition, the interplay
between different factors can influence autophagy levels, affecting
cancer development and progression. For example, HCC is
associated with ICMT (isoprenylcysteine carboxyl
methyltransferase), NFE2L2, and USP7 (ubiquitin specific
peptidase 7) via a number of pathways, including control over
cell survival, proliferation, and metabolism. In HCC,
overexpression of ICMT results in doxorubicin resistance and
inhibits apoptosis (Kiruthiga et al., 2020). Conversely, cancer cells
become more drug sensitive when NFE2L2/Nrf2 is overexpressed
because it causes chemoresistance in HCC (Cai et al., 2020), whereas
medication sensitivity is caused by downregulation of USP7, which
also inhibits HCC cell proliferation and metastasis (Zhang et al.,
2020). However, depending on the particular signaling pathways
involved and the setting, the precise interaction among these
components in HCC may differ. Thus, to fully understand the
connections between ICMT, NFE2L2, and USP7 in HCC, more
research is required (Ying et al., 2023). One major pathogenic role
for NFE2L2 deregulation in HCC is hypothesized. When defective
autophagy occurs under specific pathophysiological conditions,
such as oxidative stress, NFE2L2 activation follows, which has
negative effects that promote HCC survival and proliferation.
Through autophagic pathways, NFE2L2 is involved in the
migration, invasion, and proliferation of HCC. For example,
NFE2L2 is negatively controlled by KEAP1 (kelch like ECH
associated protein 1), which contributes to HCC carcinogenesis
by increasing the production of ROS; autophagy may help HCC cells
undergo an oxidative metabolic reprogramming (Moon et al., 2012).

Comprehensive evidence substantiates the association between
autophagy and drug resistance, development, migration, and cancer
(Russo and Russo, 2018). However, it is still unknown how, particularly
in cases of treatment resistance, autophagy flux and tumor cell state
control autophagy to either become a tumor guardian or a tumor killer
(Sun et al., 2013). Medication therapy stimulates autophagy and
increases its flux; nevertheless, elevated autophagy flux also
stimulates drug resistance or, by modifications to autophagy-related
proteins, causes tumor cell death (Sheng et al., 2018).

Because autophagy helps tumor cells survive under therapeutic
stress, it is also thought to be a significant factor of drug resistance
(Lei et al., 2024). Therefore, HCC cells may becomemore sensitive to
chemotherapeutic treatments if autophagy is suppressed (Wang
et al., 2017).

To put it briefly, learning more about how autophagy influences
drug resistance in HCC, such as the initially prescribed drug,
traditional chemotherapeutic medications, and cutting-edge
anticancer agents, is extremely important and needs further research.

Conclusion

The main treatment for HCC, a common malignant tumor and a
major subtype of liver cancer, is surgical excision. 65%–70% of
patients are at a middle or advanced stage and need
chemotherapy. Treatment failure, however, might result from drug
resistance to chemotherapeutic agents. Drug efflux pump transport,
DNA repair ability, hereditary variables, and adaptive responses are
some of the mechanisms underlying drug resistance. In both healthy
and malignant cells, autophagy is an essential biochemical process

that has many applications based on the situation. While autophagy
helps normal cells break down toxic substances and ageing organelles,
cancer cells can either stimulate or block autophagy in order to
increase their chances of surviving. Drug resistance is a complex
process involving autophagy, with dysregulation of autophagy
activation being one of the contributing factors. Dysregulation of
the expression of BECN1 or LC3, or SQSTM1-induced activation of
autophagy contribute to medication resistance. Targeting proteins
related to autophagy, signaling pathways, and exosomes can help
reverse drug resistance. Autophagy affects both survival and death in
HCC; pro-survival autophagy increases cell viability, while pro-death
autophagy hinders tumor growth. Increasing sensitivity to
medications and radiation can be achieved by targeting autophagy,
which may benefit HCC patients’ prognosis, survival, and course of
treatment. Treating advanced and metastatic stages of HCC presents
obstacles, including early diagnosis and therapeutic resistance.

However, the intricacy of autophagy, the heterogeneity of
the disease, and the need for customized treatment make it
difficult to combine autophagy inhibition with currently
available HCC medications. There are targeted therapies that
rely on the role of autophagy in HCC resistance using drugs such
as sorafenib, cisplatin, 5-fluorouracil, oxaliplatin, and
Pirarubicin (THP-adriamycin) and doxorubicin. To improve
the sensitivity of HCC to anticancer medications, a better
knowledge of autophagy’s role in drug resistance is necessary.
Additionally, further multicenter medical studies are needed for
the therapy of anti-HCC in conjunction with the suppression
of autophagy.
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