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Human lungs consist of a distinctive array of cell types, which are subjected to
persistent challenges from chemical, mechanical, biological, immunological, and
xenobiotic stress throughout life. The disruption of endoplasmic reticulum (ER)
homeostatic function, triggered by various factors, can induce ER stress. To
overcome the elevated ER stress, an adaptive mechanism known as the unfolded
protein response (UPR) is activated in cells. However, persistent ER stress and
maladaptive UPR can lead to defects in proteostasis at the cellular level and are
typical features of the lung aging. The aging lung and associated lung diseases
exhibit signs of ER stress-related disruption in cellular homeostasis. Dysfunction
resulting from ER stress and maladaptive UPR can compromise various cellular
and molecular processes associated with aging. Hence, comprehending the
mechanisms of ER stress and UPR components implicated in aging and
associated lung diseases could enable to develop appropriate therapeutic
strategies for the vulnerable population.
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1 Introduction

The process of aging is intricate, involving the gradual decline of tissues and organs
throughout the body, representing a standalone risk factor for various age-related illnesses
(Zhang W. et al., 2020). As life expectancy rises and the aging demographic expands
globally, it is crucial from a public health standpoint to comprehend the mechanisms by
which aging contributes to an escalating vulnerability to chronic illnesses and disabilities
over time (Ferrucci and Fabbri, 2018).

The human lungs, constituting most of the body’s surface area, serve as a distinctive
interface for engaging with the external environment and continually face biological,
chemical, mechanical, and immunological stress throughout an individual’s lifespan
(Schneider et al., 2021). As age progresses, the lungs undergo a gradual weakening
characterized by structural changes that hinder gas exchange and weaken defensive
mechanisms. Consequently, this susceptibility heightens the risk of lung injuries
induced by environmental exposures (Sharma and Goodwin, 2006; Bowdish, 2019) and
contributing to increased susceptibility to several lung diseases. Notably, conditions like
chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF),
prevalent in the elderly, not only align with accelerated aging but also replicate the aged
lung’s structural and physiological traits (Ito and Barnes, 2009; Pardo and Selman, 2016).
The COVID-19 pandemic has highlighted the heightened vulnerability of the elderly to
acute respiratory distress syndrome (ARDS) (Chen et al., 2021). Additionally, while asthma
is traditionally viewed as a childhood ailment, severe forms with elevated morbidity and
mortality rates are more prevalent in the elderly population (Gillman and Douglass, 2012).
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Recent findings suggest that intervening in age-related
degenerative biological processes can mitigate or postpone the
emergence of various age-related diseases. Experimental trials in
model animals have further established a fact regarding aging that it
is a manageable as well as alterable condition (de Cabo andMattson,
2019; Abbasi, 2017).

The endoplasmic reticulum (ER) is a membranous network
consisting of branching tubules and flattened sacs. It plays a crucial
role in overseeing the synthesis, folding, and processing of over one-
third of all cellular proteins (Walter and Ron, 2011). Within cells
equipped with an endoplasmic reticulum (ER), such as those found
in the lungs, the secretory capacity undergoes constant influence
from both physiological demands and pathological disturbances.
This results in a disruption of ER homeostasis, recognized as ER
stress (Dastghaib et al., 2021). In response to heightened ER stress,
adaptive mechanisms, collectively termed the unfolded protein
response (UPR), come into play to restore equilibrium (Wiseman
et al., 2022).

The aging process has a significant impact on cellular functions,
mainly affecting the chaperone system, leading to an essential role in
heightened protein misfolding and aggregation (Macario and
Conway de Macario, 2002). Contemporary findings propose an
association between disturbances in proteome homeostasis
(proteostasis) and the standard aging process, contributing to
age-related disroders in lungs (Schneider et al., 2021; Balch et al.,
2014). Consequently, it is unsurprising that the aging lung exhibits
various indications of disruption in cellular homeostasis due to ER
stress. Additionally, malfunctioning of cellular homeostasis due to
ER stress can impair other metabolic functions responsible for aging.
Therefore, understanding these inter-relationships is important
because interventions targeting these relationships should have a
beneficial effect on delaying aging and preventing aging-related
disorders. In this context, we examined ER stress dynamics for
aging and associated lung disorders and discussed attempts to target
ER stress in the lungs to achieve an antiaging effect; this research
could enable to develop therapeutic strategies for the vulnerable
population.

2 Overview of ER stress and UPR

The ER constitutes a complex structure of branching tubules and
flattened sacs, overseeing the synthesis, folding, and processing of
majority of cellular proteins (Hetz and Papa, 2018). The ER is also
responsible for Ca2+ storage and biosynthesis of lipids and steroids
(Hetz et al., 2020). In the ER, chaperones and enzymes ensure proper
folding and modification of secretory proteins, maintaining
biosynthetic function (Walter and Ron, 2011). Upon attaining
the correct conformation, chaperones within the ER disengage
from proteins, enabling their exit. Subsequently, cells efficiently
remove improperly folded proteins through stringent quality
control mechanisms such as ER-associated degradation (ERAD)
and ER-phagy.

While the endoplasmic reticulum (ER) is resilient, cells
frequently operate near their secretory capacity limits. Various
factors, including environmental, genetic, disease-related, or
aging-related influences, can perturb protein folding efficiency,
resulting in the buildup of misfolded or unfolded proteins in the

ER lumen, causing “ER stress” (Walter and Ron, 2011). In response
to ER stress, the UPR signal transduction pathway is activated within
the cell to safeguard the genuineness and integrity of proteins. The
UPR modifies cellular transcription and translation programs,
impacting diverse parameters related to protein metabolism,
redox homeostasis, and apoptosis (Walter and Ron, 2011; Wang
and Kaufman, 2012).

Briefly, the UPR signal comprises three major stress-related
proteins situated on the ER membrane: protein kinase R-like ER
kinase (PERK), activating transcription factor 6 (ATF6), and
inositol-requiring enzyme 1 (IRE1) (Wiseman et al., 2022)
(Figure 1). PERK and IRE1 are type I transmembrane proteins
that have a luminal domain for sensing unfolded proteins and a
cytoplasmic kinase domain. In addition, IRE1 has a cytoplasmic
endoribonuclease activity domain (Karagöz et al., 2017). In
mammals IRE1 has two isoforms, namely the IRE1α and IRE1β.
IRE1α is primarily expressed in almost all tissues. whereas IRE1β is
found exclusively in intestinal epithelial and airway mucous cells
(Akhter et al., 2020). IRE1β functions at the interface of epithelial
cells with the external environment, maintaining mucosal
homeostasis. ATF6 is a type II transmembrane protein that
resides in the ER membrane. It has a luminal domain that senses
ER stress and a cytoplasmic transcription factor domain (Lei
et al., 2024).

The initial phase of the UPR commences with the activation of
PERK. When unfolded proteins accumulate in the ER, they bind to
BiP, causing BiP to dissociate from PERK. This dissociation enables
PERK to oligomerize and autophosphorylate (Brown et al., 2014).
This process inhibits overall protein synthesis by phosphorylating
eIF2α, reducing mRNA translation and preventing protein buildup
in the ER. Notably, it enhances the translation of specific mRNAs,
including ATF4, which activates CHOP, illustrating the UPR’s
cascade to maintain cellular homeostasis under ER stress (Han
et al., 2013; Tabas and Ron, 2011). CHOP undergoes nuclear
translocation, regulating elements of the B cell lymphoma protein
2 (BCL-2) protein family to initiate apoptosis mediated by ER stress.
During ER stress, IRE1α activates after dissociating from GRP78/
BiP, homodimerizes, and autophosphorylates. This leads to the
activation of the cytosolic RNase domain, which splices the
mRNA encoding XBP1 (X-box-binding protein 1), removing a
26-nucleotide intron. This splicing event converts unspliced
XBP1 (uXBP1) into spliced XBP1 (sXBP1), a potent transcription
factor (Calfon et al., 2002; Yoshida et al., 2001). sXBP1 functions as
an active transcription factor, overseeing the regulation of various
genes associated with protein functions as well as lipid, ER, and
Golgi biogenesis (Acosta-Alvear et al., 2007; He et al., 2010). Under
normal conditions, IRE1β restricts the activity of IRE1α and UPR
signaling (Grey et al., 2020). During stressful situations, IRE1β can
still play a role in XBP1 splicing, thereby helping to adjust the
protein folding capacity of epithelial cells and restore mucosal
homeostasis. Additionally, IRE1β has been identified as a
negative regulator of IRE1α, as its overexpression is able to
decrease IRE1α-dependent XBP1 splicing. As such, IRE1β is
believed to alleviate ER stress in the mucosal epithelium during
inflammation-induced diseases (Le Goupil et al., 2024). Upon
encountering ER stress, ATF6 is activated through a mechanism
distinct from both IRE1 and PERK. BiP separates from ATF6α,
revealing the Golgi localization signal of ATF6α. ATF6 transitions to
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its monomeric form andmoves to the Golgi apparatus. Processing in
the Golgi via COP II vesicles, where S1P and S2P cleave ATF6 in the
transmembrane domain, produces the active ATF6 fragment and
releases the cytosolic domain of ATF6 (Ye et al., 2004; Chen et al.,
2002). Similar to sXBP1, the ATF6 fragment actively medicates the
gene regulation related to XBP1 and protein functions (Janssens
et al., 2014).

Initially deemed protective, the UPR serves to decrease protein
load and alleviate ER stress. Nevertheless, if the UPR persists in an
extended or overly activated state, it can transition into a
maladaptive mode, posing the risk of irreversible cell injury and,
in severe cases, cell death. (Hetz and Papa, 2018).

3 ER stress and the UPR in lung aging

3.1 Aging of the lung

The aging of the lungs can ensue from the cumulative alterations
in the cellular systems, reflecting the interplay between injury and
repair within the lung (Abadie et al., 2005). These changes disrupt

lung cell homeostasis by affecting proteostasis, cellular senescence,
stem cell reservoirs, oxidative stress, and mitochondrial function.

The biological function of the lungs is compromised in
advanced age, irrespective of the presence of specific diseases.
The major lung components, including respiratory epithelium,
lung progenitor cells, the interstitium, and pulmonary immune
cells, are altered in the aged lung (Schneider et al., 2021),
eventually leading to a reduced surface for gas exchange
(Lalley, 2013), decreased mucociliary clearance in both upper
and lower airways (Proença de Oliveira-Maul et al., 2013;
Svartengren et al., 2005), and impaired repair and regenerative
ability, subsequently resulting in the development of emphysema
and pulmonary fibrosis (Kotton and Morrisey, 2014).
Interactions between aging, senescence, and environmental
factors lead to the breakdown of stress response pathways,
contributing to the development of various lung diseases
(Luppi et al., 2021).

The structural and functional changes in the aging lung
collectively lead to decreased lung function, diminished
compensatory mechanism, and enhanced susceptibility to
pulmonary diseases. Consequently, lung diseases

FIGURE 1
ER stress and activation of the UPR signaling pathways. The UPR is triggered by ER stress sensors, namely IRE1, PERK, and ATF6 upon UPR target
genes related dissociation of BiP. The activation of PERK through its dimerization and autophosphorylation suppresses the overall protein synthesis by
eukaryotic translation initiation factor 2 subunit α (eIF2α) phosphorylation. PERK activation also increases the formation of the transcription factor
ATF4 that regulates several components involved in amino acid transport and protein folding. IRE1α is activated following its dissociation from BiP
and spontaneously undergoes homodimerization and autophosphorylation; the modified IRE1α induces splicing of the X-box binding protein 1 (XBP1)
mRNA to generate sXBP1 that regulates several UPR target genes responsible for protein folding, lipid synthesis, and quality control of cellular proteins.
The activated ATF6 is processed in the Golgi apparatus by site 1 protease (S1P) and site 2 protease (S2P) to release the cytosolic domain ATF6f that
regulates some UPR target genes related to XBP1, protein folding, and quality control of cellular proteins.
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disproportionately affect elderly individuals. Therefore, to delay
these aging-related lung diseases, it is important to modify the
biological processes that deteriorate with age.

3.2 ER stress-related changes in the
aging process

Aging can influence the structure of the ER inside the cell
(Erickson et al., 2006; Moltedo et al., 2019). In individuals with
COPD, lung fibroblasts exhibit a less organized and patchy ER
structure compared to the reticulated ER structure observed in the
lung fibroblasts of both never-smokers and ever-smokers (Weidner
et al., 2018).

The functionality of the UPR is compromised as a result of the
age-related gradual deterioration in the apparatus essential for the
proper folding of proteins; consequently, in aged individuals, UPR
activation cannot rescue ER stress (Naidoo, 2009). For example,
salient chaperones and enzymes such as GRP78, PDI, calnexin, and
GRP94, in the ER are impaired during the aging process (Nuss et al.,
2008). This functional decline in chaperones and enzymes may be
caused by progressive oxidation with advancing age (Nuss et al.,
2008). Normally, the protective UPR and apoptotic signals are in a
balanced state in a cell; however, this equilibrium might incline
towards the proapoptotic condition as age progresses, attributable to
the gradual deterioration in the UPR. Aging diminishes PERK
expression and kinase activity, inhibiting the cytoprotective
phosphorylation of eIF2α. This condition promotes protein
translation and the expression of proapoptotic proteins in the ER
during aging (Hussain and Ramaiah, 2007; Paz Gavilán et al., 2006).
Similarly, CHOP and caspase-12 expression was induced in aged,
stressed rats, but not in young, stressed ones (Paz Gavilán et al.,
2006), suggesting more vulnerability of aged-animals to apoptosis.

The ubiquitin-proteasome system (UPS) plays an important
role in the cellular processes for protein quality control. UPS
maintains the homeostasis of proteins within the cell, ensuring
correct protein folding, function, and degradation (Park et al.,
2020). The UPS is responsible for the degradation of most short-
lived intracellular proteins in eukaryotes by removing over 90% of
improperly folded and damaged proteins. Additionally, the UPS
actively participates in the regulation of numerous signaling
pathways, including mTOR, UPR, as well as both innate and
adaptive immune responses. Regulating protein degradation is
an integral part of the UPR to alleviate ER stress (Xia et al.,
2020). However, this system is impaired with age (Sun-Wang
et al., 2020). Age-related UPS dysfunction involves reduced
proteasome subunit expression, altered composition, and
changes in ubiquitin enzyme activity. Effects may vary by tissue
due to differing proteasome activities (Sun-Wang et al., 2020).
Proteasome activity remains intact in healthy aged mouse lungs,
but caspase-like activity significantly declines compared to young
mice (Caniard et al., 2015). Another study confirmed a decline in
the proteasome activity in the lungs of 2-year-old aged male rats as
compared to that in the lungs of 2-week-old male rats (Keller et al.,
2000). When the functions of UPS are compromised, the
degradation of ERAD substrates is prevented, causing the
accumulation of unfolded or misfolded proteins in the ER
lumen. This accumulation triggers the UPR (Ebstein et al., 2019).

In summary, the decline in ER mechanisms for maintaining
protein quality and the attenuation of degradation pathways
overseeing protein quality control lead to a significant rise in
misfolded proteins within the ER, ultimately triggering prolonged
ER stress in aging lung tissue.

3.3 Hormetic regulation of ER stress
on aging

Hormesis, characterized by a dose–response dynamic where low
doses stimulate and high doses inhibit the reaction, (Calabrese,
2008), signifies the adaptive responses of cells and organisms to mild
or moderate stressors, such as heat, hypoxia, caloric restriction, and
oxidative stress. This phenomenon has played a pivotal role in the
evolutionary process (Salminen and Kaarniranta, 2010).

ER stress is a paradigm of this hormetic regulation. The buildup
of unfolded and incorrectly folded proteins in the ER cavity swiftly
initiates ER stress. To overcome this ER stress, cells use a dynamic
intracellular UPR process. This mechanism activates adaptive
initiatives to adjust and enhance crucial elements of the entire
secretory pathway (Hetz and Papa, 2018). If this reaction proves
effective, the response restores cellular balance and promotes
survival under ER stress. However, persistent ER stress can lead
to oxidative stress, inflammation, and apoptosis via UPR pathways
(Wang and Kaufman, 2016; Zhang and Kaufman, 2008).

Hormesis of ER stress can also involve the regulation of cell
lifespan in a dose-dependent manner. Aging weakens the adaptive
UPR-based defense, heightening vulnerability to ER stress and
reducing stress resistance. This increases susceptibility to
pathological changes, including protein issues, mitochondrial
impairments, and disruptions in Ca2+ homeostasis, leading to
apoptotic cell death.

4 ER stress and UPR in different disease
models of lung aging

4.1 COPD

COPD is marked by partially reversible airflow limitation,
chronic inflammation, and emphysematous lung destruction,
resembling a condition of accelerated lung aging (Barnes, 2017).

ER stress plays a key role in COPD development, leading to
alveolar epithelial cells (AECs) apoptosis (Yu et al., 2022). Elevated
GRP78 levels in lung tissues, lavage fluid, and serum are associated
with decreased lung function and severe emphysema in smokers and
COPD patients (Aksoy et al., 2017; Merali et al., 2014). Cigarette
smoke (CS) exposure is the primary driver of COPD pathogenesis
and progression (Vogelmeier et al., 2017). CS-induced pathogenic
effects involve ER stress and UPR, elevating misfolded protein levels,
including impaired PDI, a crucial ER foldase (Kenche et al., 2013;
van Rijt et al., 2012). Additionally, IRE1α exacerbates airway
inflammation caused by CS through NF-κB signaling (Wang
et al., 2017), and it plays a crucial role in nicotine-induced
epithelial-mesenchymal transition, contributing to airway
remodeling in COPD and impeding cell migration in human
bronchial epithelial (HBE) cells (Lin et al., 2022). Cigarette
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smoke extract (CSE) induces apoptosis by triggering the PERK/
eIF2α/CHOP pathway through the superoxide anion (Tagawa
et al., 2011).

4.2 IPF

IPF, a progressive lung dysfunction, exhibits symptoms like
dyspnea and respiratory failure, and its incidence rises with the
aging population (Wolters et al., 2014). While the exact pathogenic
mechanism is unclear, evidence links ER stress to IPF, observed in
lung samples from patients with familial and sporadic IPF (Ghavami
et al., 2018; Korfei et al., 2008; Lawson et al., 2008). The profibrotic
impacts of ER stress can be communicated across different lung cell
types. In AECs of IPF patients, there was a notable rise in the levels of
various ER stress markers, including ATF4, ATF6, CHOP BiP,
EDEM, and XBP1, particularly observed in type II AECs (Korfei
et al., 2008; Lawson et al., 2008). Mice with asbestos-induced lung
fibrosis and individuals with asbestosis displayed increased
expression of GRP78 in their respective macrophages (Ryan
et al., 2014). Additionally, ER stress plays a role in collagen and
fibronectin production induced by transforming growth factor β1
(TGFβ1) in fibroblasts (Zimmerman et al., 2013). ER stress has the
capacity to influence critical elements of lung fibrosis, including the
AECs, polarization of M2 macrophages, and differentiation of
myofibroblasts (Burman et al., 2018). CHOP may participate in
ER stress-dependent AEC apoptosis (Korfei et al., 2008). In CHOP-
deficient mice treated with bleomycin, decreased AEC apoptosis and
lung fibrosis were observed (Tanaka et al., 2015). Furthermore,
CHOP has been identified as an inducer of M2 polarization in
bleomycin-induced pulmonary fibrosis (Yao et al., 2016). The
inhibition of ER stress in fibroblasts from patients with IPF
significantly reduces TGFβ1-induced myofibroblast
differentiation, αSMA expression, and collagen production (Baek
et al., 2012). This indicates the potential therapeutic impact of
targeting ER stress pathways in pulmonary fibrosis.

4.3 Asthma

Asthma, a complex chronic airway disease, results from intricate
interactions between genetic, environmental factors, and aging
(Nagasaki and Matsumoto, 2013). Elderly patients with asthma
are more susceptible to sensitization by allergens than age-
matched controls (Burrows et al., 1991). Elderly individuals with
asthma experience increased morbidity and mortality along with
various comorbidities compared to adults; moreover, it is clinically
characterized by neutrophilic inflammation rather than by
eosinophilic inflammation and less frequent atopy, with a
reduced response to treatment (Boulet, 2016).

The pathogenesis of asthma involves the activation of ER stress
and the unfolded protein response (UPR). Genetic factors related to
ER stress, such as orosomucoid-like 3 (ORMDL3), contribute to
asthma development by influencing calcium homeostasis, ER stress
response, and inflammatory processes (Schmiedel et al., 2016;
Breslow et al., 2010; Luthers et al., 2020). Previous studies have
shown that genetic variation affecting ORMDL3 expression is an
important determinant of asthma susceptibility and predisposition

to other autoimmune or inflammatory diseases (Moffatt et al., 2007;
James et al., 2019). Stimuli such as aeroallergens, microorganisms,
smoking, and pollutants are critical factors in the development of
allergic asthma; these stimulants can disrupt ER integrity and induce
ER stress (Pathinayake et al., 2018; Osorio et al., 2013). According to
previous studies, ER stress is activated in AECs and immune cells in
the presence of asthma (Pathinayake et al., 2018; Kim and Lee,
2015). The immediate and sustained activation of the UPR signaling
pathway initiates allergic airway inflammation (Osorio et al., 2013;
Makhija et al., 2014), particularly in severe or asthma unresponsive
to steroids through NF-κB modulation (Kim S. R. et al., 2013).
Experimental observations in a mice asthma model indicated that
the application of chemical chaperones to mitigate the ER stress
response displayed promise in alleviating airway
hyperresponsiveness (Kim and Lee, 2015; Makhija et al., 2014;
Siddesha et al., 2016).

4.4 Acute lung injury and ARDS

Elderly individuals show a reduced capacity to resist infections,
including influenza (Gross et al., 1995) and COVID-19 (Chen
et al., 2021). Thus, elderly persons are more susceptible to acute
lung injury (ALI) that culminates into ARDS and show high
mortality or prolonged morbidity due to ARDS-related
complications and fibrosis (Meduri and Eltorky, 2015). ARDS
encompasses a sudden inflammatory reaction triggered by the
impairment of the alveolar capillary barrier, stemming from
pulmonary or extra-pulmonary origins (Meduri and Eltorky,
2015; Confalonieri et al., 2017), leading to the impairment of
pulmonary vascular permeability, alveolar flooding, and
diminished respiratory capacity.

Numerous investigations have demonstrated elevated levels of
ER stress markers and UPR mediators, including GRP78, in patients
with ALI/ARDS and rodent models of lipopolysaccharide-induced
ALI (Kim H. J. et al., 2013; Kim et al., 2015; Zeng et al., 2017).
Similarly, suppressing ER stress mitigates endotoxin-triggered acute
lung injury (ALI) in both in vivo and in vitro settings. Additionally,
restraining the UPR diminishes ALI induced by the Middle East
respiratory syndrome coronavirus, acting on the apoptotic pathway
downstream of UPR (Sims et al., 2021).

5 Mechanism of ER stress and UPR in
aging and pulmonary dysfunction

The ER stress signaling components are associated with the
cellular signaling network that regulates longevity, thus suggesting a
functional relationship between ER stress and aging-
related pathways.

5.1 ER stress and inflammation

Inflammation is a fundamental protective mechanism of the
innate immune system to combat both invading pathogens and
endogenously produced toxic substances (Mogensen, 2009), and it is
tightly regulated under normal conditions. However, prolonged and
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sustained inflammation can be detrimental to normal health.
Inflammatory pathogenesis is a common mechanism for the
development of most age-related diseases (Franceschi and
Campisi, 2014). The term inflammaging, a low-grade, chronic,
sterile inflammation, is widely accepted as a critical risk factor
for aging and major diseases (Santoro et al., 2021). The theory of
antagonistic pleiotropy provides a better explanation for the role of
inflammation in aging. An evolutionary process, inflammation,
manifests significant impacts during early life and adulthood;
however, it turns detrimental in old age when the impact of
natural selection wanes (Franceschi et al., 2017).

The susceptibility of the lungs to aging increases with age, and
inflammaging contributes to a proinflammatory environment with
diminished resilience against challenges (Faniyi et al., 2022).
Inflammation in airway epithelia increases protein synthesis
demand, causing an overload of unfolded polypeptide chains in
the ER, leading to ER stress and UPR activation (Ribeiro and O’Neal,
2012; Ribeiro and Boucher, 2010) (Figure 2). ER stress also amplifies
the cytokine-mediated inflammatory response, leading to the
pathogenesis of inflammatory diseases (Zhang and Kaufman,
2008). Thus, a reciprocal relationship appears to be present
between ER stress and inflammation; this loop might aggravate
the pathological condition of the lung, given that the respiratory
tract is an important immune interface with continuous exposure to
environmental stress (Schneider et al., 2021).

The induction of inflammatory reactions by ER stress involves
the activation of all three branches of the UPR. These ER stress
sensors activate diverse inflammatory pathways and trigger the
expression of inflammatory mediators. IRE1α-dependent
sXBP1 activation during the inflammation of human bronchial
epithelia can trigger increased storage of Ca2+ in the ER (Martino
et al., 2009), thereby inducing Ca2+-dependent cytokine generation
and release (Martino et al., 2009; Ribeiro et al., 2005). In the lung,
IRE1α activation is required for the production of cytokines such as
IL-8, IL-6, and TNF-α by the inflamed human airway epithelia and
human alveolar macrophages (Martino et al., 2009; Hull-Ryde et al.,
2021; Lubamba et al., 2015). PERK signaling can activate the
signaling of TXNIP, leading to the upregulation of
inflammasomes such as NLRP3 (Oslowski et al., 2012). The
involvement of NLRP3 activation is crucial in the pathogenesis of
several lung diseases, mediating the release of proinflammatory
cytokines IL-1β and IL-18, initiating pyroptosis (inflammatory
cell death), and playing a key role in the development of
inflammaging (Meyers and Zhu, 2020; Liu et al., 2022; Chen
et al., 2023). The NF-κB family of transcription factors plays a
key role in inflammation and innate immunity, and persistent
activation is associated with age-related lung disorders
(Korhonen et al., 1997; Zaynagetdinov et al., 2016; Zhang et al.,
2013). ER stress serves as the trigger for UPR signaling, intricately
linked with the initiation of proinflammatory pathways mediated by

FIGURE 2
The insults to airway epithelial cells, their impact on UPR and the consequences of UPR activation. Cigarette smoke, pollution, aging, and pathogens
invade airway epithelial cells, causing oxidative stress, inflammatory responses, and cellular damage. These insults lead to the accumulation of misfolded
or unfolded proteins within the ER lumen.The three signaling pathways of UPR are activated. PERK activation increases the formation of the transcription
factor ATF4 that reduces protein synthesis. IRE1 activation results in the production of sXBP1, enhancing the protein folding capacity of the
endoplasmic reticulum. Activated ATF6 stimulates the expression of UPR-related genes. Normally, the protective UPR and apoptotic signals are in a
balanced state in a cell; however, this equilibrium might incline towards the proapoptotic condition as the damage worsens. If the UPR can successfully
alleviate ER stress, the cell can restore protein homeostasis and thus survive. If ER stress persists, the UPR signal can activate the apoptotic pathway,
leading to cell death.
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NF-κB. The activation of IRE1α recruits TRAF2 and ASK-1, setting
off the cascade that leads to the activation of JNK and NF-κB.
Simultaneously, PERK plays a pivotal role in influencing NF-κB
activation and apoptosis through orchestrating the eIF2α-ATF4-
CHOP axis109 (Belali et al., 2022). Furthermore, ATF6 emerges as a
positive contributor to NF-κB activation, operating through the
mTOR/AKT signaling pathway. This intricate network of
interactions emphasizes the complexity of the crosstalk between
ER stress, UPR signaling, and the proinflammatory machinery
orchestrated by NF-κB (Nakajima et al., 2011) (Figure 3).

5.2 ER stress and proteostasis

Proteostasis is a highly conserved biological process and
includes an array of mechanisms governing protein functions to
maintain cell and tissue homeostasis (Balch et al., 2014). Aging
reduces proteostasis, evidenced by declining control over protein
quality independent of occurring diseases (Schneider et al., 2021).
Persistent biochemical strain in the lungs leads to the buildup of
misfolded proteins, detrimental post-translational alterations, and

disturbed protein interactions, fostering the development of lung
diseases (Balch et al., 2014). Thus, a robust proteostasis network is
crucial for lung function and cellular metabolism.

ER stress and UPR are conserved cellular pathways and are
important to maintain cellular proteostasis. Dysfunctions of the
proteostasis network, particularly disturbances in ER function, are
thought to contribute to abnormal protein aggregation (Wang and
Kaufman, 2016; Kaushik and Cuervo, 2015). Aging alters ER
chaperone and folding enzyme expression, creating an imbalance
with heightened ER stress and diminished UPR, leading to chronic
ER stress and eventual proteostasis loss (Brown and Naidoo, 2012).
This imbalance is also implicated in aging-related disorders through
a reduction in global proteostasis at both lung and whole organism
levels, which induces senescence in the lungs (Katzen et al., 2022;
Wei et al., 2013).

As stated earlier, ER stress was initially associated with IPF when
mutations in surfactant protein C (SPC) secreted by type II AECs
were identified, leading to misfolding. Type II AECs are secretory
cells, and mutations in SPC can further elevate ER stress in these
cells (Nakada et al., 2021). In a bleomycin-induced fibrosis mouse
model, Increased ER stress triggers the activation of UPR-related

FIGURE 3
The inflammatory signaling pathway regulated by UPR. IRE1α-dependent sXBP1 activation during the inflammation of human bronchial epithelia can
trigger the storage of Ca2+ in the ER and subsequently amplify Ca2+-dependent cytokine generation and release. IRE1α activation leads to the
recruitment of TRAF2 and ASK-1, which activate JNK and NF-κB, leading to the production of inflammatory cytokines. The IRE1/TRAF2/ASK1 complex
activates inhibitory κ B kinase, which induces the phosphorylation of IκB, leading to the translocation of NF-κB into the nucleus and induction of
expression of inflammatory cytokine genes. PERK signaling can activate the signaling of TXNIP, leading to the upregulation of inflammasomes such as
NLRP3. PERKmodulates NF-κB activation and apoptosis by activating the eIF2α-ATF4-CHOP axis. Additionally, the activation of ATF6 can cause transient
phosphorylation of AKT, leading to the activation of NF-κB. ATF6 also positively affects NF-κB activation by inhibiting AKT/GSK3β.
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receptors in both the entire lung and pulmonary fibroblasts; this led
to the proliferation of fibroblasts and excessive collagen deposition
(Baek et al., 2012; Hsu et al., 2017). Inhibiting IRE1αwas observed to
enhance collagen induced by TGFβ1and fibronectin synthesis by
fibroblasts in individuals experiencing IPF, along with production of
mucus in murine fibrosis models (Ghavami et al., 2018; Chen et al.,
2019). Accumulating evidence suggests that damaged proteins are
present in the lungs of patients with COPD; enhanced oxidative
stress in the lungs, induced by CS, leads to oxidative damage in
various lung macromolecules, including proteins, even among
individuals who have quit smoking (MacNee, 2005; Pryor and
Stone, 1993). CS-induced oxidative load facilitates the buildup of
insoluble, polyubiquitinated proteins, observed both in laboratory
settings (in vitro) and living organisms (in vivo) (Kenche et al., 2013;
van Rijt et al., 2012). Additionally, the ER-resident foldase PDI
experiences oxidation and misfolding due to CS exposure, evident in
vivo and in vitro conditions (Kenche et al., 2013). Hence, CS could
compromise ER folding capabilities, resulting in an elevated burden
of misfolded proteins within the ER.

Future investigations should focus on specific contributions of
UPR pathways to proteostasis in various lung cells and diseases
associated with aging.

5.3 ER stress and cellular senescence

Cellular senescence is characterized by a persistent cessation of
the cell cycle, accompanied by distinctive changes in cellular
structure and gene expression. These senescent cells exhibit
resistance to programmed cell death through antiapoptotic
signaling, maintaining metabolic activity and releasing a
combination of inflammatory molecules known as the
senescence-associated secretory phenotype (SASP) (Aghali et al.,
2022). Cellular senescence exerts a protective effect against cellular
stress and tumorigenesis, and it is a crucial biological process
frequently observed in embryonic development and wound
healing (Storer et al., 2013; Jun and Lau, 2010; Collado and
Serrano, 2010). Over time, the buildup of senescent cells becomes
a contributing factor to the onset of aging-related diseases (Song
et al., 2020; Borghesan et al., 2020), and is considered one of the
hallmarks of aging (López-Otín et al., 2013; López-Otín et al., 2023).

Senescent cell accumulation is evident in the lung in response to
various stimuli. Lung tissues from individuals with COPD and IPF
exhibit senescent cell characteristics, including heightened levels of
specific markers (p53, p21CIP1, and p16ink4a) and an upregulated
antiapoptotic pathway (Aghali et al., 2022). Moreover, lung
homogenates from old mice show a significant increase in SASP
components and the inflammatory index compared to those in
young mice (Shivshankar et al., 2011).

Senescence, viewed as a stress response to halt the cell cycle of
altered cells, is strongly linked with ER stress (Pluquet et al., 2015;
Druelle et al., 2016). Research showed that ER stress and UPR is
involved in the generation of cellular senescence, and all arms of the
UPR may be involved in senescence. For example, PERK activation
induces eIF2α phosphorylation and thereafter induce the GADD45α
expression (Lee et al., 2019), which is involved in cellular senescence.
PERK and IRE1 activation is required to generate SASP components
(Matos et al., 2015). The inhibition of IRE1 suppressed H2O2-

induced senescence of nucleus pulposus cells (Kang et al., 2022). The
ATF6α pathway is involved in cell senescence through its target gene
product calreticulin (Shoulders et al., 2013). The secretory state of
senescent cells, however, triggers an ER stress response. In
senescence, ER and secretory pathway organelles become more
active to produce SASP components, which are upregulated and
oversecreted. During cellular senescence, changes in morphology
occur, marked by expanded and vacuolized cell shapes, along with
occasional presence of numerous or enlarged nuclei. The association
of vacuolation with uncontrolled activation of UPR has been noted
(Peng et al., 2011).

Presently, there is limited direct evidence showing the
relationship of ER stress response with cellular senescence in
the aging lung. In response to bleomycin injury, IRE1-α signaling
has been shown to induce senescence in type II alveolar epithelial
cells (AECs), leading to the accumulation of pre-alveolar type
1 transitional cells (PATS) and subsequent fibrosis. Blocking
IRE1-α signaling alleviates bleomycin-induced lung fibrosis by
reducing senescence and promoting the differentiation of PATS
cells to AT1 cells (Auyeung et al., 2022). ER stress may promote
cellular senescence in the lung. The lung relies on a strong
proteostasis network to handle continuous mechanical stress
and various environmental challenges, preventing protein
misfolding or recycling damaged proteins. Senescent cells in
the lung are most likely to experience ER stress because of the
increasing demand for protein folding; moreover, the production
of SASP components induces a high burden on the secretory
pathway of ER, thereby requiring increased maintenance of
proteostasis.

5.4 ER stress and stem cells

Adult stem cells play a crucial role in maintaining tissue balance
and regenerating cells. Stem cell exhaustion, a decline in both
quantity and quality over time, is proposed as a key aging factor
(López-Otín et al., 2013; López-Otín et al., 2023).

The intricate structure of the human lung’s epithelium, vital for
its functions, depends on the proper functioning of airway epithelial
stem cells for maintenance and repair (Basil et al., 2020). The major
stem cells in the conducting airways are basal and secretory club cells
(Rawlins et al., 2009; Rock et al., 2009). Type II AECs proliferate in
the alveoli and generate type I AECs to restore the alveolar
epithelium; thus, these cells are considered alveolar stem/
progenitor cells (Barkauskas et al., 2013). During the aging
process, the number of basal and club cells decrease (Schneider
et al., 2021); additionally, airway basal cells exhibit restricted
regenerative potential, unable to fully restore a differentiated
epithelium, particularly in pathological conditions like COPD
(Staudt et al., 2014). With the progress in age, type II AECs
remain intact in number but exhibit a decline in their self-
renewal and differentiation capacity (Schneider et al., 2021).

Stress affects stem cells, especially hematopoietic stem cells
(HSCs) in the physiological hierarchy. The UPR in HSCs
regulates self-renewal, resolving stress or initiating apoptosis
(Kharabi Masouleh et al., 2015). UFBP1 deficiency elevates ER
stress and UPR activation, causing the death of hematopoietic
stem/progenitor cells (van Galen et al., 2014). UFBP1 plays
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various roles in hematopoietic cell survival and differentiation by
modulating ER homeostasis and regulating gene expression specific
to the erythroid lineage (Cai et al., 2015). The targeted removal of the
vital chaperone GRP78/BiP from type II AECs in the lung led to a
decline in the regenerative ability of type II AECs. This deletion also
triggered activated TGF-β signaling, contributing to spontaneous
age-dependent fibrotic lung remodeling characterized by interstitial
pneumonia-like features. An ER stress inhibitor alleviated fibrosis in
mice lacking Grp78 in epithelial cells and IPF lung slices,
highlighting a potential aging-IPF connection through ER stress
(Borok et al., 2020). An in vitro study in type II AECs revealed that
CSE could activate ER stress-induced apoptosis by activating JNK
and caspase-12 in a dose- and time-dependent manner; however,
this activation of the ER stress signaling pathway can also initiate a
protective mechanism by inducing HRD1, which is a specific
ubiquitin E3 ligase on the ER membrane, to counteract CSE-
induced UPR for protecting type II AECs (Tan et al., 2017).

The mitochondrial UPR (UPRmt), a regulatory mechanism
for preserving adult stem cells, is conserved across tissues.
Dysregulation of this protective mechanism contributes to the
functional decline of stem cells and tissue degeneration over time
(Mohrin et al., 2018). Alternatively, the constant UPRmt
activation, along with tissue-specific HSP60 loss, can
detrimentally impact stemness (Berger et al., 2016). In AECs
of the lung, by inducing ATF4-dependent UPRmt and
mitochondrial dysfunction, ER stress is implicated in the
development of diverse pulmonary disorders, and type II
AECs may play a role in this process (Jiang et al., 2020).

5.5 ER stress and mitochondria

Mitochondria, essential cellular organelles, produce energy and
reactive oxygen species (ROS), influencing physiological functions,
while also playing a crucial role in governing inflammatory
responses, innate immunity, cell death, and aging (Schafer et al.,
2017; Miwa et al., 2022). As the cell ages, its mitochondria
accumulate abnormalities, but increased mutations in mtDNA,
thereby leading to declined mitochondrial function (Mora et al.,
2017). Mitochondrial dysfunction contributes to impaired lung
functions; affects the trachea, bronchi, bronchioles, alveoli, and
interstitium; hinders lung recovery after an injury (Caldeira
et al., 2021).

The ER serves as a central hub establishing physical connections
with mitochondria. MAMs are specialized subdomains facilitating
close proximity between the ER and mitochondria, fostering
intricate cross-talk (Phillips and Voeltz, 2016) (Figure 4). This
juxtaposition enhances mitochondrial Ca2+ uptake and improves
mitochondrial dynamics and redox balance; it also triggers apoptosis
under excessive ER stress condition (van Vliet and Agostinis, 2018).
Various mitochondrial and ER stress-associated proteins such as
Drp1, Mfn2, and PERK are involved in the structure and functions
of MAMs (Mao et al., 2022). Disturbance in the MAM during ER
stress is implicated in the aging process and age-related diseases
(Moltedo et al., 2019; Volgyi et al., 2015). In an in vitro study using
HBE cells, ER stress induced by titanium dioxide nanoparticles
mediated autophagic cell death through MAM disruption (Yu et al.,
2015). The exposure of human airway smooth muscle (hASM) cells

FIGURE 4
Mitochondria-associated membrane modulates mitochondrial Ca2+ uptake and improves mitochondrial dynamics and redox balance.
Grp75 interacts with transglutaminase type 2 inmitochondria-associatedmembranes (MAMs) and then stabilizes the interaction betweenGrp75 and IP3R
to enhance ER–mitochondria association. The enhanced ER–mitochondria association promotes the ER-mitochondrial Ca2+ flux. Dynamic-related
protein 1 (Drp1) is recruited to the outer mitochondrial membrane by the fission receptor mitochondrial fission factor, which increases
ER–mitochondria interactions by promoting the formation of tubules in the ER. Mitofusin 2 (Mfn2) on the ER interacts with Mfn2 on the mitochondria to
form homo-complexes. These homo-complexes can tether the ER and mitochondria to enhance MAM formation. PERK is also a crucial component of
MAMs. PERK plays a role in establishing a physical and functional association between the ER and mitochondria. The knockout of the PERK gene affects
the ER–mitochondria association, thereby disturbing ER morphology, decreasing Ca2+ transfer from the ER to the mitochondria, and reducing the
transmission of ROS signaling from the ER to the mitochondria. mtROS-mediated MAM dysfunction is involved in the mechanism of arsenic-induced
ferroptosis and ALI.
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to the proinflammatory cytokine TNF-α triggers ER stress pathways,
leading to the disruption of ER–mitochondria interaction, inhibition
of Mfn2 expression, and impairment of mitochondrial mobility
(Yap et al., 2020; Delmotte et al., 2017).

In aged mice and IPF patients, ATF4 and UPRmt were induced
in lung alveolar epithelial cells. Inducing ATF4 in mouse AECs
worsened pulmonary UPRmt, inflammation, and death post-
bleomycin injury (Jiang et al., 2020). Thus, it can be inferred that
the UPRmt generally slows mitochondrial activity for organelle
recovery but may raise the risk of declining oxidative
phosphorylation, membrane potential loss, and increased ROS
production in AECs.

5.6 ER stress and oxidative stress

ROS, which are continuously produced in all aerobic organisms,
are derived from oxygen metabolism as byproducts of cell
respiration (Lenaz, 2012) and include superoxide anions (O2·-),
hydroxyl radicals (·OH), and hydrogen peroxide (H2O2). Oxidative
stress arises due to an imbalance between the production of ROS and
antioxidant mechanisms. The causal relationship among ROS,
aging, age-related pathologies, and senescence has been studied
intensively based on the free radical theory of aging (Harman,
1956) and the mitochondrial theory of aging (Alexeyev, 2009). A
recent study investigated whether ROS is beneficial or detrimental to
extend lifespan; this is because the basal level of ROS is essential to
regulate biological processes and metabolic homeostasis (Zhang
et al., 2019). The hormetic response of ROS is not advantageous
for the mammalian lung. Pulmonary disorders linked to oxidative
stress involve increased ROS production and decreased
antioxidants. Asthma patients, for instance, show elevated ROS
in macrophages and diminished lung antioxidants (Comhair and
Erzurum, 2010). Exposure to oxidative toxicants in the lungs causes
tissue damage, inflammation, and the accumulation of phagocytic
leukocytes, further enhancing oxidant production (van der Toorn
et al., 2009).

Prior research indicates a close interconnection between ER
stress and oxidative stress. These two stressors mutually reinforce
each other, playing roles in several chronic conditions associated
with aging (Kim et al., 2008; Lee and Lee, 2022). The ER serves as an
optimal setting for protein oxidation and folding. Oxygen is essential
for the redox coupling between ER oxidoreductase 1 (ERO1) and the
final enzyme PDI, enabling the formation of protein disulfide bonds
unique to the ER (Cao and Kaufman, 2014). This ER redox system
converts oxygen to H2O2, thereby contributing to the total cellular
ROS, although the amount of ROS thus generated is very small as
compared to that produced in the mitochondria (Tu andWeissman,
2004). During ER stress, ROS production is elevated through
NADPH oxidases, mainly through Nox2 and Nox4 (Santos et al.,
2014). Moreover, a substantial quantity of activated JNK interacts
with the MAM-linking protein Sab, leading to the release of ROS
(Win et al., 2014). Global transcriptome studies revealed that ER
stress did not alter the expression of UPR-associated genes in aging
lungs (Misra et al., 2007); however, the expression of Grp78 was
decreased, and the expression of Grp94 and proapoptotic CHOP
was increased in type II AECs (Borok et al., 2020). CHOP is involved
in excessive ROS production by increased expression of ERO1

(Marciniak et al., 2004). Oxidative stress enhances protein
oxidation, disturbs ER protein folding, and leads to the buildup
of misfolded oxidized protein substrates. This is exacerbated by the
compromised function of the chaperone system and other cellular
“quality control” mechanisms due to proteins modified by ROS
(Muller et al., 2013). Consequently, the simultaneous occurrence of
oxidative stress and ER stress constitutes the initial response to
pathological challenges. The inhibition of these cellular stress factors
can stop the formation of a vicious loop and thus prevent
pathological developments in the lung. Moreover, it possesses the
ability to protect against acute lung injury (ALI) induced by sepsis.
This protection is achieved by suppressing ER stress and
mitochondrial dysfunction mediated by oxidative stress through
the activation of the SIRT1/AMPK pathways specifically within the
lung (Sang et al., 2022).

5.7 ER stress and genome integrity

Genome integrity is constantly threatened by damage due to
exogenous agents and intrinsic biological processes that can induce
DNA damage (Lindahl and Barnes, 2000). A common phenomenon
in the aging process is the accumulation of genetic damage
throughout the life (López-Otín et al., 2013; López-Otín et al.,
2023). Accordingly, cells have evolved an intricate and specific
DNA damage response (DDR) cascade responsible for the
recognition and repair process (Sancar et al., 2004). The DDR
cascade mainly involves the phosphoinositide 3-kinase proteins
(PI3Ks) (ATM, ATR, and DNA-PK) and poly (ADP-ribose)
polymerase (PARP).

DNA damage, which is mostly oxidative in nature, plays a key
role in the development of aging-related chronic diseases. In asthma,
exposure to environmental allergens induces oxidative DNA
damage in airway epithelial cells, with the repair of this damage
linked to Th2 cytokine secretion and the initiation of allergic
inflammation (Zahiruddin et al., 2018).

UPR and DDR are the two important mechanisms to maintain
cell homeostasis. Although these adaptive mechanisms occur in the
ER and nucleus, respectively, they are involved in the mechanisms
and signaling pathways that modulate genome integrity. The DDR-
related protein ATM might be associated with the overlap between
the DDR and ER. As discussed earlier, oxidative stress is a natural
biological process that occurs in all cells and can also occur in aging
and aging-related lung disorders. The mutated versions of ATM
exhibit resistance to oxidative stress and a minimal impact on the
DNA damage response (DDR). Yet, they assist in the removal of
toxic protein buildup (Lee et al., 2018). Thus, ATMmay not only act
as an oxidative stress sensor but can also sense alterations in other
cellular compartments, including the ER (Hotokezaka et al., 2020;
He et al., 2009). The nonhomologous DNA end-joining double-
strand break (DSB) repair pathway in Saccharomyces cerevisiae is
influenced by the exogenous expression of mammalian XBP1, which
regulates H4 acetylation (Tao et al., 2011). Additionally, sXBP1,
under ER stress, controls the transcription of a cluster of DNA repair
genes (Acosta-Alvear et al., 2007). SRC is a protein tyrosine kinase
and can be activated by the UPR; following its activation, it creates a
complex with IRE1α, leading to the relocation of ER chaperones to
the cell surface (Tsai et al., 2018). SRC is also involved in the
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regulation of the DDR by terminating the ATR-Chk1-dependent
G2 DNA damage checkpoint (Fukumoto et al., 2014).

To date, few studies have provided evidence of an association
between DNA damage and ER stress in the lungs. The obtained
results indicate that the DDR and UPR can direct a coordinated
response to manage cellular stress, which may be relevant in aging
and lung diseases. Additional experimental evidence is needed to
understand the interaction between this UPR branch and the cellular
machinery involved in genomic stability, particularly pertaining to
aging and related lung diseases.

5.8 ER stress and autophagy

Autophagy is a conserved multistep catabolic process that
degrades unfolded proteins, cytoplasmic contents, and damaged
organelles by forming autophagosomes. It is currently viewed as an
association between metabolic and proteostatic signaling that can
determine key physiological decisions ranging from cell fate to
organismal lifespan (Kaushik et al., 2021).

ER stress and autophagy are two closely interconnected response
pathways to cellular stress (Senft and Ronai, 2015; Bhardwaj et al.,
2020). In eukaryotic cells, ER stress can activate lysosomes through
the p38 MAPK pathway, thereby activating Chaperone-Mediated
Autophagy (CMA) (Li et al., 2017). Autophagy degrades unfolded
proteins when the canonical, proteasome-dependent pathway is
impaired or overwhelmed by an excessive amount of
ubiquitinated proteins. Therefore, autophagy is considered the
last approach to restore the homeostasis of the ER. Autophagy
can be triggered following UPR-inducing stimuli (Nijholt et al.,
2011) and serves as a pro-survival mechanism under ER stress
conditions (Figure 5). However, ER stress can also disrupt lysosomal
homeostasis, leading to an obstruction of autophagic flux. For
instance, the level of serum lysosomal-associated membrane
protein 1 (LAMP1) was significantly decreased in pre-eclampsia
patients compared to normal pregnant women, suggesting potential
lysosomal dysfunction due to ER stress in pre-eclamptic placentas
(Nakashima et al., 2019).

Beyond autophagy, the interplay between the ER and lysosomes
manifests in various other ways. Research has demonstrated that

FIGURE 5
ER stress-mediated autophagy and the possible mechanisms. ER stress can induce autophagy through the IRE1α, PERK, and ATF6 signaling
pathways. IRE1 forms a complex with TRAF-2, which subsequently binds to ASK1, leading to the phosphorylation of JNK and the promotion of Bcl-2
activation, thereby activating autophagy. sXBP1 also triggers transcriptional activation of Beclin-1. The activated PERK induces autophagy through ATF4-
driven transcriptional regulation of Atg12, whereas ATF4-mediated CHOP activation transcriptionally induces Atg5 expression. Atg5, Atg12, and
Atg16L form the Atg5-Atg12-Atg16L complex, which is involved in the elongation process. ATF6 indirectly regulates autophagy through CHOP; it
upregulates the expression of DAPK1, which phosphorylates Beclin-1 and mediates autophagy initiation. ER-phagy is initiated to remove damaged ER
organelles. ER-phagy receptors on the ER membrane mediate the interaction between LC3 and its target ER sites through the LC3-interacting
region (LIR).

Frontiers in Cell and Developmental Biology frontiersin.org11

Fu et al. 10.3389/fcell.2024.1466997

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1466997


SNX19 restricts endolysosomal motility via its interaction with the
endoplasmic reticulum, a process crucial for the concentration of
endolysosomes in the perinuclear region (Saric et al., 2021). These
interactions not only contribute to the stability of the intracellular
environment but also play a pivotal role in a range of pathological
conditions, including neurodegenerative diseases, metabolic
disorders, and cancer.

ER stress and UPR pathways share mechanisms that control
autophagy, collectively influencing responses to diverse stimuli. This
interplay is implicated in the development of lung diseases. For
example, during respiratory viral infection, the deficiency of the
autophagy proteinMap1-LC3b can increase ER stress and associated
IL-1 secretion and lead to IL-17-dependent lung pathology (Reed
et al., 2015). CS induces the expression of lysosome-associated
membrane protein 2A (LAMP2A) and chaperone-mediated
autophagy (CMA) in an Nrf2-dependent manner in HBE cells.
The suppression of LAMP2A and CMA inhibition enhances UPR
and apoptosis; this effect can be reversed by the induction of
LAMP2A expression (Hosaka et al., 2020). Thus, careful
manipulation of autophagy in the context of UPR may enable to
develop new therapeutic strategies for aging-related lung diseases.

5.9 Sirtuins exert an antiaging effect by
regulating ER stress

Sirtuins, the family of NAD + -dependent protein deacetylases,
have been studied extensively as a potential antiaging factor
(Bonkowski and Sinclair, 2016). Decreased sirtuin activity,
leading to elevated histone acetylation, causes aging phenotype in
certain organisms (Wątroba et al., 2017).

Initially recognized for their deacetylase function, sirtuins are
now recognized for their involvement in various biological activities

and are a focal point in research on ER stress and the UPR. Sirtuins
deacetylate sXBP1, potentially preventing ER stress-mediated
release of proinflammatory cytokines and apoptosis (Wang et al.,
2011). XBP1 induces SIRT7 expression, reducing ER stress-related
protein expression (Shin et al., 2013). SIRT1 plays a crucial role in
protecting against ER stress-related lung damage, including in
sepsis-induced lung injury and hyperoxic ALI (Wang et al., 2019;
Sun et al., 2017). Lower serum SIRT1 levels are observed in COPD
patients, while SIRT1 upregulation protects against COPD by
reducing apoptosis and ER stress (He et al., 2019).
SIRT1 elevation promotes autophagy, but using SIRT1 inhibitors
reverses this effect, worsening COPD by intensifying ER stress (Tang
and Ling, 2019).

6 Targeting ER stress and UPR in aging
and aging-related pulmonary diseases

Given the significance of ER stress and the UPR signaling pathway
in the process of aging and the pathogenesis of pulmonary diseases,
strategies to target these two factors are crucial for the intervention of
lung diseases. As an alternative strategy, the activation of the adaptive
UPR or the suppression of the maladaptive UPR by using appropriate
compounds has considerable potential.

6.1 Pharmacological intervention

6.1.1 Metformin
Metformin, a pharmaceutical agent commonly prescribed for

the management of type 2 diabetes mellitus, demonstrates additional
therapeutic benefits beyond glycemic control. In mouse lungs, it
mitigates cigarette smoke-induced emphysematous COPD

FIGURE 6
The roles of metformin, melatonin and resveratrol in ER stress and pulmonary dysfunction. Metformin mitigates cigarette smoke-induced
emphysematous COPD pathologies through the AMPK pathway, concurrently suppressing the unfolded protein response (UPR) and endoplasmic
reticulum (ER) stress. Melatonin protects against COPD through the attenuation of apoptosis and ER stress by upregulating SIRT1 expression in rats.
Additionally, it can impede the initiation of NLRP3 inflammation and ER stress in COPD. Resveratrol diminishes inflammation and apoptosis by easing
ER stress via the Akt/mTOR pathway in cases of allergic airway inflammation induced by fungi.
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pathologies through the AMPK pathway, concurrently suppressing
the unfolded protein response (UPR) and endoplasmic reticulum
(ER) stress (Polverino et al., 2021).

6.1.2 Melatonin
Melatonin, a neuroendocrine hormone primarily produced in the

pineal gland, serves various biological roles, including sleep modulation,
circadian rhythm regulation, immune system enhancement, antioxidant
properties, antiaging influence, and antitumor activity (Luo et al., 2020).
Additionally, it can impede the initiation ofNLRP3 inflammation and ER
stress in COPD (Mahalanobish et al., 2020).

6.1.3 Resveratrol
Resveratrol is a natural phenolic compound found in many

foods. Many studies have highlighted its role in longevity and
prevention of aging-related disorders (Harikumar and Aggarwal,
2008). Resveratrol diminishes inflammation and apoptosis by easing
ER stress via the Akt/mTOR pathway in cases of allergic airway
inflammation induced by fungi. This provides potential therapeutic
approaches for lung diseases triggered by allergic reactions to fungi
(Wang S. et al., 2022).

6.1.4 SIRT1
SIRT1 attenuates ER stress and apoptosis in the rat models of

COPD and septic associated-lung injury (Zhang L. et al., 2020;
Wang F. et al., 2022). Interestingly, melatonin protects against
COPD through the attenuation of apoptosis and ER stress by
upregulating SIRT1 expression in rats (He et al., 2019).

While compounds directed at ER stress or UPR elements exhibit
promise in averting and treating age-related lung diseases, clinical trials
are necessary to comprehensively assess their impact on ER stress
and UPR (Figure 6).

6.2 Lifestyle adjustments

Regular exercise is known to promote healthy aging andmitigate
aging-related diseases (Booth et al., 2012; Viña et al., 2016). Exercise
also shows protective effects against COPD (Rochester et al., 2015),
IPF, and COVID-19 (Dwyer et al., 2020; Yu et al., 2019). The
mechanisms underlying the effects of exercise on longevity are yet to
be fully clarified; however, regular exercise can reverse ER
dysfunctions (Estébanez et al., 2018).

In obese individuals, physical exercise alleviates ER stress by
reducing the expression and release of the GRP78 chaperone
(Khadir et al., 2016). Exercise influences the adaptive Unfolded
Protein Response (UPR) for the purpose of muscle remodeling, as
evidenced by the analysis of biopsy samples from human skeletal
muscle. Nevertheless, this capability is compromised with the
progression of aging (Khadir et al., 2016).

7 Future perspectives and conclusion

Based on the findings and hypotheses presented in this review,
ER homeostasis, ER stress, and UPR have been extensively
implicated in aging and aging-related lung disorders. Regulating
ER stress shows potential as a strategy to mitigate age-related health
decline and avert lung disorders.

Aging itself is, however, a highly complicated process, and ER stress
has a complex role in the biology of aging. Investigations on the role of ER
stress in aging and aging-related lung diseases thus remain a challenge.
The bulk of research on ER stress relies on simplistic models or
undifferentiated cells, potentially limiting its applicability to
understanding the pathophysiology of well-differentiated pulmonary
cell types, especially in the context of aging. The efficacy of
manipulating ER stress could be contingent on its collective influence
on each of these cellular categories. Therefore, more detailed mechanistic
studies are required on the interaction between ER stress and disease
progression in the aging lung and on the modulation of this association
for clinical translation. Nonetheless, the investigations reviewed here
provide substantial insights into the role of ER stress and UPR in aging-
related lung diseases, and these insights could prove to be valuable for
developing effective therapeutic prevention and intervention strategies.
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