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As one of the key components of the immune system, mast cells are well known
for their role in allergic reactions. However, they are also involved in inflammatory
and fibrotic processes. Mast cells participate in all the stages of acute
inflammatory responses, playing an immunomodulatory role in both innate
and adaptive immunity. Mast cell-derived histamine, TNF-α, and IL-6
contribute to the inflammatory processes, while IL-10 mediates the
suppression of inflammation. Crosstalk between mast cells and other immune
cells is also involved in the development of inflammation. The cell–cell adhesion
of mast cells and fibroblasts is crucial for fibrosis. Mast cell mediators, including
cytokines and proteases, play contradictory roles in the fibrotic process. Here, we
review the double-edged role of mast cells in inflammation and fibrosis.
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1 Introduction

Mast cells (MCs) are important components of the innate and adaptive immune system
(Tikoo et al., 2018). MCs are found in almost all kinds of tissues and organs, especially at
sites close to the external environments, such as mucosal membranes, the skin, and
perivascular areas, acting as sentinels (Piliponsky and Romani, 2018). The role of MCs
has been widely investigated in allergic diseases such as urticaria, asthma, and rhinitis. It has
been reported that the mediators released by activated MCs are crucial in allergic diseases
(Anastasia et al., 2024). A protective role of mast cells in allergic responses has been reported
recently (Thomas et al., 2023; Esther et al., 2023). These studies show the biphasic role of
MCs in allergy. Because MCs are also demonstrated to be involved in inflammation and
fibrosis (Ribatti et al., 2020; Guo et al., 2023), we will discuss the activating and inhibitory
effects of MCs in these processes.

Using single-cell transcriptomics analysis, scientists proved that MCs derived from
CD34+ pluripotent progenitor cells reside in the bone marrow (Wu et al., 2022). Mast cell
progenitors leave the bone marrow and migrate into peripheral tissue, where they finish the
process of maturation (Tahereh et al., 2022). Stem cell factor (SCF), which is the ligand of
CD117, plays an important role in almost every stage of MC differentiation (Terhorst-
Molawi et al., 2023). Mature MCs express a variety of stimulatory and inhibitory receptors
on the cell surface (Daniel et al., 2019). Once activated through stimulatory receptors, MCs
might release granules that contain a variety of mediators, including preformed mediators,
newly synthesized lipid mediators, cytokines, and chemokines (Petri and Ilze, 2017). Due to
the diversity of mediators in different MC subtypes, human mast cells are divided into two
major subtypes: mast cells whose granules contain mostly tryptase (MC_T) and mast cells
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whose granules contain tryptase and chymase (MC_TC) (Baba et al.,
2017). However, an intermediate phenotype linked to both MC_T
and MC_TC was observed in human airway tissues (Dwyer et al.,
2021). Another study identified six mast cell clusters in different
human tissues (Tauber et al., 2023). These studies showed the
natural diversity and heterogeneity of mast cells.

2 Mast cells in acute
inflammatory responses

2.1 Mast cells in innate immunity

MCs are involved in innate inflammatory responses such as
bacterial infection, venom damage, and tissue injury (Chompunud
Na Ayudhya et al., 2020). MCs express a variety of stimulatory
receptors that function in innate immunity (Daniel et al., 2019).
Agonists of toll-like receptors and Mas-related G protein-coupled
receptors (MRGPR), complement anaphylatoxins C3a and C5a, and
endogenous peptides are involved in mast cell activation (Cho et al.,
2021; Roy et al., 2021; Laumonnier et al., 2023). Unlike the adaptive
signals, the innate stimuli lead to the release of small and spherical
granules rapidly through the activation of MCs. Those small
granules induce local and transient inflammation in innate
inflammatory responses (Gaudenzio et al., 2016). Previous studies
showed that the activation of MRGPRX2 enhanced the clearance of
Staphylococcus aureus from infected mouse skin (Arifuzzaman et al.,
2019). MCs were also demonstrated to protect against snake and

honeybee toxins by releasing proteases (Yuki et al., 2023). In
addition, substance P (SP) could activate Mrgprb2 and mediate
thermal hyperalgesia and non-histaminergic itch (Green et al., 2019;
Meixiong et al., 2019). These studies revealed the proinflammatory
role of MCs in innate immunity.

A series of three successive phases had been described in the
acute inflammatory responses (Aller et al., 2004). MCs were shown
to be involved in all three stages (Figure 1) (Aller et al., 2019). The
first phase of acute inflammation is the nervous phase, which
manifests as vascular permeability changes through sensory and
motor alterations. The activation of the
hypothalamic–pituitary–adrenal axes and sympathetic nervous
system was observed in acute tissue injury. In the immediate
phase of inflammation, crosstalk of MCs and sensory nerves was
crucial (Toyoshima and Okayama, 2022). Activation of the
neuroendocrine system induces the release of activating signals,
including adenosine, corticotrophin-releasing hormone, and
substance P. Those stimuli could activate MCs. Activated MCs
then release mediators such as histamine, vascular endothelial
growth factor (VEGF), and prostacyclin, which increase vascular
permeability and smooth muscle contraction. In addition,
histamine, tryptase, and nerve growth factors released by MCs
could stimulate nerve fibers and amplify the inflammatory courses.

In the later phase of inflammation, also called the immune
phase, cytokines released by MCs contribute to the recruitment and
maturation of other immune cells, such as macrophages, dendritic
cells, and neutrophils. In this stage, MCs mainly play
immunoregulatory roles in innate and adaptive immunity.

FIGURE 1
Role ofmast cells in acute inflammatory processes. Mast cells are involved in innate and adaptive immunity in the three stages of acute inflammation.
In addition to IL-10, most mast cell mediators are proinflammatory. Crosstalk between mast cells and macrophages, dendritic cells, and neutrophils
contributes to innate immunity, while the interaction of mast cells with B cells and T cells contributes to adaptive immunity. Crosstalk betweenmast cells
and Treg has been shown to be immunosuppressive in inflammatory processes.
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Focusing on innate inflammation, MCs have been shown to
contribute to macrophage recruitment and polarization by
releasing cytokines such as monocyte chemotactic protein-1
(MCP-1) (Elieh Ali Komi et al., 2020; Zhang et al., 2020). MCs
can also modulate neutrophils and dendritic cells. In the process of
tissue injury, perivascular MCs were demonstrated to induce
neutrophil recruitment and activation through the release of
tumor necrosis factor (TNF)-α and interleukin (IL)-17a (Jan
et al., 2021; Katia et al., 2013; Régis et al., 2022). Moreover,
during bacterial infection, MC-derived leukotriene B4 (LTB4)
contributed to host defense by mediating early neutrophil influx
and bacterial clearance (Van Bruggen et al., 2023). Similarly, MC-
derived TNF-α and IL-6 were shown to promote the migration and
maturation of dendritic cells (Jan et al., 2015; Dudeck et al., 2019).
Furthermore, MC-derived IL-4 mediated dendritic cell activation at
the site of inflammation (Friedel et al., 2024). These results show that
mast cells, macrophages, neutrophils, and dendritic cells comprise
an important barrier of innate immunity.

Finally, in the last phase of acute inflammation, referred to as the
endocrine phase, MCs could influence the microenvironment by
inducing fibrogenesis and angiogenesis. MC-derived transforming
growth factor (TGF)-β, VEGF, and fibroblast growth factor (FGF)
are involved in this stage (Kyritsi et al., 2021). Those mediators are
also essential in chronic inflammation and fibrosis.

2.2 Mast cells in adaptive immunity

MCs are believed to be a critical bridge in the transition from
innate to adaptive immunity (Cardamone et al., 2016). MCs express
high-affinity immunoglobulin E (IgE) receptors and several low-
affinity IgG receptors on the cell surface (Daniel et al., 2019). These
receptors allow antibodies to enroll MCs into immune responses in
the presence of antigens. The role of MCs has been widely
investigated in IgE-induced anaphylaxis (Dispenza et al., 2023).
IgE and the high-affinity IgE receptors on MCs were also shown to
be crucial for acquired resistance to honeybee venom (Marichal
et al., 2013). In addition, the crosstalk between MCs and adaptive
immune cells, including B cells and T cells, was essential for
adaptive immunity.

MCs have been found to induce the activation and
differentiation of B cells both in mouse models and humans
(Breitling et al., 2017; Rurik et al., 2021). Direct cell–cell contact
was reported between MCs and B cells. The CD40-CD40L
interaction play- a key role in MC-mediated B-cell activation
(Gwan Ui et al., 2015; Viviana et al., 2020). In addition, MC-
derived IL-6 was involved in B cell differentiation and
immunoglobulin A (IgA) secretion (Merluzzi et al., 2010; Valeri
et al., 2021). Because B-cell-derived IgE could re-activate MCs and
result in more mediator release, MC-B-cell interaction might
exaggerate the adaptive inflammatory responses.

Human MCs were shown to release chemokines such as
chemokine (C-C motif) ligand (CCL)3 and CCL5 to recruit
cytotoxic cells, including CD8+T cells, during virus infection
(Yana et al., 2021; Chen et al., 2023). MC-derived LTB4 and TNF-
α were crucial for the amplifying of CD8+ T cells dominated
adaptive immunity (Jan et al., 2015; Bodduluri et al., 2018). MCs
were shown to be capable of antigen presentation via major

histocompatibility complex (MHC) class I molecules to
CD8+T cells (R et al., 1996). This crosstalk proved to be
important in regulating CD8+T-cell proliferation, cytokine
secretion, and cytotoxic activity. MCs were demonstrated to
express costimulatory molecules OX40L for T-cell activation
in human skin (Marta et al., 2014). Similarly, MCs are
involved in the recruitment, activation, and differentiation of
CD4+ T cells. Most of the modulating function of MCs on CD4+

T cells depends on the expression of MHC class Ⅱ molecules and
OX40L (Sahar et al., 2017). TNF-α and IL-6 are also crucial in
establishing synaptic contacts (Nicolas et al., 2013). Interestingly,
evidence showed that MCs treated with nicotinamide adenine
dinucleotide (NAD)+ could mediate CD4+ T-cell differentiation
independently of MHC II and T-cell receptor signaling
machinery (Hector et al., 2018).

In addition to the roles of initiator and effector in innate
immunity, MCs are also important in the host’s transition from
innate to adaptive immunity. The crosstalk between MCs and other
immune cells indicated the immunomodulatory ability of MCs. The
immunomodulatory ability might be more important than the
effector-cell function under given circumstances. Further
exploration is needed to understand how to regulate MCs in
inflammatory processes.

2.3 Role of mast cells in the suppression of
inflammatory responses

MCs were demonstrated to be suppressors of inflammatory
responses. The anti-inflammatory role of MCs is partially
dependent on the release of IL-10. Using three different types of
MC-deficient mice and mice with ablated MC-derived IL-10,
researchers showed that MC-derived IL-10 could limit
inflammation and tissue pathology in contact hypersensitivity
(Reber et al., 2017). In another study using IL-33 for the
activation of synovial MCs, researchers found that the production
of IL-10 and histamine was elevated, resulting in the suppression of
monocyte-mediated disease activity in rheumatoid arthritis
(Rivellese et al., 2015). MC-derived IL-10 also functions in graft-
versus-host disease (GVHD). MC-derived IL-10 significantly
reduced GVHD by decreasing conventional T-cell proliferation.
This immunosuppressive ability was independent of Tregs
(Leveson-Gower et al., 2013). In experimental murine
myeloperoxidase (MPO)-ANCA-associated vasculitis (AAV),
MC-derived IL-10 enhanced the immunosuppressive function of
Treg and played a protective role in MPO-related inflammation
(Gan et al., 2012; Gan et al., 2016).

In addition to IL-10, the immunosuppressive function of MCs
also depends on the crosstalk of MCs and regulatory T cells. IL-9
produced by Treg is important in MC recruitment and activation,
which then mediate regional immune suppression in tolerant
allografts. MC-deficient mice are not capable of establishing long-
term allograft tolerance (Li-Fan et al., 2006). In addition, MC-
derived IL-2 is involved in suppressing chronic allergic dermatitis
by promoting Treg expansion (Keith et al., 2023). MCs are also
crucial for the resistance of streptozotocin-induced type 1 diabetes
mellitus by promoting Treg-mediated immunological tolerance
(Carlos et al., 2015).
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Althoughmany studies have discussed the proinflammatory and
anti-inflammatory roles of MCs, it is still unclear which signals
mediate the immunosuppressive function of MCs. One study
showed that the MC stabilizer disodium cromoglycate inhibited
MC degranulation without affecting IL-10 production and resulted
in the protection of AAV disease activity (Gan et al., 2016). This
study suggested that some medications might limit the deleterious
function and retain the protective ability of MCs. Perhaps there will
be more targeted treatments that regulate the function of MCs in
inflammatory processes in the future.

3 Mast cells and fibrosis

3.1 Mast cells in the activation of fibroblasts

The transition of fibroblasts into myofibroblasts was shown to
induce excessive deposition of extracellular matrix and then cause
fibrosis in different tissues and organs (Younesi et al., 2024).
Crosstalk between MCs and fibroblasts has been investigated in
recent decades (Figure 2). One study showed that co-culture of
dermal fibroblasts with human MC significantly enhanced
contraction of the three-dimensional collagen lattices; the
addition of antibodies against stem cell factor (SCF) and c-kit
resulted in the inhibition of gel contraction. Nevertheless, adding
the supernatants of MCs to cultured fibroblasts did not enhance the
speed of gel contraction, which indicates the importance of cell–cell
contact (Yamamoto et al., 2000). Several studies showed cell
adhesion between MCs and fibroblasts (Yaksh et al., 2019;
Pincha et al., 2018). Murine MCs adhere to fibroblasts through
SCF-KIT interaction (Adachi et al., 1992), while the adhesion of
human MCs and fibroblasts depends on the expression of the cell
adhesion molecule (CADM)1-kit mechanism (Moiseeva et al.,

2013). This cell–cell adhesion is the foundation of contact-
dependent cell communication.

In addition to the contact-dependent cell communication,
mediators released by both cells are crucial in the MC-fibroblast
crosstalk. It is believed that fibroblasts triggered MC activation
through the production of SCF (Luo et al., 2022). Meanwhile,
several MC-derived mediators, such as TGF-β, are involved in
activating fibroblasts. TNF-α was shown to be crucial for the
MC-fibroblast interaction in myocardial fibrosis (Zhang et al.,
2011). MC-derived IL-13/IL-4 is involved in disease progression
in myelofibrosis (Melo-Cardenas et al., 2022). MCs could release IL-
33, which stimulates fibroblasts and enhances collagen expression
(Wulff et al., 2019). MC tryptase was demonstrated to induce lung
fibroblast migration via protease-activated receptor-2 (PAR-2)
activation (Bagher et al., 2018). In addition, MC tryptase was
shown to promote inflammatory bowel disease-induced intestinal
fibrosis through the PAR-2/Akt/mammalian target of the rapamycin
(mTOR) pathway of fibroblasts (Liu et al., 2021). MC chymase was
found to promote fibroblast proliferation and collagen synthesis
through the activation of the TGF-β1/Smads signaling pathway
(Chen et al., 2017). Chymase was also shown to be a major
source of angiotensin II (Ang II) production (Ahmad and
Ferrario, 2018), and Ang II was widely investigated for its pro-
fibrosis role in different diseases (Lv et al., 2021).

3.2 Mast cells in the inhibition of fibrosis

An antifibrotic role of MCs was also observed in several studies.
One study observed the difference between the unilateral ureteral
obstruction (UUO)model inW/Wvmice and the UUOmodel in the
wild type. Higher levels of renal interstitium fibrosis, more
infiltrating immune cells, and higher tissue levels of TGF-β1 were

FIGURE 2
Crosstalk between mast cells and fibroblasts in fibrotic processes. The cell–cell adhesion between mast cells and fibroblasts depends on the stem
cell factor-Kit (SCF-KIT) interaction. In addition, mast cell-derived cytokines and chemokines contribute to the transition of fibroblasts into
myofibroblasts. Interestingly, some mast cell mediators have been shown to have both profibrotic and antifibrotic functions.
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observed in MC-deficient mice, which indicated the protective role
of MCs in renal fibrosis. A possible explanation of the protective role
of MCs was that MC-derived heparin could inhibit TGF-β1
production (Kim et al., 2009; Beghdadi et al., 2013). As
mentioned above, MCs could produce anti-inflammatory
mediators, including IL-10 and IL-33 (Stephen et al., 2020). IL-10
has been shown to attenuate cardiac fibrosis by inhibiting TGF-β-
induced myofibroblast differentiation (Verma et al., 2017). Another
study observed that IL-33 impaired fibroblast migration and gel
contraction in age-related macular degeneration (Theodoropoulou
et al., 2015). Because IL-33 has been reported for its profibrotic role
in diseased states, the function of IL-33 in fibrosis might be
contradictory. Another MC mediator was proved to be both
profibrotic and antifibrotic. MC chymase was shown to protect
against renal fibrosis by activating matrix metalloproteinases and
degrading interstitial deposits of fibronectin (Beghdadi et al., 2013;
MacColl and Khalil, 2015).

3.3 Confounding factors of mast cells
in fibrosis

Unlike the role of MCs in the inflammatory process, the role of
MCs in fibrosis is more complicated. The anti-inflammatory
function of MCs is mostly mediated by IL-10 and crosstalk
between MCs and regular T cells. However, in fibrotic processes,
both a profibrotic and antifibrotic role can be observed in a specific
MC-derived mediator. In addition, results from cell culture and
animal models are often contradictory. One explanation is that some
of the MC-deficient animal models are not appropriate for the study
under the given circumstances. Some reactions have been
demonstrated to be induced by the other consequences of the
genetic mutation instead of the absence of MCs (Chmelař et al.,
2016). The different types of stimuli may also be responsible for the
paradoxical results. The reactions of MCs are not consistent for
acute tissue injury and chronic tissue damage. One study
investigated the role of MCs in both the early and late phases in
murine models of acute and chronic renal ischemia-reperfusion
injury (IRI). MCs were found to promote fibrosis in the acute phase
of IRI but not in the chronic phase of the disease (Danelli et al.,
2017). Moreover, the most widely used MC stabilizers, disodium
cromoglycate and ketotifen, can inhibit IgE-mediated MC
degranulation but have no impact on mediators independently of
degranulation. A high concentration of disodium cromoglycate has
an effect beyond its inhibition onMCs (Oka et al., 2012). This makes
targeting the antifibrotic effects of MCs more challenging.

4 Conclusion

The heterogeneity and diversity of mediators make the role of
MCs contradictory in inflammation and fibrosis. For further
research, animal models should be carefully selected to eliminate
the effect of MCs. Using two or more MC-deficient animal models,
as well as MC-engrafted methods, will be more precise than using
one single animal model. In addition, most research animal models
are designed for acute injury; perhaps an animal model of chronic
damage may reflect the functions of MCs in chronic inflammation
and fibrosis more exactly. Moreover, the specificity of MC stabilizers
is not satisfactory; targeting a single mediator of MCs will be more
important in research and clinical applications.
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