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Nicotinamide adenine dinucleotide (NAD+) is crucial for cellular energy
production, serving as a coenzyme in oxidation-reduction reactions. It also
supports enzymes involved in processes such as DNA repair, aging, and
immune responses. Lower NAD+ levels have been associated with various
diseases, highlighting the importance of replenishing NAD+. Nicotinamide
phosphoribosyltransferase (NAMPT) plays a critical role in the NAD+ salvage
pathway, which helps sustain NAD+ levels, particularly in high-energy tissues
like skeletal muscle.This review explores how the NAMPT-driven NAD+ salvage
pathway influences skeletal muscle health and functionality in aging, type
2 diabetes mellitus (T2DM), and skeletal muscle injury. The review offers
insights into enhancing the salvage pathway through exercise and NAD+

boosters as strategies to improve muscle performance. The findings suggest
significant potential for using this pathway in the diagnosis, monitoring, and
treatment of skeletal muscle conditions.
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1 Introduction

Nicotinamide phosphoribosyltransferase (NAMPT) was first identified in B cells, where
it helps mature B cells, earning it the initial name Pre-B cell colony-enhancing factor (PBEF)
(Samal et al., 1994). Additionally, NAMPT, known as “Visfatin” (Fukuhara et al., 2005) for
its insulin-like effects, is secreted by visceral fat. Analysis of the tissue origins of 719 cDNA
clones revealed that NAMPT is expressed in nearly all organs, tissues, and cells (Friebe et al.,
2011), indicating that this protein may have multiple regulatory functions in human
physiological processes. NAD+ is a coenzyme essential for redox reactions in metabolic
processes, including glycolysis, the citric acid cycle, and oxidative phosphorylation
(Houtkooper et al., 2010). It also acts as a substrate for various NAD+-dependent
enzymes, influencing processes regulated by enzymes like silent information regulators
(Sirtuins), poly (ADP-ribose)polymerases (PARPs), cyclic ADP-ribose (cADPR) and sterile
alpha and TIR motif-containing 1(SARM1)synthases (Cantó et al., 2013; Essuman et al.,
2017; Malavasi et al., 2008), thereby impacting cellular functions like DNA repair and
signaling. NAD+ is replenished through the De novo biosynthesis pathway, Preiss-Handler
pathway and salvage pathway, with 85% of total NAD+ being produced by the salvage
pathway. Revollo et al. (2007). In the salvage pathway, NAMPT plays a central role by
converting nicotinamide (NAM) into nicotinamide mononucleotide (NMN), which is then
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converted into NAD+ by enzymes NMNAT1-3, completing the cycle
of NAD+ synthesis and breakdown (Revollo et al., 2004) which is
depicted in Figure 1.

During intense physical activity, skeletal muscles rely heavily on
aerobic oxidation in mitochondria for energy. The tricarboxylic acid
cycle, integral to this process, involves NAD+ in three out of four
dehydrogenation reactions. Reduced NAD+ levels can impair muscle
contractions and disrupt mitochondrial energy metabolism,
potentially triggering an energy crisis in skeletal muscles.
NAMPT-driven NAD+ salvage pathway is critical for maintaining
NAD+ levels in skeletal muscles. Eliminating NAMPT in the skeletal
muscles of adult mice led to an 85% reduction in NAD+ content
(Frederick et al., 2016). Basse et al. (2021) specifically knocked out
NAMPT in the skeletal muscle of fetal mice, the mice began to
exhibit abnormal muscle development, impaired function, and
decreased motor ability from the age of 4 weeks, gradually
progressing to severe myopathy. Despite a normal muscle stem
cell pool, it did not alleviate the progression of the myopathy.
Further research by Frederick and team shows that mice lacking
NAMPT are smaller and exhibit reduced muscle mass as they age, a
condition linked to increased expression of genes related to muscle
damage and inflammation, as well as decreased metabolic activity
(Frederick et al., 2016). Six weeks after knocking out NAMPT, three-
month-old male mice exhibited significant neurite loss in both
motor and hippocampal neurons (Wang et al., 2017). This
disruption of neural regulatory mechanisms, essential for
governing muscular activity, led to abnormal movement, muscle
atrophy, and ultimately, the death of the mice (Shen et al., 2023);
NAD+ supplementation has been shown to improve pathological
changes in rats with muscular dystrophy through several
mechanisms: enhancing mitochondrial function, increasing the
expression of structural proteins like α-dystrobrevin, decreasing
poly (ADP-ribosyl)ation, and reducing inflammation and fibrosis,
underscoring its importance in muscle health and function (Ryu
et al., 2016). Disruptions in NAMPT homeostasis impair the ion
transport function of the mitochondrial permeability transition pore
(mPTP) (Briston et al., 2019). When NAMPT levels are deficient or
insufficient, the mPTP stays persistently open, making
mitochondria more sensitive to Ca2+ (Basse et al., 2021). This
sensitivity causes mitochondrial Ca2+ overload, triggering
oxidative stress in skeletal muscle and further opening the mPTP.
This vicious cycle leads to mitochondrial swelling and a decrease in
membrane potential. NAMPT deficiencies in skeletal muscle
significantly reduce mitochondrial fusion proteins (Mfns)
expression and increase mitochondrial fission protein (Drp1)
levels and protein acetylation. This imbalance leads to excessive
mitochondrial fission and altered post-translational modifications,
disrupting mitochondrial structure (Kim et al., 2014). As a result,
vital components such as cardiolipin, phosphatidylglycerol, enzymes
of the electron transport chain, and citrate are markedly reduced,
impairing mitochondrial function and biogenesis (Agerholm et al.,
2018). These structural and functional mitochondrial abnormalities
lead to oxidative stress and inflammation, which accelerate protein
degradation, impair regenerative capacity, and exacerbate skeletal
muscle dysfunction (Lee et al., 1998; Wanagat et al., 2001). In
conclusion, NAMPT plays a vital role in regulating skeletal
muscle growth, development, and contraction by influencing
mitochondrial structure and function via its involvement in

NAD⁺ synthesis. Under pathological conditions, the enhancement
of NAD⁺-centered metabolic pathways has been shown to
significantly enhance skeletal muscle function. Subsequent
sections will explore how the NAD⁺ salvage pathway mitigates
issues such as aging, type 2 diabetes mellitus (T2DM), and
skeletal muscle injuries.

2 NAD+ salvage pathway improves
age-related decline in skeletal
muscle function

2.1 Possible physiological mechanisms
underlying the development of sarcopenia

The Asian Working Group for Sarcopenia defines sarcopenia
as an age-related condition marked by a decline in muscle mass,
strength, and physical function (Chen et al., 2014). Oxidative stress
occurs when an imbalance between oxidants and antioxidants
leads to excessive oxidative activity, damaging vital molecules
such as sugars, lipids, proteins, and DNA (Sies et al., 2017).
Aging is associated with a decrease in the quantity and activity
of antioxidant enzymes, fostering an overproduction of reactive
oxygen species (ROS), which disrupt cellular redox balance
(Sullivan-Gunn and Lewandowski, 2013). Research has
conclusively demonstrated that oxidative stress significantly
contributes to sarcopenia (Coto-Montes et al., 2017) by
accelerating muscle protein degradation through
hyperactivation of the ubiquitin-proteasome and autophagy-
lysosome pathways, while simultaneously impeding protein
synthesis (Jang et al., 2020). Furthermore, oxidative stress
impairs mitochondrial biogenesis, diminishes ATP production,
and disrupts mitochondrial autophagy, leading to energy
metabolism disorders in skeletal muscle fibers and exacerbating
muscle wasting (Jang et al., 2010). In addition, oxidative stress
stimulates the accumulation of inflammatory cytokines and
enhances the phagocytic activity of macrophages and
neutrophils, triggering a chronic inflammatory response that
intensifies oxidative stress (Bartnik et al., 2000.). This vicious
cycle further damages muscle fiber structure and function
(Chen et al., 2022). Mitochondrial dysfunction, central to aging
(López-Otín et al., 2023), involves the accumulation of mtDNA
mutations, imbalances in protein synthesis and degradation,
instability of respiratory chain complexes, and altered
mitochondrial dynamics. These changes undermine
mitochondrial integrity and function, contributing to muscle
fiber degeneration. Deterioration in mitochondrial function
increases ROS production and mitochondrial membrane
permeability, precipitating inflammation and cellular
destruction (Hepple, 2014).

In the muscles of aged mice and elderly humans, levels of
autophagy markers, including autophagy-related protein7 (ATG7)
and Light Chain 3 (LC3) lipidation, are reduced, indicating impaired
autophagic function (Carnio et al., 2014). Skeletal muscles in ATG7-
specific knockout mice exhibit muscle atrophy, reduced strength,
and pathological features characteristic of myopathy, with the
decline in muscle strength becoming more pronounced with
aging (Masiero et al., 2009). Impaired autophagy disrupts the
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protein quality control system, leading to increased protein
aggregates that further exacerbate sarcopenia (Jiao and Demontis,
2017). Aging is often accompanied by chronic low-grade
inflammation, primarily associated with senescent cells and their
senescence-associated secretory phenotype (SASP). The SASP
increases with age, releasing pro-inflammatory cytokines that
contribute to both inflammation and aging (Fulop et al., 2018;
Fulop et al., 2021). Previous studies have shown that elevated IL-
6 levels can predict disability in the elderly, likely due to the direct
effects of IL-6 on muscle atrophy (Ferrucci et al., 1999).
Additionally, IL-1β levels are negatively correlated with walking
speed, further linking inflammation to the decline in skeletal muscle
function (Morawin et al., 2023). Inflammatory cytokines activate
protein degradation and inhibit protein synthesis, leading to
sarcopenia (Jo et al., 2012).

Age-related structural and functional decline of the
neuromuscular junction (NMJ) significantly contributes to
muscular dystrophy. Aging leads to the thinning and degradation
of motor neuron axons, which exhibit disordered terminal
branching (Padilla et al., 2021). Decreased reactivity of terminal
Schwann cells and a reduction in the quantity and density of
acetylcholine receptors on muscle fibers contribute to neural
innervation failure and disrupted muscle contractions (Alice
et al., 2016).Skeletal muscle stem cells (MuSCs) are crucial for
the regenerative and repair functions of skeletal muscles due to
their quantity and functionality (Jiang et al., 2024). In male rats
between 15 and 18 months of age, the number of MuSCs declines
with advancing age, and they undergo morphological changes,
including flattening, enlargement, and a loss of three-dimensional
structure. Consequently, these alterations weaken the proliferation
and self-renewal potential of MuSCs, causing a shift from a
reversible dormant state to a permanently quiescent state, which
compromises the regenerative capacity of skeletal muscles (Pedro
et al., 2021).

2.2 The NAD+ salvage pathway has been
shown to ameliorate sarcopenia and its
underlying mechanisms

NAD+ was one of the most prominent metabolites that
decreased in older adults, and this decline was even more
pronounced in impaired older adults (Janssens et al., 2022).
This outcome is a consequence of both reduced synthesis
efficiency and increased consumption. Across various tissues in
humans and mice, the level of NAMPT in the NAD+ salvage
pathway declines with age (De Guia et al., 2019; Stein and Imai,
2014; Xing et al., 2019), resulting in decreased synthesis of NAD+.
Furthermore, as the aging process progresses, the accumulation of
DNA damage, inflammation, and oxidative stress intensifies,
leading to an enhancement in the activity of NAD+ consuming
enzymes such as CD38 and PARPs (Covarrubias et al., 2020;
Goody and Henry, 2018; Khaidizar et al., 2021; Schultz and
Sinclair, 2016; Silva et al., 2023). Enhancing NAD+ metabolism
has emerged as a viable therapeutic approach to mitigate age-
related conditions and extend lifespan, as supported by numerous
studies (Gerdts et al., 2015; Krafczyk and Klotz, 2022; Mouchiroud
et al., 2013; Tzameli, 2012). Lifelong overexpression of NAMPT

can maintain NAD+ content and functionality in the skeletal
muscle of aged mice (Frederick et al., 2016). We summarize the
mechanisms by which the NAMPT salvage pathway improves
aging skeletal muscle, including alleviating oxidative stress,
maintaining the stability of the NAD+ pool, promoting
autophagy, reducing chronic low-grade inflammation,
enhancing the quantity and function of MuSCs, and improving
the formation of neuromuscular junctions.

Increasing NAD+ enhances the function of silent information
regulator factor (SIRT1) (Khaidizar et al., 2017), which activates
the forkhead box proteins (FoxOs)pathway (Olmos et al., 2013),
increases levels of antioxidant enzymes like Superoxide
Dismutase 2 (SOD2), strengthens antioxidant defense
mechanisms, reduces ROS (Zhang et al., 2023), mitigates
oxidative stress damage, and therefore retards the aging
process in skeletal muscle. Activated SIRT1 acts as an
antioxidant by suppressing NF-κB expression while boosting
levels of peroxisome proliferator-activated receptor γ
coactivator 1α(PGC-1α) and nuclear factor erythroid 2-related
factor 2 (Nrf2), which are key regulators of cellular defense
against oxidative stress (Tzameli, 2012). The malate-aspartate
shuttle (MAS), essential for the exchange between mitochondrial
NAD+ and cytoplasmic NADH (Yang et al., 2007), stabilizes
mitochondrial NAD+ during increased energy demands,
facilitated by PGC-1α activation in skeletal muscle (Kang and
Li Ji, 2012). The mitochondrial unfolded protein response
(UPRmt) is crucial for maintaining mitochondrial function and
homeostasis. Enhancing NAD+ in skeletal muscle models
activates UPRmt, balancing mitochondrial protein systems and
improving function (Mouchiroud et al., 2013). The NAD+-
dependent enzyme SIRT1 deacetylates LC3 at K49 and
K51 sites, enabling LC3 to interact with nucleoproteins and
translocate to the cytoplasm, where it binds with autophagy
factors such as ATG7, thereby promoting autophagy in skeletal
muscle (Huang et al., 2015). Adenosine 5‘-monophosphate
(AMP)-activated protein kinase (AMPK) is a key initiator of
autophagy (Ge et al., 2022), and SIRT1 can activate AMPK
(Gao et al., 2020; Ruderman et al., 2010). AMPK, in turn,
activates Unc-51-like autophagy activating kinase 1 (ULK1)
through phosphorylation. ULK1 then activates downstream
molecules such as Bcl-2-interacting coiled-coil protein 1
(Beclin1) and ATGs, thereby promoting the autophagy process
(Holczer et al., 2020). Studies have also shown that AMPK
protects cells from oxidative stress-induced aging by increasing
autophagic flux and enhancing NAD+ levels (Han et al., 2016).
The NLR family pyrin domain containing 3(NLRP3)
inflammasome is an intracellular signaling complex that
produces pro-inflammatory cytokines, such as IL-1β. Reducing
NLRP3 inflammasome expression can enhance muscle fiber size
and contractility (McBride et al., 2017). SIRT2 inhibits
NLRP3 inflammasome activity by deacetylating NLRP3,
thereby reducing aging-associated chronic inflammation (He
et al., 2020). Oral administration of nicotinamide riboside
(NR) can increase skeletal muscle NAD+ levels and reduce
circulating inflammatory cytokines in skeletal muscle (Elhassan
et al., 2019). The regulation of other inflammatory factors by
NAD+ to improve skeletal muscle function is discussed in the
section on T2DM in this paper.
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Research shows that the NAD+ salvage pathway enhances
neuromuscular junctions (NMJ). Administering NMN to increase
NAD+ levels improves vesicle count in axons, restores neuronal
function, and maintains synaptic connectivity and transmission at
NMJs (Oki et al., 2015; Samuel et al., 2020). Supplementing with
NAMPT to increase NAD+ levels can boost MuSCs counts (Hongbo
et al., 2016), as NAD+ promotes SIRT1 overexpression, which
prevents aging of these cells (Ma et al., 2017), aiding in repair
and maintaining the integrity of NMJs (Larouche et al., 2021). The
TIR domain of SARM1 can cause axon damage, but overexpressing
NAMPT in dorsal root ganglion neurons counters this effect,
preventing axon degeneration and cell death (Gerdts et al., 2015).
Overexpression of NAMPT also protects against glutamate
excitotoxicity and neuronal apoptosis due to oxygen-glucose
deprivation, thereby enhancing neuroprotection (Wang et al.,

2016). Restoring the number and function of quiescent muscle
stem cells in aging skeletal muscle helps improve sarcopenia. The
NAD+-dependent SIRT1 deacetylates substrates such as histone
H4K16ac, regulating gene expression and maintaining the
quiescent state of stem cells (Ryall et al., 2015). NR
supplementation can increase the number of MuSCs and
enhance their self-renewal capacity (Hongbo et al., 2016). Paired
Box 7(PAX7)is essential for maintaining the regenerative function of
adult muscle stem cells (Sambasivan et al., 2011). SIRT2 deacetylates
PAX7, promoting muscle stem cell self-renewal, inhibiting
differentiation, and maintaining the undifferentiated state of
MuSCs (Sincennes et al., 2021). Studies in twins have shown that
NR promotes the activation of MuSCs from differentiation and
fusion to formation of muscle fibers (Lapatto et al., 2023). In
conclusion, the NAD+ salvage pathway holds therapeutic
potential for treating sarcopenia by reversing pathogenic
processes, as depicted in Figure 2.

3 NAD+ salvage pathway in improving
T2DM skeletal muscle pathology

3.1 Decreased skeletal muscle contractile
function in T2DM

Current epidemiological data shows approximately 387 million
adults worldwide are affected by diabetes, with projections

FIGURE 1
Mammalian NAD+ metabolism.

FIGURE 2
The mechanism of NAD+ salvage pathway improve the function of skeletal muscle in aging. NAD+-Sirtuin1- FoxOs mitigates oxidative stress
damage; NAD+-Sirtuin1- PGC-1α improves the mitochondrial function; NAD+-Sirtuin1-AMPK promotes autophagy; NAD+-Sirtuin2 reduces chronic low-
grade inflammation and enhances the quantity and functionality of MuSCs; NAD+ increases vesicles, remodels endplate of NMJ.
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suggesting this number will increase to 693 million by 2045 (Cole
and Florez, 2020). Type 2 diabetes (T2DM) is characterized by
elevated blood sugar levels, primarily due to impaired β-cell
function, leading to inadequate insulin secretion or reduced
insulin sensitivity. T2DM affects skeletal muscles through insulin
resistance, chronic inflammation, advanced glycation end products,
and increased oxidative stress, all of which undermine muscle
structure, function, and mass (Chen et al., 2023). This results in
muscle loss, decreased quality of life, and a higher risk of disability or
death (Kawada, 2021), with diabetics having a 1.5–2 times greater
risk of muscle loss than non-diabetics (Izzo et al., 2021). GLUT4, a
glucose transporter, manages about 80% of glucose uptake, mainly
in skeletal muscles (Son et al., 2017). In T2DM, impaired insulin
signaling prevents GLUT4 from effectively transporting glucose,
reducing muscle glycogen synthesis and contributing to insulin
resistance in muscle tissues. High glucose levels lead to fat
accumulation in skeletal muscles, activating protein kinase
C-epsilon (PKCε) and worsening insulin resistance (Meex et al.,
2019). Increased fat in muscles also releases fatty and inflammatory
molecules (Donath and Shoelson, 2011), promoting chronic
inflammation, which impairs muscle formation, accelerates
muscle breakdown, and causes muscle wasting (Cole and Florez,
2020). Hyperglycemia affects neurons by decreasing their
responsiveness to electrical stimuli and altering action potential
conduction at the neuromuscular junctions. Additionally, it reduces
sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) levels (Bayley
et al., 2016), impairing skeletal muscle contraction.

3.2 NAD+ salvage pathways improve the
mechanism of skeletal muscle energy
metabolism in T2DM

Nicotinamide phosphoribosyltransferase (NAMPT), an
adipokine resembling insulin, plays a vital role in the NAD+

salvage pathway, which is crucial for the function of pancreatic
islet β-cells and is closely linked to glucose and insulin metabolism
(Revollo et al., 2007; Yoshino et al., 2011). Research indicates that
NMN supplementation can enhance insulin secretion and sensitivity
in diabetic mice by improving the NAD+ synthesis pathway
(Yoshino et al., 2011). Additionally, elevating SIRT1 specifically
in the pancreatic islet β-cells of C57BL/6 mice enhances insulin
secretion, improves glucose tolerance, and increases insulin
sensitivity (Moynihan et al., 2005).NMN supplementation
significantly enhances muscle insulin signaling in prediabetic
women, improving skeletal muscle insulin sensitivity and
increasing glucose uptake and metabolism in skeletal muscle
(Yoshino et al., 2021). NR ameliorates insulin resistance in the
skeletal muscle of high-fat diet (HFD) mice by activating the AMPK
signaling pathway, which inhibits oxidative stress and enhances
mitochondrial function (Li et al., 2023). The NAD+-dependent
enzyme SIRT1 regulates AMPK activity (Imi et al., 2023; Liu and
Chang, 2018), which phosphorylates Histone Deacetylase 5
(HDAC5) at Ser259 and Ser498, reducing HDAC5 binding to the
GLUT4 gene promoter. This increases GLUT4 gene expression and
improves skeletal muscle insulin sensitivity (McGee et al., 2008).

FIGURE 3
Themechanism ofNAD+ salvage pathway improve the function of skeletal muscle in T2DM. NAD+ enhances insulin secretion; NAD+-Sirtuin1- NF-κB
decreases inflammation in skeletal muscles; NAD+-Sirtuin1-AMPK improves skeletal muscle insulin sensitivity; NAD+ decreases PPARγ phosphorylation,
promotes fat metabolism; NAD+-Sirtuin1 deacetylates PPARγ to induce white fat browning.
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AMPK also reduces inflammation and insulin resistance in the
skeletal muscle of HFD-fed mice, thereby improving skeletal
muscle function in T2DM (Zhao et al., 2018). In the skeletal
muscle-specific NAMPT knockout mouse model, k-means
clustering analysis was conducted on all detected genes, revealing
a distinct cluster associated with inflammation and immune
response-related genes (Frederick et al., 2016). The activation of
the nuclear factor kappa-B (NF-κB) pathway, a key player in
inflammation (van der Heiden et al., 2010), triggers the
upregulation of muscle-specific E3 ubiquitin ligase (MuRF1) and
cytokines such as TNF, IL-6, and IL-1β. This increases muscle
protein breakdown and inhibits protein synthesis, disrupting
protein balance and leading to muscle atrophy (Cai et al., 2004).
The activity of NF-κB in skeletal muscle of T2DM patients is
2.7 times higher than that of normal glucose tolerant subjects
(Tantiwong et al., 2010). Inhibiting NF-κB can significantly
reduce muscle loss. Supplementation with NAMPT enhances
NAD+ synthesis, thereby increasing SIRT1 activity (Stein and
Imai, 2012). This activity includes the deacetylation of RelA
AcK310 by SIRT1, which inhibits NF-κB transcriptional activity
(Yeung et al., 2004), decreases inflammation in skeletal muscles, and
improves muscle function in diabetes.

Patients with type 2 diabetes and obesity typically exhibit
increased fat accumulation around organs, especially in skeletal
muscles and liver. Fat accumulation in the skeletal muscle of
T2DM patients leads to decreased muscle strength and function
(Almurdhi et al., 2016). Adiponectin, a key gene in glucose
metabolism (Banks et al., 2015), acts as an insulin sensitizer,
increasing insulin sensitivity in skeletal muscle, thereby enhancing
glucose uptake and metabolism (Ceddia et al., 2005; Liu et al., 2009).
Targeted deletion of NAMPT inmouse adipocytes results in systemic
insulin resistance, reduced fat metabolism, lower adiponectin levels,
and decreased metabolic efficiency (Stromsdorfer et al., 2016).
PPARγ is crucial for fat synthesis, and its complete deletion in
mice leads to the loss of both white and brown adipose tissues,
causing severe metabolic issues (Gilardi et al., 2019). Additionally,
PPARγ suppresses NF-κB activation, which otherwise enhances
muscle inflammation (Huang and Glass, 2010). Supplementing
PPARγ helps maintain insulin responsiveness in peripheral tissues,
increases glucose uptake and utilization in muscles, improves lipid
metabolism, and lowers triglyceride levels (Ji et al., 2022). Specific
overexpression of NAM in adipose tissue results in a 32-fold increase
in NAD+ (Luo et al., 2022), levels and a corresponding rise in
carnitine content. This enhancement promotes the transport of
fatty acids to mitochondria for oxidative breakdown (Rebouche
and Seim, 1998). Reduced NAD+ levels cause phosphorylation of
PPARγ at Ser273 in adipose tissue, which disrupts PPARγ’s role in
lipid metabolism and inhibits adiponectin function, thereby affecting
glucosemetabolism (Stromsdorfer et al., 2016). Deacetylating PPARγ
at K268 and K293 promotes the recruitment of coactivators that
facilitate the browning of white adipose tissue, thereby increasing
insulin sensitivity, enhancing energy expenditure, and reducing
obesity (Ji et al., 2022). P7C3, an orally active neuroprotective
agent, targets the NAMPT enzyme, enhancing the NAD+ salvage
pathway. This increases insulin sensitivity, boosts mitochondrial
fatty acid β-oxidation in skeletal muscle, and improves energy
metabolism in T2DM mice (Ravikumar et al., 2022) which is
depicted in Figure 3.

4 The application of the NAD+ salvage
pathway in promoting skeletal muscle
injury recovery

Rehabilitation and treatment of skeletal muscle injuries
remain significant challenges in sports physiology, medicine,
and rehabilitation. There is substantial evidence that the
NAMPT-mediated NAD+ salvage pathway plays a crucial role
in the structural and functional recovery of injured skeletal
muscles. Studies suggest that extracellular vesicles from young
individual’s adipose-derived mesenchymal stem cells (ADMSC
young-EVs) are promising for treating tendinopathy by
potentially increasing NAMPT expression in tendon cells and
macrophages (Wu et al., 2023). Increasing NAMPT expression
activates pathways such as NAMPT-SIRT1-PPARγ-PGC-1α,
improving mitochondrial functions, reducing cellular damage,
and slowing tendon deterioration. Additionally, the activation
of the NAMPT-SIRT1-NF-κB/NLRP3 pathway rejuvenates
macrophage phagocytic capabilities, lowers pro-inflammatory
factor levels, and alleviates tendinopathy. NAMPT enhances
M2 macrophage polarization, increasing their proportion,
which helps reduce inflammation and promote tendon repair
in tendinopathy (Wu et al., 2023). Disuse atrophy occurs when
skeletal muscle atrophies due to reduced activity following injury.
In models of acute supraspinatus and extensor digitorum longus
muscle tears, injecting exogenous NAMPT improves citrate
synthase activity and mitochondrial function, thereby
enhancing muscle regeneration capabilities (Yao et al., 2023).
Dhanushika et al. (2021) discovered in a transgenic zebrafish
model that following skeletal muscle injury, about 34%
of macrophages quickly migrated to the injury site. A
particular subset secretes NAMPT that binds to CCR5 on
muscle stem cells (MuSCs), enhancing their repair and
proliferation. Research has shown that knocking down
SIRT1 disrupts sarcolemma repair and vesicle dynamics at
the injury site, increasing vulnerability to further mechanical
damage (Fujiwara et al., 2019). Thus, enhancing the NAD+

salvage pathway and boosting SIRT1 expression are believed
to protect against skeletal muscle damage and hasten
sarcolemma recovery.

Exercise is essential for stimulating the regeneration and
repair of muscle fibers, and the combination of exercise with
NAD+ boosters holds promising potential for restoring the
function of injured skeletal muscle. Exercise and NAD+ boosters
may simultaneously enhance the recovery of injured skeletal
muscle by improving MuSCs and mitochondrial function. In
rodents and humans, exercise and muscle contraction activate
AMPK in skeletal muscle (Jørgensen et al., 2006; Winder and
Hardie, 1996). Studies have shown that the absence of
AMPKα1 leads to a reduction in satellite cell numbers and
decreased expression of myogenic factors such as Myf5 and
Myogenin (Fu et al., 2015; Thomson, 2018). The AMPKα1-
LDH pathway regulates the activation, proliferation,
differentiation, and self-renewal of MuSCs (Theret et al., 2017).
AMPK enhances sirtuin activity (Cantó et al., 2009; Cantó et al.,
2010), and NAD+ boosters can also activate sirtuins. High
expression of SIRT1 facilitates the recovery of injured muscle
function (Myers et al., 2019), while SIRT2 deacetylates PAX7,
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promoting the self-renewal of MuSCs (Sincennes et al., 2021).
AMPK and Sirtuins together can increase PGC-1α activity,
which improves mitochondrial function and enhances skeletal
muscle regeneration (Wu et al., 2023). The crosstalk between
AMPK and Sirtuins offers additional theoretical possibilities
for the use of exercise and NAD+ boosters in the recovery
of injured skeletal muscle. However, the practicality of
this approach requires further experimental validation.
Furthermore, different types and intensities of exercise also
promote NAMPT and NAD+ levels, which will be discussed in
the next section.

5 Exercise regulate NAD+ salvage
pathway to improve skeletal muscle
function strategy

The benefits of regular exercise on skeletal muscles are well-
documented. While studies on exercise’s impact on skeletal muscle
NAMPT levels are limited, available research indicates that elderly
individuals experience a more pronounced increase in NAMPT and
NAD+ levels from exercise than younger people. Different types of
exercise positively affect NAMPT levels, though the specific
molecular mechanisms driving these increases are not yet fully

TABLE 1 Effects of exercises on NAMPT/NAD+ in skeletal muscle.

Subjects Exercise equipment/
Mode

Exercise protocol Tissue
sample

NAMPT/NAD+

alterations
Reference

Three-month-old male
young rats and 26-month-old
male aged rats

treadmill 10% incline, 30 min
at10 m min−1 in 2 weeks; 0%
incline, 30 min at 60% VO2max

in 3 weeks; 10% incline, 60 min
at 22 m/min in 1 week (young
rats), and 60 min at
13 m min−1 for in 1 week (old
rats)

gastrocnemius
muscle

Young and aged rats’ NAMPT
levels increased, with a
marked boost in aged rats,
similar to the young controls

Koltai et al.
(2010)

13 non-obese sedentary
subjects

bicycle 30–60 min at 75%–85%
VO2max and 50 min at 70%
VO2max for 13x/3 weeks

vastus lateralis NAMPT increased more than
two-fold

Costford et al.
(2018)

11 young adults (aged 18–30)
and 10 elderly individuals
(≥65 years old)

knee extension In first 4 weeks, 60 min at 65%
VO2max for 3x/w; in last
4 weeks 60 min at 65%VO2max

for 5x/wk

vastus lateralis The young showed a
significant NAMPT increase,
while elderly did not

8 male minors knee extension 1 h or 2 h, 15x/3wks vastus lateralis Trained group had 16% more
NAMPT than untrained

Brandauer et al.
(2013)

17 subjects aged 65–80 with a
history of exercise for more
than 1 year

walk 5 days at 13,671 steps vastus lateralis NAD+ levels increased,
elevating to those of 20–30-
year-olds

Janssens et al.
(2022)

Forty male participants were
grouped based on age (youth,
elderly) and VO2max =
45 mL/kg/min as the dividing
line

bicycle 20 min at 70%VO2max C2C12 myoblasts The NAMPT content
increased in both the young
(VO2max > 45 mL/kg/min)
and middle-aged/elderly
(VO2max > 45 mL/kg/min)
groups, but not in the middle-
aged/elderly group with
VO2max < 45 mL/kg/min

Chee et al. (2022)

28 wild female mice treadmill, wheel cages In 6.5 weeks 1 h at 16 m min−1

on weekdays, wheel cages for
voluntary running on
weekends

quadriceps femoris NAMPT increased
significantly

Brandauer et al.
(2013)

21 young adults (aged ≤35)
and 22 elderly individuals
(aged ≥55)

treadmill, stationary cycle,
elliptical trainer

In 12 weeks, 80 min at 70–75%
VO2max for 3–4x/wk

vastus lateralis Youth: 12% NAMPT boost;
Elderly: 28% NAMPT surge

De Guia et al.
(2019)

16 middle-aged and elderly
(59 ± 4 years old) untrained
subjects

leg/hip sled, lying leg curls, leg
extensions, barbell bench press,
cable pull downs

In 10 weeks, 70% max
intensity for 10–12*3groups,
1 min interval for 2x/wk

quadriceps femoris NAD+ and NAMPT up 127%
and 115%, respectively, NAD+

like 22 ± 3 year old

Lamb et al. (2020)

21 young adults (aged ≤35)
and 22 middle-aged/elderly
individuals (aged ≥55)

dumbbell, barbell In 12 weeks, 45 min/x for 3/w.
when 12 repetitions was
completed on two consecutive
occasions, resistance increased
by 5%

vastus lateralis The NAMPT levels in young
adults and middle-aged/
elderly individuals increased
by 25% and 30%, respectively

De Guia et al.
(2019)

32 male mice treadmill 10 min at 13 m min−1, 80 min
at 17 m min−1

quadriceps femoris NAMPT mRNA expression
increased 3 h later

Brandauer et al.
(2013)
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understood. Exercise enhances skeletal muscle glycolysis and aerobic
metabolism, leading to ATP breakdown into ADP and Pi, releasing
energy and producing AMP. This increase in AMP and ADP levels
stimulates AMPK phosphorylation at the Thr172 site, enhancing
AMPK activity (Hardie et al., 2012). Administering an AMPK
activator raises skeletal muscle NAMPT protein levels (Brandauer
et al., 2013; Ratia et al., 2023). Furthermore, the level of AMPK
activity correlates with exercise intensity, with greater intensity
causing more AMPK activation and increased phosphorylation of
AMPK (Rothschild et al., 2022). Research suggests that more intense
exercise might more effectively elevate NAMPT levels. It is theorized
that exercise boosts NAMPT levels primarily through the AMPK-
NAMPT pathway, as indicated in Table 1.

6 NAD+ boosters

For individuals unable to perform physical exercise due to injury
or chronic disease, NAD+ boosters might serve as exercise mimetics,
activating similar biochemical pathways that are engaged during
physical exercise, thus maintaining muscle function and promoting
metabolic health. Modulators of enzymes of the NAD+ biosynthesis
pathway, NAD+ precursors and NAD+ consuming enzyme
inhibitors are main NAD+ boosters. We will discuss the
prospects, side effects, and current status of clinical
transformation of NAMPT agonists, NAD+ precursors and
NAD+-consuming enzyme inhibitors to provide a more balanced
and unbiased perspective on NAD+ metabolism.

6.1 NAMPT agonists

NAMPT agonists can enhance the efficiency of the body’s
salvage synthesis pathway to produce NMN, and even with small
or intermittent supplementation of NMN or NR, they can maintain
high levels of NAD+ in the long term. Therefore, many studies have
attempted to explore the types and potential roles of NAMPT
agonists. P7C3 is the first discovered activator of NAMPT. The
active variants of P7C3 can enhance the activity of purified NAMPT,
and their promotion of NMN production is dose-dependent (Wang
et al., 2014). Research has shown that P7C3-mediated NAMPT
activation improves insulin sensitivity and muscle function in obese
mice, reducing diabetic symptoms (Ravikumar et al., 2022). The
exact mechanisms of how P7C3 activates NAMPT or competes with
its inhibitors are still under investigation. The synthesis of SBI-
797812, an NAMPT activator, involved modifying the GNI-50
molecule by moving the pyridine group from the third to the
fourth position. This change enhances NAMPT’s catalytic
efficiency, increasing NMN synthesis by 2.1 times (Gardell et al.,
2019). SBI-797812 also counteracts the inhibitory effects of NAD+

on NAMPT by binding to its rear channel, boosting NAMPT
activity and increasing NAD+ levels (Ratia et al., 2023). NAT and
its active variant NAT-5r, potent NAMPT activators, interact
through a hydrogen bond with NAMPT’s K189 residue,
enhancing its catalysis and countering FK866-induced cell death
(Hong et al., 2022). High-throughput screening has identified
several compounds that enhance NAMPT function, including
NAMPT positive allosteric modulators A1 (NP-A1) (Zhengnan

et al., 2023). These modulators increase NAMPT activity by
1.6–2.6 times, binding to its back channel (Ratia et al., 2023).
N-PAMs reduce NAD+’s inhibitory effect on NAMPT, enhancing
its function. Natural activators like notoginseng leaf triterpenes
(PNGL) also stimulate NAMPT (Xie et al., 2020), activating
NAMPT-NAD+-SIRT1/2/3-Foxo3a-MnSOD/PGC-1α pathways
that improve mitochondrial function and prevent mitochondrial
damage. The hypertension peptide IRW increases muscle cell
NAMPT content significantly (Bhullar et al., 2021). Additionally,
substances like low-dose nicotine enhance NAMPT activity by
facilitating its interaction with SIRT1, boosting NAD+ and β-
NMN levels, and improving metabolic function in aging tissues
(Liang et al., 2023).

Although NAMPT agonists have shown therapeutic potential in
laboratory studies, they have revealed certain safety concerns in
clinical trials, their therapeutic effects do not yet meet clinical needs,
and the progress of clinical trials has been slow (Wen et al., 2024).
Moreover, NAMPT regulates macrophage survival and pro-
inflammatory activity, contributing to the modulation of the
tumor inflammatory microenvironment and promoting tumor
cell metastasis (Lucena-Cacace et al., 2018; Piacente et al., 2017).
NAMPT activity appears to be tightly controlled by NMN and
NAD+ through strict feedback regulation (Burgos and Schramm,
2008; Takahashi et al., 2010). Developing NAMPT agonists that can
specifically enhance NAD+ production without affecting other
functions, such as immune response regulation and cancer cell
metabolism, remains a significant challenge.

6.2 NAD+ precursors

NAD+ precursors, such as NA, NMN, NR, and NAM, have
gained significant attention for NAD+ supplementation and have
been shown in both animal and human studies to extend lifespan,
enhance muscle regeneration, improve mitochondrial and stem cell
function, boost glucose metabolism, and enhance cardiovascular
function. The specific effects of these precursors on the body are
detailed in several excellent reviews (Iqbal and Nakagawa, 2024;
Keisuke and Takashi, 2023; Lautrup et al., 2024; Montllor-Albalate
et al., 2021; Reiten et al., 2021). However, different NAD+ precursors
exhibit varying effects depending on the experimental subjects. For
instance, postmenopausal overweight or obese women with
prediabetes who took NMN(250 mg/day) for 10 weeks showed
significant improvements in muscle insulin sensitivity (Yoshino
et al., 2021). In contrast, healthy, obese, sedentary men aged
40–70 who received NR (2000 mg/day) for 12 weeks did not
experience improvements in insulin sensitivity, endogenous
glucose production, glucose handling, or oxidation (Dollerup
et al., 2018). Older men with diabetes and impaired physical
function did not see improvements in muscle strength after
taking NMN 250 (mg/day) for 24 weeks (Akasaka et al., 2023).
Patients with mitochondrial myopathy who took NA 750–1,000
(mg/day) for four months showed improvements in muscle NAD+

levels, disease symptoms, and muscle metabolism (Pirinen et al.,
2020). These variations in outcomes may be associated with factors
such as gut microbiota, dose dependency, and individual differences.
Currently, NAD+ precursors such as NA, NAM, NR, and NMN are
used clinically and have demonstrated certain levels of safety and
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bioavailability (Reiten et al., 2021). However, more comprehensive
research is needed to evaluate their potential side effects and
therapeutic efficacy. The interactions of gut microbiota with
NAD+ precursors add complexity to NAD+ metabolism.
Optimizing precursor formulations and administration methods
could enhance their stability and conversion efficiency in the
body. Furthermore, exploring targeted delivery methods of NAD+

precursors to specific organs or tissues could improve clinical
trial outcomes.

6.3 NAD+-consuming enzyme inhibitors

NAD+ boosters also include inhibitors of NAD+-consuming
enzymes. CD38 inhibitors improve age-related metabolic
disorders by reversing tissue NAD+ decline, increasing muscle
fiber size, and reducing fibrosis (Tarragó et al., 2018). CD38-
deficient mice prevent high-fat diet-induced obesity by
activating the SIRT-PGC1α axis through elevated NAD+ levels
(Barbosa et al., 2007). The deletion of the PARP gene increases
NAD+ content and SIRT1 activity in brown adipose tissue and
muscle, enhancing mitochondrial content and oxidative
metabolism (Bai et al., 2011). However, using PARP inhibitors
could have adverse effects, as PARP is involved in essential
cellular processes, and its inhibition may lead to genomic
instability (Beneke et al., 2004). The development of NAD+

consumption enzyme inhibitors requires comprehensive
consideration of drug safety, its impact on tumor development,
the role of inflammation and metabolic regulation, biological
rhythms and adaptive responses, individual differences, and
optimization of supplementation strategies. These challenges
need to be fully addressed in future research.

NAMPT agonists accelerate NAD+ synthesis, NAD+

precursors provide direct supplementation, and consumption
inhibitors reduce NAD+ degradation, forming a multifaceted
synthesis and protection network that significantly enhances
intracellular NAD+ levels. This synergistic approach holds
promise as a target for treating diseases and disorders
associated with disrupted NAD+ homeostasis.

7 Conclusion

In skeletal muscle, efficient energy metabolism is crucial, and
disruptions in NAMPT and NAD+ levels or synthesis significantly
impact muscle function. These disturbances are particularly
evident in conditions like aging, type 2 diabetes (T2DM), and
muscle injuries, where NAMPT-mediated NAD+ salvage
pathways are compromised. The NAD+ salvage pathway
improves function in aging skeletal muscles by reducing
oxidative stress, stabilizing mitochondrial NAD+ pools,
promoting autophagy, reducing chronic low-grade
inflammation, restoring neuromuscular junction (NMJ)
functionality, and enhancing MuSCs quantity and function.

Similarly in T2DM, it enhances muscle function by improving
insulin secretion, enhancing skeletal muscle insulin sensitivity,
reducing inflammation, increasing fatty acid oxidation, and
promoting the browning of white adipose tissue. In muscle
injury scenarios, the NAD+ salvage pathway facilitates MuSCs
proliferation and mitigates mitochondrial dysfunction, thereby
enhancing muscle contractility. Exercise similarly exploits this
pathway to bolster skeletal muscle functionality. Therefore,
manipulating the NAD+ salvage pathway holds significant
potential for enhancing skeletal muscle function. NAD+

boosters, in particular, could be effective in treating various
muscle dysfunctions and enhancing overall muscle health.
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