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After the endocytic and biosynthetic pathway converge, they partially share the
route to the lysosome/vacuole. Similarly, the endocytic recycling and secretory
pathways also partially share the route to the plasma membrane. The interaction
of these transport pathways is mediated by endosomes and the trans-Golgi
network (TGN), which act as sorting stations in endocytic and biosynthesis
pathway, and endosomes has a bidirectional transport to and from the TGN.
In mammalian cells endosomes can be largely classified as early/sorting, late, and
recycling endosomes, based on their morphological features and localization of
Rab family proteins, which are key factors in vesicular trafficking. However, these
endosomes do not necessarily represent specific compartments that are
comparable among different species. For instance, Rab5 localizes to early
endosomes in mammalian cells but is widely localized to early-to-late
endosomes in yeast, and to pre-vacuolar endosomes and the TGN in plant
cells. The SNARE complexes are also key factors widely conserved among
species and localized specifically to the endosomal membrane, but the
localization of respective homologs is not necessarily consistent among
species. These facts suggest that endosomes should be classified more
inclusively across species. Here we reconsider the mammalian endosome
system based on findings in budding yeast and other species and discuss the
differences and similarities between them.
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1 Introduction

Endocytosis is the process by which cells internalize extracellular materials, cell surface
proteins, and lipids via vesicles formed by membrane invagination. Endocytosed cargos are
first delivered to sorting compartments and then recycled back to the plasma membrane
(PM) or brought to late endosomal compartments en route to the lysosome/vacuole for
degradation. After leaving the PM, endocytic vesicles are transported to the early/sorting
compartment where cargos are sorted for degradation or recycling (Cullen and Steinberg,
2018; Valencia et al., 2016). Previous studies of budding yeast Saccharomyces cerevisiae have
contributed significantly to clarification of the mechanisms involved in these endocytosis
and recycling pathways, many of which are also highly conserved in mammalian cells.

OPEN ACCESS

EDITED BY

Akiko Kono Satoh,
Hiroshima University, Japan

REVIEWED BY

Benjamin S. Glick,
The University of Chicago, United States

*CORRESPONDENCE

Junko Y. Toshima,
toshimajk@stf.teu.ac.jp

Jiro Toshima,
jtosiscb@rs.tus.ac.jp

RECEIVED 13 July 2024
ACCEPTED 21 August 2024
PUBLISHED 03 September 2024

CITATION

Toshima JY and Toshima J (2024) Transport
mechanisms between the endocytic, recycling,
and biosynthetic pathways via endosomes and
the trans-Golgi network.
Front. Cell Dev. Biol. 12:1464337.
doi: 10.3389/fcell.2024.1464337

COPYRIGHT

© 2024 Toshima and Toshima. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Mini Review
PUBLISHED 03 September 2024
DOI 10.3389/fcell.2024.1464337

https://www.frontiersin.org/articles/10.3389/fcell.2024.1464337/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1464337/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1464337/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1464337/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1464337/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2024.1464337&domain=pdf&date_stamp=2024-09-03
mailto:toshimajk@stf.teu.ac.jp
mailto:toshimajk@stf.teu.ac.jp
mailto:jtosiscb@rs.tus.ac.jp
mailto:jtosiscb@rs.tus.ac.jp
https://doi.org/10.3389/fcell.2024.1464337
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2024.1464337


However, some mechanisms identified in yeast are absent in
mammalian cells, or some are present only in mammalian cells.

Comparison of the process of clathrin-mediated endocytosis in
yeast and mammalian cells shows that about 60 endocytic proteins
function cooperatively in yeast, and that most of them have similar
functions in mammalian cells, suggesting that yeast and mammal
share similar mechanisms for these processes (Kaksonen and Roux,
2018; Traub, 2011). By contrast, the mechanisms of the intracellular
vesicle transport are considerably more complex in mammalian cells
and involve more proteins. For instance, mammalian cells have over
68 Rab GTPases and 38 SNAREs (soluble N-ethylmaleimide-
sensitive factor attachment protein receptors), which are key
regulators of vesicular trafficking, whereas yeast has only 11 Rab
GTPases and 24 SNAREs (Burri and Lithgow, 2004; Homma et al.,
2021; Hong, 2005; Lipatova et al., 2015; Stenmark, 2009). Consistent
with this, endosomal systems differ significantly between organisms:
mammalian cells have several different types of endosomes,
including the early/sorting endosome (EE/SE), the late endosome
(LE) and the recycling endosome (RE), whereas plant cells luck such
endosomes and instead the trans-Golgi network (TGN) serves their
roles. Furthermore, it is unclear whether budding yeast and some
other organisms have endosomal systems similar to those of
mammalian or plant cells or whether they have their own systems.

In this review, we discuss the similarities and differences of
protein sorting mechanisms in endosomes and the TGN,
particularly in yeast, plants and mammalian cells, as well as
convergence of the biosynthetic, endocytic, and recycling
pathways in these organisms.

2 Vesicle transport to the early/sorting
compartment in the endocytic pathway

2.1 Target compartment of the endocytic
vesicle and Rab5 localization

The structure and properties of the endocytic early/sorting
compartment differ considerably between organisms. In
mammalian cells an independent early endosome (EE) functions
mainly as the sorting compartment for degradation and recycling
trafficking processes (Gruenberg, 2001; Gruenberg and Maxfield,
1995; Hopkins et al., 1985; Ullrich et al., 1996). The small GTPase,
Rab5, is a key regulator of early endocytosis, being involved in
targeting endocytic vesicles to endosomes, fusion between EEs,
multivesicular body biogenesis, and endosomal motility (Bucci
et al., 1992; Gorvel et al., 1991; Horiuchi et al., 1995;
McLauchlan et al., 1998; Zerial and McBride, 2001). In
mammalian cells three isoforms of Rab5 – Rab5a, Rab5b, and
Rab5c–are localized at the PM and EE (Chavrier et al., 1990).
Fluorescently labeled endocytic cargos, such as transferrin and
EGF receptor, are first transported to Rab5-positive endosomes
and then sorted to the lysosome or the PM (Chen and Wang,
2001; Sönnichsen et al., 2000). On the basis of these observations,
endosomes where Rab5 localizes are generally considered to be
early/sorting compartments in mammalian cells.

In Arabidopsis (Arabidopsis thaliana) or tobacco BY-2 cells,
FM4-64, a fluorescent endocytic tracer used in a broad range of
organisms, initially accumulates at the TGN and is then transported

to the endosomes where plant Rab5 homologue (RabF1(Ara7) or
Ara6) resides (Dettmer et al., 2006; Lam et al., 2007). Thus, in plants,
the TGN, and not the Rab5-positive endosome, is considered to be
the direct target for endocytic vesicles, functioning as the early/
sorting compartment.

It has been believed that budding yeast possesses an endo-
lysosomal system that includes EEs and LEs similar to those in
mammalian cells. This idea was derived from observations
suggesting that transport to the vacuole passes through at least
two different endosomal compartments, based on the kinetics of
appearance of radiolabeled, internalized pheromones in the
biochemically separable organelles (Singer-Krüger et al., 1993).
Additionally, immunofluorescence and electron microscope
analyses of endocytic cargos have identified two distinct
endocytic intermediates differing in both distribution and
morphology (Hicke et al., 1997; Prescianotto-Baschong and
Riezman, 1998). Unlike mammalian Rab5, which localizes
primarily to EEs, the yeast Rab5 homologue, Vps21p, is widely
localized to the early-to-late endosomal compartments (Gerrard
et al., 2000; Toshima et al., 2014). Additionally, none of the yeast
Rab5 family proteins (Vps21, Ypt52, and Ypt53) localized at the PM
(Lachmann et al., 2012; Toshima et al., 2014). Deletion of their genes
had little effect on the formation and internalization of endocytic
vesicles, but it caused severe defect in endosomal fusion and
maturation, and also resulted in accumulation of the vacuolar
proteins at endosomal intermediates after delivery from the
TGN. This indicates that yeast Rab5 proteins are required for
vesicle transport from the TGN to the vacuole, as well as
endosomal transport in the endocytic pathway (Toshima
et al., 2014).

Electron microscopy demonstrated that endocytic cargo is first
transported to the tubular endosome-like structure that contains the
Q-SNARE Tlg1p (yeast syntaxin homologue) after internalization
(Prescianotto-Baschong and Riezman, 1998). However, since Tlg1p
and its partner Q-SNARE Tlg2p were shown to localize to the TGN
and putative EEs (Holthuis et al., 1998; Lewis et al., 2000), it remained
unclear for nearly 2 decades whether the TGN or the EEwas the direct
target of the endocytic vesicle. One reason for this lack of clarity was
the inconsistent observation of colocalization between the endocytic
cargo and Sec7p, a marker protein for the TGN. One previous study
indicated that Sec7p rarely colocalized with fluorescently labeled
endocytic cargo (Toshima et al., 2014), while another study
demonstrated such colocalization (Day et al., 2018). A recent study
using super-resolution confocal live imaging microscopy (SCLIM)
(Kurokawa and Nakano, 2020; Tojima et al., 2022) provided an
explanation for this discrepancy (Toshima et al., 2023). In budding
yeast, Golgi cisternae lack the stacked structure seen in mammalian
and plant cells, and show cis to trans maturation, further proceeding
to the TGN (Losev et al., 2006; Matsuura-Tokita et al., 2006; Tojima
et al., 2019). 3D analysis using SCLIM revealed that endocytic
Q-SNARE Tlg1p/2p and Sec7p localize at spatiotemporally distinct
sub-compartments: the former at the early TGN, and latter at the late
TGN (Toshima et al., 2023). Endocytic vesicles were shown to directly
target the Tlg1p/2p sub-compartment (Toshima et al., 2023),
suggesting that this region within the TGN is the early/sorting
compartment in budding yeast.

As described above, the early/sorting compartments seem to
differ in various organisms, and it is debatable whether the sorting
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mechanisms in each compartment are fundamentally different, or
whether they share basic similarities.

2.2 SNARE complexes mediating fusion with
the early/sorting compartments

SNARE proteins are key factors that determine organelle
identity and operate at the center of fusion reactions (Schiavo
et al., 1992; Söllner et al., 1993). SNARE proteins comprise
4 classes based on the structures of their SNARE motifs: Qa-,
Qb-, Qc-, and R-SNARE (Jahn and Scheller, 2006; Wickner and
Schekman, 2008). Since yeast Q-SNAREs Tlg1p/2p localize to the
early/sorting compartments within the TGN, we next compare
SNARE proteins that localize to the endosomes or the TGN in
mammalian and yeast (Figure 1) and also plant cells.

Syntaxin13 is reported to be themajor Qa-SNARE that functions at
the early/sorting endosome in mammalian cells (Prekeris et al., 1998).
Syntaxin13 forms the Q-SNARE complex with SNAP-25 or SNAP-23
(Qbc-SNARE) at endosomes and mediates homotypic fusion of EEs
(McBride et al., 1999; Sun et al., 2003; Tang et al., 1998b) or recycling of
PM proteins via RE (Prekeris et al., 1998). Syntaxin13 likely also forms
SNARE complex with Syntaxin6 (Qc-SNARE) and Vti1 (Qb-SNARE)
and mediates homotypic fusion of EEs (Brandhorst et al., 2006). Since
Syntaxin6 and Vti1 predominantly localize to the TGN and
Syntaxin13 localizes to endosomes, this complex could be formed by
the fusion of transport vesicles from the TGN carrying Syntaxin6 and
Vti1 to endosomes (details in section 3-1). VAMP2 (also known as
Synaptobrevin2) is a cognate R-SNARE pairs with Syntaxin13, and
known to reside on synaptic vesicles (Söllner et al., 1993) or secretory

vesicles (Watson et al., 2004), and forms a complex with Syntaxin1 (Qa-
SNARE)/SNAP25 (Qbc-SNARE) or Syntaxin4 (Qa-SNARE)/SNAP23
(Qbc-SNARE) residing on the PM to drive fusion between synaptic
vesicle or secretory vesicles and the PM (Hong, 2005) (Figure 1,
mammalian cell).

The yeast R-SNAREs Snc1/2 (yeast homologues of VAMP2)
originally identified as proteins residing on secretory vesicles, forms
complexes with Qa-SNAREs Sso1/2 (yeast Syntaxin1 homologues) and
Qbc-SNAREs Sec9 or Spo20 (yeast SNAP23 or SNAP25 homologue,
respectively) to drive fusion of secretory vesicles to the PM (Gerst et al.,
1992; Protopopov et al., 1993). In addition, Snc1/2 function as
R-SNAREs in endocytic pathways by interacting with the Q-SNARE
Tlg2/Tlg1/Vti1complex residing on the TGN (Gurunathan et al., 2000),
thereby cycling between the TGN and the PM (Best et al., 2020; Lewis
et al., 2000) (Figure 1, yeast). VAMP2 is also reported to be essential for
recycling of synaptic vesicle fast exocytosis for neurotransmitter release
and endocytosis that mediates the rapid reuse of synaptic vesicles (Deák
et al., 2004; Grote et al., 1995). These findings suggest that VAMP2 and
Snc1/2 are likely to share a conserved role in secretory and endocytic
pathways between the TGNand the PM. It is also reported that VAMP3
(also known as Cellubrevin or Synaptobrevin3) and YKT6, involved in
diverse vesicular fusion pathways, are required for constitutive secretion
(Gordon et al., 2017). Therefore, after transporting to early/sorting
compartments via endocytosis they may also function as R-SNARE in
these compartments.

As described above, Tlg2 (Qa-SNARE) and Tlg1 (Qc-SNARE)
form a complex with Vti1p (Qb-SNARE) and seem to function as an
endocytic SNARE complex with Snc1(R-SNARE) residing on the
endocytic vesicle (Gurunathan et al., 2000) (Figure 1, yeast). The
mammalian SNARE protein Syntaxin16 is a functional homologue

FIGURE 1
Comparison of SNARE proteins localized to endosomes and the TGN between yeast and mammalian cell. In yeast, Tlg2-residing region within the
TGN function as the early/sorting compartment. Tlg2 (Qa-SNARE), Tlg1 (Qc-SNARE) and Vti1(Qb-SNARE), yeast homologues of Syn16 (Syntaxin16), Syn6
(Syntaxin6) and Vti1 respectively, forms a complex with Snc1/2 (R-SNAREs)-residing endocytic vesicle. Snc1/2 are yeast homologues of VAMP2, which are
involved in the secretory and endocytic pathways, and cycle between the TGN and the PM. In mammalian cell, Rab5-residing endosome functions
as early/sorting compartment. Endosome-to-TGN transport inmammalian cells require a two-step transport process: transport from the PM to the EE via
the VAMP2 and Syn13 (Syntaxin13)/SNAP25 or SNAP23 complexes, and transport from the EE to the TGN via the VAMP4 and Syn16/Vti1/Syn6 complexes.
Yeast does not have homologous genes for VAMP4 and Syn13. See text for details.
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of the yeast SNARE Tlg2p, and its expression fully complements the
mutant phenotypes of tlg2Δ mutant yeast (Simonsen et al., 1998;
Struthers et al., 2009; Tang et al., 1998a). Both Syntaxin16 and
Tlg2 bind to the SM protein Vps45 via their N-terminal region,
facilitating conversion from a closed to an open conformation
(Dulubova et al., 2002; Eisemann et al., 2020).

Similar to the yeast endocytic Q-SNARE complex (Tlg2/Tlg1/Vti1),
Syntaxin16 localizes to the TGN and forms a complex with Syntaxin6
(Qc-SNARE), which is a homologue of yeast Tlg1, and mammalian
Vti1 (Qb-SNARE). However, these Q-SNAREs do not form a complex
with R-SNARE VAMP2 (a homologue of yeast Snc1) but rather with
VAMP4 (Figure 1, mammalian cell) (Mallard et al., 2002). VAMP4 is
localized predominantly to the TGN and endosomes (Steegmaier et al.,
1999), and these SNAREs mediate retrograde transport of the Shiga-
toxin B subunit or TGN38/46 from the RE to the TGN (Mallard et al.,
2002) or the mannose 6-phosphate receptor from the early/late
endosome to the TGN (Saint-Pol et al., 2004). Note that yeast does
not have homologous genes either for VAMP4 or Syntaxin13.

The Arabidopsis genome has three homologous genes for Tlg2/
Syntaxin16, Syp41/42/and 43, three for Vti1, AtVTI11/12/13, and
one for Tlg1/Syntaxin6, Syp61 (Uemura et al., 2004). These SNARE
proteins form several different complexes; Syp61 forms a complex
with SYP41/43 and VTI12 and localizes to the TGN (Chen et al.,
2005; Sanderfoot et al., 2001). As with yeast or mammalian Vps45,
Arabidopsis VPS45 interacts with the SYP41/SYP61/VTI12 SNARE
complex at the TGN and regulates retrograde transport of the
vacuolar sorting receptors back to the TGN (Zouhar et al., 2009).

Taken together, the data suggest that mammalian, yeast, and plant
cells have homologousQ-SNARE complexes, which interact with Vps45,

at the TGN.While a direct PM to TGN transport pathway via the Snc1/
2 and Tlg2/Tlg1/Vti1 complexes exist in yeast, mammalian cells require a
two-step transport process, i.e., from the PM to the early/sorting
endosome via the VAMP2 and Syntaxin13/SNAP25 or
SNAP23 complexes, and from there to the TGN via the VAMP4 and
Syntaxin16/Vti1/Syntaxin6 complexes (Figure 1). Although not
previously reported, a direct route from the PM to the TGN via the
VAMP2 and Syntaxin16/Vti1/Syntaxin6 complexes might exist in
mammalian cells as well as yeast and would be worth investigating.

3 Transport between endosomes and
the TGN

Endosomes have bidirectional transport pathways to and from
the TGN, which transport proteins and lipids. Here, we compare the
fundamental mechanisms of transport between the endosomes and
the TGN operating in the endocytic recycling pathway in
mammalian cells and yeast, and discuss their similarities (Figure 2).

3.1 Transport between endosomes and the
TGN in the endo-lysosomal pathway

Transport from the EE/SE to the LE, and further to the lysosome
plays an important role in cargo degradation. This transition process
is regulated by a sequential shift of activity from the early endosomal
Rab5 to the late endosomal Rab7, a process termed Rab conversion
(Podinovskaia and Spang, 2018; Rink et al., 2005). In this process,

FIGURE 2
Comparison of transport pathway via endosomes and the TGN between yeast andmammalian cell. Transport pathway between endosomes and the
TGN are schematically represented. Each number represents route shown below. Points of convergence between the biosynthetic and endo-lysosomal
pathways or endo-recycling pathways are shown as A and B. Yeast lacks independent EE/SE and RE butmight have functionally equivalent compartments
within the TGN. See text for details. TGN, trans-Golgi-network; PM, plasma membrane; EE/SE, early/sorting endosome or compartment; EE, early
endosome; LE, late endosome; End, endosome; MVE, multivesicular endosome; RE, recycling endosome or compartment.
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EEs with thin tubular structures show a change in morphology to
multivesicular body/endosomes (MVB/MVEs), which contain
multiple intraluminal vesicles (ILVs), through inward bending of
their membrane by the ESCRT complex (Henne et al., 2011).

Since the sequential activation from Vps21 (yeast Rab5) to Ypt7
(yeast Rab7) via Rab7-GEF, Mon1/Ccz1, has been reported in yeast
(Nordmann et al., 2010), the overall mechanisms regulating the
transition from EE to LE seem to be conserved in yeast and
mammalian cell. Vps21 is widely localized to the early-to-late
endosomal compartments, including the MVEs, suggesting that
function of yeast Rab5 is required for endosomal trafficking in
late stage, as well as early stage (Figure 2). It has been also shown that
MVEs are persistent organelle maintained by fission and homotypic
fusion (Day et al., 2018). Despite accumulating evidence concerning
Rab5-Rab7 conversion in yeast, sequential change of localization
from Vps21 to Ypt7 has not yet been clearly shown, and thus how
late endosomes are formed in yeast should be carefully examined.

The transport route from the TGN to endosomes functions to
deliver newly synthesized lysosomal/vacuolar proteins, such as vacuolar
type H+-ATPase (V-ATPase) (Figure 2, route 2). Previously, it was
thought that TGN-derived transport vesicles preferentially fuse with
LEs (Geuze et al., 1988; Griffiths et al., 1988). Later, however, it was
demonstrated that the Rab5 effector EEA1 interacts directly with
Syntaxin6, which is implicated in TGN-to-EE trafficking (Simonsen
et al., 1999), and that expression of the dominant negative form of
Rab7 causes accumulation of cargos derived from the TGN at early
endocytic compartments (Press et al., 1998), suggesting that TGN-
derived transport vesicles are also able to fuse with EEs. Recent studies
have demonstrated that early endosomal membranes to which Rab5 is
recruited are partly derived from the TGN (Podinovskaia et al., 2021),
suggesting that fusion of TGN-derived vesicles and endosomes occurs
before the EE-to-LE transition.

It was also believed that in yeast the transport route from the TGN
to endosomes converged with the endocytic pathway at LEs/MVEs
(Davis et al., 1993; Piper et al., 1995; Rieder et al., 1996; Vida et al., 1993).
However, based on the recent finding that endocytic vesicles are first
transported to the early/sorting compartment resides in the TGN
(Figure 2, route 1 in yeast), it seems reasonable to consider that the
transport pathway from the TGN to the endosome contain not only
biosynthetic cargo but also endocytic cargo (Day et al., 2018; Toshima
et al., 2023) (Figure 2, route2 in yeast). Although the TGN serves as an
early/sorting compartment in both yeast and plants, the mechanism of
endocytic cargo transport from the TGN to the vacuole seems to differ
between them. Whereas in yeast cargo from the TGN move to yeast
Rab5 (Vps21p) residing endosomes (Toshima et al., 2023), in
Arabidopsis the ESCRT-mediated formation of MVEs begins at the
TGN and then the MVEs fuse directly with the vacuole without
mediating endosomes (Scheuring et al., 2011). Two plant
RAB5 homologues, ARA6 and ARA7, show localization that
overlaps with the TGN/MVE complex (Ito et al., 2016).

The pathway of retrograde transport from endosomes to the TGN is
essential for the recycling of proteins, such as cargo receptors and SNARE
proteins, after transport from the TGN (Arighi et al., 2004; Seaman et al.,
1997) (Figure 2, route 3). The retromer complex and associated sorting
nexins regulate this retrograde transport by deforming the endosomal
membrane and forming carriers (Cullen and Steinberg, 2018). These
retromer-mediated processes occur at different stages of early-to-late
endosome transition (Johannes and Popoff, 2008).

3.2 Transport between endosomes and the
TGN in the endocytic recycling pathway

Cargos returning to the PM can be recycled directly from EEs (fast
recycling) or indirectly from endosomal recycling compartment, such as
the RE and TGN (slow recycling) (Sheff et al., 1999; Sönnichsen et al.,
2000). In the slow recycling route of mammal, endocytosed cargos are
first transported to the EEs, and then membrane tubules leaving the EEs
carry the cargos to the endocytic recycling compartment (ERC), which
resides near the perinuclear region (Grant and Donaldson, 2009). The
ERC is composed of tubular and vesicular membrane compartments and
gives rise to REs destined for the PM. The slow recycling pathway is
known to be mediated by Rab11, which is localized to the RE (Grant and
Donaldson, 2009; Ren et al., 1998; Ullrich et al., 1996). Rab11 is
transported from the RE though association with recycling vesicles
and participate in fusion of these vesicles with the PM (Takahashi
et al., 2012).

The existence of a transport route from the TGN to the RE has
been confirmed by observation of secretory cargoes, such as the
transferrin receptor, E-cadherin and TNF-alpha, transiting the REs
during delivery from the TGN to the PM (Ang et al., 2004; Futter
et al., 1995; Lock and Stow, 2005; Murray et al., 2005) (Figure 2,
route 4 in mammalian cell). Expression of the dominant negative
form of Rab11 disrupts the cell surface delivery of E-cadherin, and
causing it to be mistargeted to the apical membrane (Lock and Stow,
2005), suggesting that Rab11 functions in this pathway.

It has been shown that budding yeast does not possess an
independent RE but has a functionally independent early/sorting
compartment (the Tlg1p/2p sub-compartment) in the TGN, where
yeast Rab11 homologues Ypt31/32 reside (Toshima et al., 2023). In
yeast, the Golgi/TGN maturation process can be classified into three
successive stages–the Golgi stage, the early TGN stage and the late TGN
stage –and the early/sorting compartment exists in the early TGN stage
(Tojima et al., 2019; Toshima et al., 2023) (Figure 2, yeast). Ypt31/32 are
recruited to the early/sorting compartment during the late TGN stage
(Toshima et al., 2023). Tlg2, a marker for the early/sorting
compartment, disappears at the late TGN stage. This suggests that
the property of early/sorting compartment may change like those of RE
as it moves into the late TGN stage (Figure 2, route 4 in yeast). Golgi/
TGN maturation is known to be associated with a change in lipid
compositions and PtdIns(4)P plays a key role in this process (Daboussi
et al., 2012). PtdIns(4)P increases in the early TGN stage and recruits
Ypt31/32 and clathrin adaptors to the TGN. In the late TGN stage, the
level of PtdIns(4)P begins to decrease and that of phosphatidylserine
(PS) increases. Inmammalian cells PS is highly enriched in the cytosolic
leaflet of the RE membrane (Uchida et al., 2011). Since in mammalian
cells, a proportion of EEs transition to REs in which PS is highly
localized, there may be a similar mechanism in yeast whereby the early
sorting compartment transits to a compartment with RE properties.

4 The point of convergence between
the biosynthetic pathway and the
endocytic pathway

The endocytic and biosynthetic pathways partially share the
route to the lysosome/vacuole after they converge. The endocytic
recycling and secretory pathways also partially share the same route
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to the PM. Here we compare the convergence of these pathways
between yeast and mammalian cells.

4.1 Convergence of the biosynthetic and
endocytic pathways in the endo-
lysosomal pathway

Vacuolar H+-ATPase (V-ATPase) is assembled at the Golgi
apparatus and transported to endosomes and lysosomes/vacuoles,
thereby acidifying these organelles (Forgac, 2007). Such acidification
of the early/sorting compartments is required for dissociation of
many ligand-receptor complexes and their subsequent sorting and
transport. This would suggest that transport of V-ATPase from the
TGN to the early/sorting compartment occurs at an early stage in the
endocytosis pathway. In yeast and plants, it is reasonable to consider
that the biosynthetic and endocytic pathways converge at the TGN
(Figure 2, points of convergence (A) in yeast). An earlier study using
yeast demonstrated that inhibition of transport through the early
secretory pathway in secretion mutants or by Brefeldin A (BFA)
treatment quickly impeded transport from the EE to the vacuole
(Hicke et al., 1997). Recent studies have demonstrated that yeast
Rab5 Vps21 functions after the convergence of the two pathways
and is activated by post-Golgi transport (Nagano et al., 2019;
Toshima et al., 2014). It has also been shown that BFA treatment
inhibits the process of endosome fusion mediated by Vps21p
(Nagano et al., 2019), suggesting that convergence of the
biosynthetic and endocytic pathways occurs before endosome
formation by Rab5 in yeast. Similarly, in plant cells treatment
with the V-ATPase inhibitor, concanamycin A, has been shown
to induce accumulation of FM4-64 at the TGN and severely impair
its transport to the vacuole (Dettmer et al., 2006).

In mammalian cells, convergence of these two pathways appears to
occur through fusion of TGN-derived vesicles and endosomes during
transition from the early to late stages (Figure 2, point of convergence (A)
in mammalian cell). Although the timing of the convergence seems to
differ from that in yeast and plant cells, it has also been demonstrated in
mammalian cells that vesicle transport from the TGN is crucial for
endosome formation. As described above, a recent study has
demonstrated that early endosomal membranes to which Rab5 is
recruited are partly derived from the TGN (Podinovskaia et al., 2021).
Additionally, Rabaptin-5, which is a functionalmodulator ofmammalian
Rab5-GEF Rabex-5, has been shown to associate with TGN-residing
clathrin adaptors, similar to yeast Rab5 GEF Vps9 (Mattera et al., 2003;
Nogi et al., 2002), suggesting that Rab5 might be activated by the Rabex-
5–Rabaptin-5 complex in post-Golgi vesicle transport.

4.2 Convergence of the biosynthetic-
secretory and endocytic-recycling pathways

In the secretory pathway, multiple routes from the TGN to the
PM are known to exist, and some function commonly with the
recycling pathway (Figure 2, route 4 and 5). As described above, in
mammalian cells, some newly synthesized cargoes are transported to
the PM through the REs, which mediate cargo transport in the slow
recycling pathway (Figure 2, point of convergence (B) in
mammalian cell). A recent study has reported that in Drosophila

S2 cells and nocodazole-treated HeLa cells, REs exhibit two distinct
(Golgi-associated and dissociated) states, which repeatedly attach to
and detach from the TGN, and transport newly synthesized cargo to
the PM (Fujii et al., 2020). The dynamics of REs in these cells are
very similar to those of plant TGNs, which have interconvertible two
different statuses, one being attached to the trans face of the Golgi
(Golgi-associated TGN) and the other detached from the Golgi
(Golgi-independent TGN) (Kang et al., 2011; Nakano, 2022;
Staehelin and Kang, 2008; Uemura et al., 2014; Viotti et al.,
2010). This indicates that the TGN and the RE have
overlapping function.

In yeast it has been ambiguous whether the secretory and
recycling pathways utilize distinct routes or share a common
route because early/sorting and recycling compartment exists in
the same organelle. A recent study using Arabidopsis has shown
that the single TGN has at least two distinct subregions (zones)
each responsible for distinct cargo sorting: the secretory-
trafficking zone destinated to the PM and the vacuolar-
trafficking zone (Heinze et al., 2020; Shimizu et al., 2021).
These subregions can be distinguished by localization of two
R-SNAREs: VAMP721 localized mainly to the TGN and the PM,
and VAMP727 localized to the MVE and the vacuolar membrane.
Similarly, transport pathway to the PM in yeast could be also
partitioned into secretory and recycling subregions within the
TGN. Earlier studies had reported that two distinct and
independent secretory pathways, mediated by high-density
secretory vesicles (HDSVs) and low-density secretory vesicles
(LDSVs), exist in yeast (Gurunathan et al., 2002; Harsay and
Bretscher, 1995). While cargos in LDSVs are transported directly
from the TGN to the PM, those in HDSVs are transported
through endosomes. The yeast TGN has at least two distinct
compartments, the Tlg1p/2p sub-compartment and Sec7 sub-
compartment, which presumably function in the recycling and
secretory pathways (Figure 2, route 4 and 5, yeast) (Toshima
et al., 2023). Deletion of clathrin adaptors GGAs, which mediate
TGN-to-endosome traffic, affects transport from the Tlg1/
Tlg2 sub-compartment, but does not significantly affect Sec7
sub-compartment (Toshima et al., 2023). These observations
suggest that the LDSV pathway might be mediated through
Sec7 sub-compartment (Figure 2, route 5, yeast), while the
HSDV pathway is mediated through the Tlg1/Tlg2 sub-
compartment (Figure 2, route 4, yeast). The Tlg1/Tlg2 sub-
compartment may function as an RE at the late TGN, and
given its similarity to that in mammalian cells, the existence
of a secretory pathway from the Tlg2 sub-compartment to the PM
seems likely (Figure 2, point of convergence (B) in yeast).

5 Discussion

The TGN is a major sorting station in the secretory pathway, but
its importance in the endocytic pathway, especially in yeast and
mammalian cells, has not been well understood. The pathways of
transport between the endosome and the TGN are well conserved
and the molecular mechanisms regulating them are similar,
although the distributions of particular Rab and SNARE proteins
differ between yeast and mammalian cells. Therefore, although yeast
seems to lack a specific transport pathway or organelles, such as EEs
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and REs, it could be considered to have functionally equivalent
compartments within the TGN through which it utilizes an
alternative pathway. The TGN is the point of convergence for
various vesicle transport pathways and functions as a key
platform for sorting and transporting cargo to its various
destinations. While the mechanisms responsible for cargo sorting
in the biosynthetic pathway are becoming clear, it remains less
evident how the biosynthetic and endocytic pathways are regulated
independently. Recent studies suggest that the TGN is not a
homogeneous organelle and can be divided into sub-domains
that produce specific carriers for efficient cargo sorting. How
these specialized sub-domains are formed and maintained during
successive Golgi/TGN maturation and how cargoes are properly
sorted into distinct carriers are important issues that await further
investigation. In addition, many unanswered questions remain
regarding the molecular mechanisms underlying post-TGN
transport to the endosome or the PM.
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