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The primary node molecules in the cell signaling network in cancer tissues are
maladjusted and mutated in comparison to normal tissues, which promotes the
occurrence and progression of cancer. Pancreatic cancer (PC) is a highly fatal
cancer with increasing incidence and low five-year survival rates. Currently, there
are several therapies that target cell signaling networks in PC. However, PC is a “cold
tumor” with a unique immunosuppressive tumor microenvironment (poor effector
T cell infiltration, low antigen specificity), and targeting a single gene or pathway is
basically ineffective in clinical practice. Targeted matrix therapy, targeted metabolic
therapy, targetedmutant gene therapy, immunosuppressive therapy, cancer vaccines,
and other emerging therapies have shown great therapeutic potential, but results have
been disappointing. Therefore, we summarize the identified and potential drug-
resistant cell signaling networks aimed at overcoming barriers to existing PC therapies.
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1 Introduction

With a five-year survival rate of approximately 12%, pancreatic cancer (PC) is one of the
deadliest and worst prognosis cancers (Siegel et al., 2023). Although the incidence of PC is
relatively low, it significantly increases the risk of cancer-related death, as evidenced by a
mortality-to-incidence ratio of 94% (Bray et al., 2018; Sung et al., 2021). Pancreatic ductal
adenocarcinoma (PDAC), which is typified by aggressiveness, delayed diagnosis, and a
dismal prognosis, is the primary kind of PC (Skinhoj, 1999).

The occurrence of PC depends on the gradual accumulation of driver mutations, such as the
oncogene KRAS and the anti-oncogenes CDKN2A, P53, and SMAD4 (Cicenas et al., 2017). These
molecular level changes are accompanied by histological changes (Hayashi et al., 2021). Pancreatic
intraepithelial neoplasia (PanIN) and intraductal mucinous tumor (IPMN) gradually increased in
grade and evolved into PC with the change of histological morphology (Raghavan et al., 2021). As
PC progresses, the surrounding tumormicroenvironment (TME) is altered (Hirasawa et al., 1998).
Normal tissue can respond to injury through connective tissue components, blood vessels,
immune cells, etc., to achieve the “wound healing effect”. The matrix of the PC that is
changed, which cannot cope with the injury, and even becomes resistant to the treatment
drugs, is called “wound healing gonewrong” (Ho et al., 2020). Unlike other solid tumors, PCs have
a particularly prominent mesenchymal compartment within the stroma, which usually accounts
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for most of the tumor volume. This stromal compartment includes
cancer-associated fibroblasts (CAFs), extracellular matrix (ECM)
components, immune cells, and neural and endothelial cells (Sherman
and Beatty, 2023). Alterations in PC stroma are strongly associated with
primary and acquired resistance to therapy, not only resisting cytotoxic
chemotherapy but also hindering targeted and immunomodulatory
therapies (Vennin et al., 2018; Peran et al., 2021).

At present, many therapies targeting the stroma, mutated genes, and
metabolism of PC have emerged, as well as immunosuppressive therapies
and cancer vaccines, all of which have great therapeutic potential (Hosein
et al., 2020; Bannoura et al., 2021; Huang X. et al., 2022; Micevic et al.,
2023). But it still falls short of expectations. Therefore, in this review, we

summarize the resistant cell signaling networks of existing therapies,
aiming to overcome existing therapeutic challenges.

2 Drug resistance signaling networks
in PC

2.1 PC matrix-mediated drug resistance
signaling networks

The occurrence of PC not only depends on the instability and
genetic mutation of its own genome but also needs the promotion of

FIGURE 1
Drug resistance signaling networks targeting ECM. It is elaborated from three aspects: matrix stiffness (bottom left), vascular abnormality (bottom
right), and ECM-receptor-mediated cancer cell migration (top).
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the external microenvironment. The TME in PC is characterized by
significant fibril-matrix proliferation and lack of blood supply (Bear
et al., 2020). The three main parts of the specific PC fibrous matrix
are the ECM, the vasculature, and cancer-associated fibroblasts
(CAFs). CAFs secrete ECM proteins, such as collagen and
fibronectin, which, together with glycosaminoglycans such as
hyaluronic acid (HA), increase interstitial pressure, leading to
vascular collapse and hypoxia (Hosein et al., 2020). This process
is crucial for the growth, migration, epithelial-mesenchymal
transition (EMT), and treatment resistance of PC cells (Sherman
and Beatty, 2023). In recent years, targeted matrix therapy has
garnered significant attention, but has little effect (Polani et al.,
2021). This may be related to stromal sclerosis, vascular
abnormalities, and ECM-receptor interactions (Figure 1).

2.1.1 Matrix stiffness
In most tumors, the stiffness is greater than that of normal

tissues, and this stiffness is primarily determined by the rigidity of
the ECM. The composition and proportion of the ECM largely
dictate the stiffness of the matrix. Excessive collagen and hyaluronic
acid (HA) are the main causes of ECM hardening (Giussani et al.,
2015; Insua-Rodriguez and Oskarsson, 2016). A hard ECM can
hinder drug delivery and lead to PC therapy resistance. PC has an
overexpression of the extracellular enzyme lysyl oxidase (LOX),
which increases the cross-linking of collagen fibers and hardens the
ECM (Weniger et al., 2018; Kai et al., 2019; Kim et al., 2021). Cancer
cells synthesize more collagen and HA and produce enzymes that
promote ECM production, increasing ECM stiffness. HA receptor
CD44 can activate PI3K-AKT, MEK-ERK, and RhoA pathways, and
enhance PC therapy resistance (Tavianatou et al., 2019; Caon et al.,
2020; Huang J. et al., 2021). TGF-β and CAF are also indirectly
involved in stromal sclerosis. CAF promotes cancer cell proliferation
by promoting ECM hardening and secreting cytokines. Both cancer
cells and TAMs secrete TGF-β, which promotes fibroblasts to
become CAFs. Therefore, a positive CAF-ECM-cancer cell cycle
is formed (Huang J. et al., 2021). However, the effect of TGF-β on
matrix stiffness is controversial in PC. Laklai H et al. discovered that
damage to TGF-β signaling can promote JAK-ROCK-
STAT3 signaling and increase matrix stiffness in PC (Laklai
et al., 2016). In addition, increased ECM matrix stiffness can
promote PC drug resistance, EMT, and metastasis through the
RAP2-MAPK-AMPK pathway (Xu et al., 2024). Retinoids
downregulate myosin-regulated light chain 2 (MLC-2) expression
through RARβ/RXR, thereby reducing actomyosin activity and
alleviating stromal sclerosis (Zhang et al., 2021).

2.1.2 Vascular abnormality
Vascular abnormalities of PC are reflected in poor perfusion,

hypoxia, leakage, and low pericellular coverage in the vasculature,
which is not conducive to drug delivery (Li S. et al., 2019; Zhong
et al., 2020; Huang et al., 2024). Studies by Groenewegen G et al. have
shown that blocking the vascular endothelial growth factor (VEGF)
-VEGFR2 axis through leukocyte adhesion molecules ICAM and
VCAM can increase CD8+T cells and drug transport to tumors,
improving hypoxia and drug resistance (Shrimali et al., 2010; Huang
et al., 2012; Esmaeili et al., 2021). Maione et al. discovered that
Sema3A functions as an endogenous and potent antiangiogenic
agent that promotes vasculature normalization in a multistep

carcinogenic PC mouse model (Maione et al., 2009). Nucleolin is
a marker of angiogenesis in PC. Inhibition of Nucleolin can
significantly reduce the expression of angiopoietin-2 (Ang-2) in
endothelial cells, induce vascular normalization, improve
gemcitabine delivery, and reduce drug resistance (Christian et al.,
2003; Gilles et al., 2016). Nestin can promote vascular endothelial
cell proliferation, and targeting Nestin can inhibit angiogenesis in a
PC mouse model (Yamahatsu et al., 2012).

2.1.3 ECM-receptor
The cytoskeleton, integrin, and other associated receptors play a

major role in mediating adhesion between cancer cells and ECM
components. If cell adhesion is disrupted, PC cells will migrate
(Kanchanawong and Calderwood, 2023). Cancer metastasis and
drug resistance generation share multiple signaling pathways
(including integrins). Cancer cells of carcinoma in situ need to
migrate into blood circulation and colonize a new environment. This
process triggers a series of stress and repair responses that not only
help the cells survive in their new environment but also help them
become more resistant to treatment (Weiss et al., 2022). In addition,
critical signaling pathways (e.g., PI3K-AKT, etc.) associated with
cancer cell invasion also mediate drug resistance (Tufail et al., 2024).
We summarize how ECM components (e.g., collagen, fibronectin,
and laminin) interacting with receptors trigger downstream
signaling pathways (including cell migration), which in turn
affect drug resistance.

2.1.3.1 Integrin family
Integrins act as the most important cell adhesion

transmembrane receptor, linking the ECM-cytoskeleton and
mediating various biochemical and mechanical signals. Each
integrin is composed of α and β subunits. Collagen, fibronectin,
and laminin in ECM can bind to integrin β1, which affects cell
adhesion and drug resistance (Musiime et al., 2021; Kanchanawong
and Calderwood, 2023; Pang et al., 2023). Integrin β1 (ITGB1)
activates PI3K-p110β signaling, which in turn enhances gemcitabine
resistance in PC (Yang et al., 2018). ITGB1 plays an important role
in cell migration and may be responsible for the lumen formation of
MEK inhibitors in vitro 3D PC models. Combined inhibition of
ITGB1 and MEK increased the sensitivity of PC cells to MEK
inhibitors (Brannon et al., 2020). The solute carrier
SLC39A4 inhibits the expression of gemcitabine transporter
ENT1 in PC cells by promoting integrin α3β1 signaling, thereby
promoting drug resistance (Liu et al., 2020).

Some integrins that do not bind to ECM components can also
function. For example, integrin α1 (ITGA1) is required for TGF-β/
collagen-induced EMT and metastasis and cooperates with TGF-β
to drive gemcitabine resistance (Gharibi et al., 2017). Integrin
α2 may promote PC invasion and proliferation through
phosphorylation of AKT, leading to gemcitabine resistance
(Gregori et al., 2023). Integrin α5 is a ligand for the adhesion
molecule L1CAM (CD171). L1CAM induces chemoresistance in
PC, which may be related to IL-1β/NF-κB (Sebens Muerkoster et al.,
2009; Kiefel et al., 2010). Integrin αvβ3/KRAS/NF-κB promotes
serine/threonine kinase Tank-binding kinase 1 (TBK1)
phosphorylation, which facilitates PC resistance, and is
particularly highly resistant to tyrosine kinase receptor inhibitors
(e.g., erlotinib) (Seguin et al., 2014; Cheng and Cashman, 2020).
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Integrin β5 overregulates the expression of sphingoid metabolizing
enzyme ceramidase (ASAH2) through Src and STAT3 signal and
reactivates pyroptosis to overcome PC chemoresistance (Su
et al., 2023).

2.1.3.2 Focal adhesion kinase (FAK)
FAK is a non-receptor tyrosine kinase activated by ECM

receptors, including integrins (Macagno et al., 2014). Integrins
activate the Src enzyme, and FAK binds to Src after
autophosphorylation through the PI3K/AKT/mTOR pathway,
causing a rise in NF-κB and cell migration. Through ERK/ETS
signaling, activated FAK stimulates the overexpression of cyclin
CycD1 and encourages the growth of cancer cells. In addition, FAK
in the nucleus can also induce P53 degradation, helping cancer cells
survive (Li B. Q. et al., 2019; Sciano et al., 2024). Several FAK
inhibitors are in preclinical or clinical trials as potential
chemotherapeutic agents for PDAC. Jiang et al. showed that
prolonged FAK inhibition leads to downregulation of TGF-β,
which enhances STAT3 signaling. This results in reduced
collagen, reduced fibroblast numbers, and downregulation of
TGF-β/SMAD signaling pathways in PC, resulting in resistance
to FAK inhibition in PC (Jiang et al., 2020). Singh S et al. showed that
CXCL12-CXCR4 also induces FAK activation, promotes migration,
and facilitates PC gemcitabine resistance (Singh et al., 2010). In
addition, FAK inhibitors overcame the obstacle of PC radiotherapy
and achieved a good therapeutic effect when combined with an
immune checkpoint inhibitor (ICI) (Lander et al., 2022).

2.1.3.3 YES-associated protein (YAP) and PDZ-binding
protein (TAZ)

Mechanical signals in the ECM activate YES-related proteins
and PDZ-binding proteins, prompting their accumulation in the
nucleus and triggering EMT. When intercellular adhesion is
reduced, nucleus-activated YAP/TAZ binds to the transcription
factor TEAD, expressing target proteins associated with cell
migration, adhesion, stemness, and ECM remodeling (Kim et al.,
2018; Eibl and Rozengurt, 2019; LeBlanc et al., 2021). These proteins
upregulate gemcitabine resistance (Eibl and Rozengurt, 2019; Ma
et al., 2024; Zhou et al., 2024). In addition, the Hippo/YAP1/c-Jun
pathway can promote cancer cell stemness and iron metabolism in
PC, promoting chemoresistance (Zhou T. et al., 2023). In addition,
FAK can also activate YAP/TAZ (Ferrara et al., 2021).

2.1.3.4 Matrix metalloproteinases (MMP)
MMP has collagen-binding domains that can move to collagen-

susceptible sites (Van Doren, 2015). MMP not only mediates the
degradation of ECM but also affects adhesion function (Ho et al.,
2001; Niland et al., 2021). In previous studies, both the TGF-β/
Smad3/Snail pathway and the collagen/ITGB1/Src/Egr1 signaling
pathway upregulated membrane type 1 matrix metalloproteinase
(MT1-MMP) (Shields et al., 2012). Munshi HG et al. first found that
type I collagen increases ERK1/2 phosphorylation and high mobility
group A2 (HMGA2) expression through MT1-MMP, and that
HMGA2 is highly expressed in high-grade pancreatic tumors
with lymph node metastasis, attenuating gemcitabine-induced
checkpoint blockade (Dangi-Garimella et al., 2011; Dangi-
Garimella et al., 2013). In addition, MMP-cleaved type I collagen
remodeling activates the DDR1/NF-κB/p62/NRF2 signaling

pathway to promote tumor metastasis regulates tumor growth
and metabolism, and promotes PC growth (Su et al., 2022).

2.1.3.5 Hedgehog signal
Instead of directly targeting specific components of the ECM, an

alternative approach is to focus on specific signaling pathways for
tumor stroma development (Ho et al., 2020). Hedgehog signaling is
associated with drug resistance in PC. In the study of KhanMA et al.,
the co-culture of PC cells and pancreatic stellate cells (PSCs)
promoted PC chemoresistance through Hedgehog and
CXCR4 signaling (Khan et al., 2020). Sonic Hedgehog (Shh), a
subtype of Hedgehog, activates the downstream factor Gli-1 by
binding to Patched (PTCH), which then promotes PC
chemoresistance with the participation of ABCB2 (Xu et al.,
2013; Wang et al., 2019).

2.2 Cell-mediated drug resistance
signaling networks

Resistance to PC therapy is largely attributed to the
immunosuppressive TME, and we focused on
immunosuppressive cells. CAFs accumulated significantly in
TME. Several previous studies have demonstrated the pivotal
function that CAFs and tumor cells perform in the initiation and
advancement of malignancies (Rebelo et al., 2023). The interaction
between immune cells and CAFs has received increased attention
recently (Mao et al., 2021). By secreting various cytokines and
exosomes, CAFs interact with tumor-associated macrophages
(TAMs), dendritic cells (DCs), and other immune components to
form immunosuppressive TME, causing immune escape of PC cells
(Zhang et al., 2023a; Zhang et al., 2023b; Qin et al., 2024). We
summarized the possible reasons for the suboptimal efficacy of
contemporary therapies targeting these cellular components
(Figures 2, 3).

2.2.1 CAF
There have been conflicting results in recent clinical trials of

CAF-targeted therapy for PC, and it seems that CAF has dual
functions of pro- and anti-tumor in PC, possibly due to the fact
that different subpopulations of CAF in the TME can be
interconverted. This article only discusses the resistance signal
networks of CAF-related chemotherapy, immunotherapy, and
radiotherapy (Rebelo et al., 2023).

CAF changes drug resistance mainly by forming physical
barriers, secretions and related signaling pathways, and drug
metabolism. First, CAF is involved in the dense fibrosis of PC,
forming a physical barrier (Figure 2A). Excessive fibrosis can lead to
increased interstitial fluid pressure (IFP) and vascular collapse,
affecting gemcitabine transport in the blood (Norton et al., 2020).
The matrix depletion drug IPI-926 has been shown to improve
gemcitabine resistance (Olive et al., 2009). As mentioned earlier, the
consumption of HA also helps relieve matrix stiffness, allowing
blood vessels to re-dilate and resume gemcitabine delivery (Jacobetz
et al., 2013; DelGiorno et al., 2014). Secondly, CAF can secrete SDF-
1, HGF, TGF-β, IL-6, and so on to promote the resistance of PC cells
to gemcitabine (Figure 2B) (Neumann et al., 2018). SDF-1 is a
specific C-C chemokine produced by CAF, which can upregulate
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special AT-rich sequence-binding protein 1 (SATB-1) through
CXCR4, promoting PC progression and gemcitabine resistance
(Wei et al., 2018). Hepatocyte growth factor (HGF) secreted by
CAF promotes EMT, leading to intrinsic gemcitabine resistance
(Feldmann et al., 2021). CAF secretes TGF-β1, which in turn
activates the SMAD2/3-ATF4 axis/ABCC1 pathway. ABCC1 is a
gemcitabine transporter that reduces the accumulation of
gemcitabine in cancer cells and undermines the efficacy of
gemcitabine (Robey et al., 2018; Wei et al., 2021). CAF can also
release exosomes containing snail RNA and microRNA, promoting
gemcitabine resistance (Richards et al., 2017; Richards et al., 2022).
Finally, CAF disrupts gemcitabine metabolism in PC cells
(Figure 2C). On one side, CAF will release low levels of
hydrolytic cytosolic 5′-nucleotidases (Nt5c1A, Nt5c3), resulting
in high expression of gemcitabine and its activated metabolite

dFdCTP in CAF, indirectly reducing its concentration in PC cells
(Hessmann et al., 2018). On the other side, PSCs are a significant
source of CAFs. TGF-β-treated PSC overexpressed cysteine-rich
angiogenic inducer 61 (CYR61), inhibited gemcitabine transporters
hENT1 and hCNT3 and resulted in decreased gemcitabine uptake
(Paproski et al., 2013; Hesler et al., 2016). In addition, CAF releases
deoxycytidine, which rivals gemcitabine for phosphorylating
deoxycytidine kinase (dCK) (Dalin et al., 2019).

CAF primarily inhibits CD8+T cell infiltration and activity
(Figure 2D) and increases immunosuppressive cells (Figure 2E),
which leads to PC immunotherapy resistance. First, CAF inhibits the
recruitment and infiltration of CD8+T cells (Liu T. et al., 2019). Stiff
ECM prevents CD8+T cells from homing to tumor tissue and
restricts T cell movement (Hartmann et al., 2014). Targeted
inhibition of FAK in ECM made previously unresponsive PC

FIGURE 2
CAF-mediated resistance signaling networks to chemotherapy, immunotherapy, and radiotherapy. (A) CAF is involved in dense fibrosis in PC,
forming a physical barrier. Excessive fibrosis leads to increased interstitial fluid pressure and vascular collapse, which affects the transport of gemcitabine
in the blood. (B) CAF can secrete cytokines and exosomes such as IL-6, SDF-1, HGF, and TGF-β to promote gemcitabine resistance in PC cells. (C) CAF
disrupts gemcitabine metabolism in cancer cells. On the one hand, CAF releases Nt5c1A and Nt5c3, resulting in high expression of gemcitabine in
CAF, which indirectly reduces its concentration in PC cells. On the other hand, CAF inhibits the transporter proteins hENT1 and hCNT3, resulting in
decreased gemcitabine uptake. (D) CAF inhibits the infiltration and function of CD8+ T cells. For example, CAF-released FAK promotes PD-1 inhibitor
resistance. CAF-released TGFβi inhibits the activation and effector function of CD8+ T cells. (E) CAFs may increase the proportion of immunosuppressive
cells in the PC microenvironment, such as M2-TAM, Treg, and MDSC. (F) CAFs mediate PC resistance to radiotherapy (RT) primarily by decreasing the
oxygen concentration and altering the phenotype of the cancer cell.
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mice responsive to T-cell therapy and ICI (Jiang et al., 2016).
Secondly, CAF inhibits the activation and effector function of
CD8+T cells. The production of TGFβi by PDGFRα+ CAFs
directly interacts with CD61 on the surface of CD8+T cells,
thereby inhibiting T cell receptor signaling pathways. TGFβi
depletion can significantly enhance the activation and function of
CD8+T cells, increase the secretion of granzyme B, and inhibit tumor
progression (Goehrig et al., 2019). In the study of Turley SJ et al.,
depletion of LRRC15+ CAF can improve anti-PD-L1 reactivity and
weaken the inhibition of CD8+ T cell function (Krishnamurty et al.,
2022). Furthermore, it has been demonstrated that CAFs can cause
immune evasion by increasing the proportion of
immunosuppressive cells in PC, such as Tregs, M2-phenotype
macrophages, and metallogenic suppressor cells (MDSCs) (von
Ahrens et al., 2017).

CAF mediates PC resistance to radiotherapy (RT) mainly by
reducing oxygen concentration and changing cancer cell phenotype
(Figure 2F). CAF produces excess ECM proteins, causing matrix
stiffness and pressure on blood vessels resulting in hypoxia.
Improving hypoxia can sensitize PC cells to ionizing radiation

(Gray et al., 1953). In addition, cytokines secreted by CAF can
alter the TME and may promote the transformation of PC cells to a
radiation-resistant phenotype (Barker et al., 2015). During
irradiation, the gene expression and phenotype of CAF are also
altered, which in turn alters the ECM composition. This process
promotes tumor angiogenesis, remodels immunosuppressive TME,
and gradually makes pancreatic cancer cells resistant to radiotherapy
(Li et al., 2016; Grinde et al., 2017; Nicolas et al., 2022; Guo et al.,
2023; Zhang Y. et al., 2023).

2.2.2 TAM
TAMs promote gemcitabine resistance of PC cells mainly

through secretions and polarization (Figure 3A) (Hu et al., 2023;
Zhou J. et al., 2023; Liu J. et al., 2024). Alternately activated
macrophages, similar to CAF, release a series of pyrimidine
nucleosides. Macrophages can produce more deoxycytidine (dC)
and less dC kinase (dCK), resulting in chemoresistance (Halbrook
et al., 2019; Zhang J. et al., 2023). TAM also secretes cytokines. IL-6β
is low expressed in PC cells but highly expressed in TAMs and
specifically mediates IL-6β-dependent gemcitabine resistance in

FIGURE 3
Mechanisms of drug resistance in TAM andMDSC. (A) TAMs promote gemcitabine resistance in PC cells primarily through secretion and polarization,
and to ICI through reduced fibrosis and PD-1. (B) Targeted depletion of Gr-MDSC in PC increased activated CD8+ T cells, induced apoptosis in cancer
cells, and also promoted stromal remodeling.
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TAMs (Spek et al., 2022). In the study of Zhou et al., TGFβ/TGFBI/
Fn1 promoted the polarization of macrophages into TAM, increased
the expression of ECM proteins COL2A and FN1, and promoted PC
growth and gemcitabine resistance (Quaranta et al., 2018). In
addition, the depletion of macrophage-derived granular protein
reduced the formation of PC fibrosis and blocked the expression
of PD-1, resulting in ICI resistance (Quaranta et al., 2018).

2.2.3 MDSC
Two distinct subpopulations of MDSC, granulocytes (Gr-

MDSC) and monocytes (Mo-MDSC), are involved in PC
progression (Figure 3B). In Hingorani SR et al., targeted Gr-
MDSC depletion activated CD8+T cells, triggered the apoptosis of
PC epithelial cells, and also promoted stromal remodeling. In a study
by Hingorani SR et al., targeted depletion of Gr-MDSC increased
activated CD8 T cells, induced apoptosis in pancreatic cancer
epithelial cells, and also promoted stromal remodeling. Although
PC has low immunogenicity, Gr-MDSC depletion still triggers the
adaptive immunity of PC (Stromnes et al., 2014).

2.3 Energy metabolism-mediated drug
resistance signaling networks

Like other cancer cells, pancreatic cancer cells need to survive
and proliferate in an environment where they lack oxygen and
nutrients and are attacked by immune cells. This represents an
enormous physical, oxidative, and inflammatory stress on PC cells.
PC cells require metabolic reprogramming. On the one hand,
expanding access to nutrients (macroautophagy and
macropinocytosis (MP)). On the other hand, the “fuel” (glucose,
amino acids, lipids) is fully utilized (Halbrook and Lyssiotis, 2017;
Biancur and Kimmelman, 2018; Qin et al., 2020). PC cells have
adapted metabolism to promote cell growth, while at the same time
promoting chemoresistance.

2.3.1 Energy acquisition
Macroautophagy is a highly conserved catabolic process, and

autophagic flux increases in response to cellular stress (nutrient
deprivation, hypoxia, and chemotherapy). Autophagy can have both
pro- and anti-tumorigenic properties, and its role in tumorigenesis
requires specific analysis (Gillson et al., 2022). Available evidence
suggests that autophagy is increased in PC cells and promotes drug
resistance (Liu Z. D. et al., 2024). Inhibition of autophagy in PC cells leads
to impairedmitochondrial function, decreased oxidative phosphorylation
(OXPHOS), and subsequently decreased ATP levels, reducing cancer cell
survival (Yang et al., 2011; Yang et al., 2014). Single autophagy inhibitors
are ineffective in patients with chemotherapy-resistant PC and can be
combined with gemcitabine,MEK/ERK inhibitors, and radiation therapy
(Wolpin et al., 2014; Bryant et al., 2019; Chen et al., 2021; Yazal et al.,
2022). Autophagy also removesmajor histocompatibility class I (MHC-I)
from the cell surface to impair recognition by the antitumor immune
system and promote immune escape from PC cells, which is associated
with ICI therapy resistance. Inhibition of autophagy restores surface levels
of MHC-I, improves antigen presentation, and enhances ICB action
(Yamamoto et al., 2020).

Unlike autophagy, which consumes the cell itself, MP
internalizes extracellular substances. Mutant KRAS (mKRAS)

upregulates syndecan-1 (SDC1) on the cell surface, which in turn
promotes MP (Yao et al., 2019; Hobbs et al., 2020). MP plays a dual
role in the treatment of PC. On the one hand, MP inhibitors can
combine with autophagy inhibitors to induce a decrease in tumor
metabolism and treat PC (Su et al., 2021). Since lysosomal activity is
essential for both autophagy and macropinocytosis, lysosomal
inhibitors and mKRAS signaling inhibitors show synergistic
antitumor activity (Bryant et al., 2019; Kinsey et al., 2019). On
the other hand, albumin can enter mKRAS-driven cancer cells in
large quantities via MP, reinforcing the role of drug delivery carriers
(Wang et al., 2018). For example, Liu et al. found that mKRAS
caused enhanced MP and decreased expression of neonatal Fc
receptor (FcRn), sensitizing PC cells to albumin-coupled
adriamycin (Liu H. et al., 2019).

2.3.2 Energy utilization
Specific metabolic abnormalities in PC cells are strongly

associated with chemoresistance, particularly the increased use of
glucose and the metabolism of the amino acid glutamine to power
cancer cells. Many oncogenic activations in PC (e.g., KRAS, TP53,
and MYC) have glycolytic activity-promoting effects. Shukla et al.
found that hypoxic TME activates HIF-1α, which mediates an
increase in glycolytic flux, glucose addiction in cancer cells, a
corresponding increase in pyrimidine biosynthesis, and an
increase in deoxycytidine triphosphate (dCTP), and that the
elevated level of dCTP reduces the effective level of gemcitabine
through molecular competition. The increase in dCTP levels
decreases the effective level of gemcitabine through molecular
competition, which ultimately leads to the development of
gemcitabine resistance in PC cells (Shukla et al., 2017). Targeting
key enzymes and molecules in metabolism (mTOR, hexokinase,
LDH-A, E2F1, etc.) can reduce PC chemoresistance (Boudreau et al.,
2016; Feng et al., 2018; Fan et al., 2019). Combining metabolic
inhibitors with standard therapies produces synergistic effects that
enhance cancer treatment. Although most inhibitors are still in the
preclinical stage, glycolytic enzyme inhibitors represent a promising
anticancer therapy (Grasso et al., 2017).

Another pathway for generating energy, OXPHOS, is
significantly increased in cancer stem cells (CSCs). Targeting
OXPHOS eliminates CSCs and attenuates cancer drug resistance
(Zhao et al., 2022). Patients with high OXPHOS have a lower overall
survival and a poorer prognosis than patients with low OXPHOS.
High OXPHOS status was positively correlated with mitochondrial
complex I abundance, and the combination of gemcitabine and
phenylbiguanide (targeting mitochondrial complex I) significantly
improved the efficacy of gemcitabine, probably because highly active
mitochondrial respiration better maintains resistance to
gemcitabine-induced stress, a pro-survival process that is reduced
by OXPHOS inhibition (Masoud et al., 2020).

PC cells use glutamine (Gln) to support proliferation and redox
homeostasis. Recently, Kimmelman et al. found that the Gln
antagonist DON significantly impaired the metabolism of PC
cells and inhibited tumor growth and that the combination of a
Gln inhibitor and trametinib had better therapeutic effects
(Encarnación-Rosado et al., 2024). In addition, Gln addiction is
also important for controlling ROS generation and activating
mTOR, both of which can lead to chemoresistance (Chen et al.,
2017; Feng et al., 2018).
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In lipid metabolism, fatty acid synthase (FASN) expression is
upregulated, which is also critical for gemcitabine resistance.
Overexpression of FASN in PC cells upregulates Pyruvate Kinase
M2 (PKM2) expression, promoting glycolysis and gemcitabine
resistance (Tian et al., 2018). PKM2 also plays a non-metabolic
role in chemoresistance by inhibiting gemcitabine-induced
TP53 signaling and subsequent apoptosis (Kim et al., 2015).
Orlistat, a FASN inhibitor, induces ER stress and increases
gemcitabine sensitivity in an in situ PC mouse model (Tadros
et al., 2017).

3 Drug resistance signaling networks in
PC therapeutic strategies

3.1 Gene-targeted therapy

Therapy resistance in PC is also closely related to its unique
epigenetic mechanism. Early-stage PC is primarily driven by
mutations in four key genes: KRAS, CDKN2A, TP53, and
SMAD4. The sequence of PC mutations is derived from studies
of PC precancerous lesions, also known as PanIN. KRAS mutations

FIGURE 4
Resistance signaling network of immunotherapy targeting four mutated genes.
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occur in PanIN-1A and PanIN-1B, CDKN2A mutations occur in
PanIN-2, and TP53 and SMAD4 mutations occur in PanIN-3
(Wang et al., 2021). We summarized the resistance signaling
networks downstream of the four genes (Figure 4) (Qian
et al., 2020).

3.1.1 KRAS
KRAS is an oncogene that is a member of the RAS protein family

and codes for guanosine triphosphate (GTPase). The RAS protein
family consists of KRAS, NRAS, and HRAS. Under normal
circumstances, KRAS cycles between activated and inactivated
states. When KRAS binds to GTP via guanine nucleotide
exchange factor (GEF), KRAS appears to be activated. When
KRAS is bound to GDP by GTPase activating protein (GAP),
KRAS is inactivated. mKRAS can lead to decreased GAP activity,
resulting in excessive accumulation of activated KRAS, excessive
activation of downstream pathways, and promoting tumor
progression (Punekar et al., 2022). mKRAS, for example, may
cause the RAF/MEK/ERK, PI3K/AKT/mTOR, RALGDS/RAL/
RLIP pathway activation, and promote PC cell proliferation and
invasion (Khan et al., 2021). In addition, mKRAS can also promote
immunosuppressive TME formation (Bear et al., 2020).

New approaches to targeting mKRAS are rapidly evolving, and
KRAS is gradually being transformed from an undruggable to a
druggable target (Ostrem and Shokat, 2016). Targeted inhibitors
against KRAS G12C mutations (Sotorasib and Adagrasib) have
made significant progress in non-small cell lung cancer (Huang
L. et al., 2021; Koga et al., 2021). However, the most common KRAS
mutations in PDAC are G12D (44%), G12V (34%), and G12R
(20%), which cannot be treated by small molecule inhibitors
targeting G12C (Stickler et al., 2024). MRTX1133, a small
molecule inhibitor targeting G12D, is currently under clinical
investigation (Wang et al., 2022; Wei et al., 2024). However, not
all G12D-mutated cell lines are sensitive toMRTX133, whichmay be
due to mutations at other points near the switch II pocket or
alternative signaling activation (Singhal et al., 2024).

In addition to directly targeting KRAS G12D, other drugs that
target KRAS and its upstream and downstream sighnals may have
several resistance mechanisms as follows: (1) The binding process of
KRAS and GTP is not successfully inhibited; (2) The downstream
signal of mKRAS reduces the expression of MHC-I and increases the
expression of immune checkpoint PD-L1 and CD47 by enhancing
autophagy, thereby directly avoiding anti-tumor immunity (El-
Jawhari et al., 2014); (3) Activation of KRAS upstream receptor
tyrosine kinases (e.g., EGFR) promotes the production of more RAS
proteins and drug resistance (Amodio et al., 2020; Akhave et al.,
2021); (4) Constitutive AKT could bypass KRAS-induced apoptosis
and continue to promote PC growth (Pettazzoni et al., 2015); (5) Cell
cycle kinase CDK4/6 promotes cancer cell proliferation (Goodwin
et al., 2023); (6) Low antigen specificity (T cells), weak effect of
innate (TAMs) and adaptive (CAFs) immune cells, strong effect of
immunosuppressive cells (antigen-presenting cells, MDSCs) (Bear
et al., 2020).

3.1.2 CDKN2A
CDKN2A, a cell cycle protein-dependent kinase inhibitor, is one

of the most important oncogenes. Two proteins encoded by
CDKN2A, p16INK4, and p14ARF, control the cell cycle through

CDK4/6 and MDM2 (murine double minute 2, a negative regulator
of p53), respectively. There are currently no drugs targeting
CDKN2A, but there is palbociclib, a small molecule inhibitor
targeting CDK4/6. Palbociclib enhanced the therapeutic effect of
gemcitabine and inhibited PC cell invasiveness by inducing
apoptosis and cell cycle arrest and destroying the surrounding
ECM tissue (Chou et al., 2018).

The resistance mechanism of CDK4/6 inhibitor may include: (1)
The deficiency of cell cycle specific protein RB; (2) RB-E2F complex
amplification; (3) INK4 family members overexpress competitive
binding CDK4/6; (4) Loss of CDK interaction protein/kinase
inhibitor protein (CIP/KIP) family expression; (5) Overexpression
of WEE1 G2 checkpoint kinase (WEE1); (6) miRNAs (miR-138,
miR-506, miR-6883-5p) directly target CDK4/6 and antagonize
CDK4/6 inhibitors; (7) Other cell cycle non-specific pathways
(Huang J. et al., 2022).

3.1.3 TP53
The TP53 gene is the most frequently mutated in all cancers and

encodes the P53 transcription factor (Junttila and Evan, 2009).
P53 is activated in response to a variety of cellular stress signals
such as hypoxia and DNA damage. After the activation of P53, it
plays the functions of DNA repair, cell cycle arrest, autophagy, and
aging through downstream signals. MDM2 acts as a negative
regulator of p53 and regulates its functions. However,
P53 mutations have been observed in most PC samples (Ryan
et al., 2014). P53 mutation (mut-P53) promotes the
transformation of precancerous lesions to PC (Morton et al.,
2010). At present, there are two main therapies for P53: deleting
the mut-P53 protein and restoring wild-type P53 activity (Parrales
and Iwakuma, 2015).

The mechanism of drug resistance of TP53 therapy may include:
(1) MDM2 overexpression; (2) Loss of DNA mismatch repair
(Wang et al., 2001; Hientz et al., 2017); (3) Overexpression of
mut-P53 target genes CDK1 and CCNB1 (Dhayat et al., 2015;
Fiorini et al., 2015); (4) Estrogen receptor-α overexpression (Liu
et al., 2006).

3.1.4 SMAD4
SMAD4 is a tumor suppressor gene involved in TGF-β signaling.

TGF-β forms a complex with SMAD2/SMAD3/SMAD4 and binds
to other transcription factors and SMAD-binding elements to
function in DNA repair, cell cycle arrest, and inhibition of
proliferation (Derynck et al., 2001; Shi and Massague, 2003).
Although there are currently anti-cancer drugs that target
SMAD4-deficient cells, more research is needed to verify them
(Wang et al., 2006; Wang et al., 2009).

Targeted SMAD4 therapy resistance mechanism may be: (1)
Overexpression of mitochondrial malic enzymes 3 (ME3) (Dey et al.,
2017; Sheth et al., 2023); (2) Excessive activation of RAF/ERK/c-Myc
signaling pathway; (3) Increased mitochondrial autophagic flux
driven by MAPK/ERK signaling (Ezrova et al., 2021).

3.2 Immune checkpoint inhibitor therapy

ICIs play a key role in cancer immunotherapy and are often used
in combination therapy for PC (Tang et al., 2021). This is because
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PC, as a “cold” tumor, has strong drug resistance and low
immunogenicity, and a single ICI has almost no effect on PC
(Micevic et al., 2023). Identifying signal networks for ICI
resistance can help overcome this critical challenge (Figure 5).

Programmed cell death protein-1 (PD-1) is expressed in
immune cells. Its ligand, PD-L1, is expressed in antigen-
presenting cells (APCs) and tumor cells. The main resistance
mechanisms of PD-1/PD-L1 inhibitors in PC include: (1)
Disruption of PD-1/PD-L1 binding; (2) Low immunogenicity in
PC; (3) Deficiency in antigen presentation; (4) Lack of suitable/
effective neoantigens; (5) Other underlying factors.

Under normal circumstances, tumor cells release antigens and
T cells respond by releasing interferon IFN-γ. IFN-γR on PC cells
activates the JAK-STAT pathway, activates the transcription factor
interferon regulatory factor 1 (IRF1), and triggers the production of
PD-L1. If the PC cell is not responsive to IFN-γ, it will not express
PD-L1, and the PD-1/PD-L1 inhibitor is ineffective (Ding et al.,
2019). In addition, abnormal expression of MHC results in loss of
immunogenicity, and PC cells cannot be completely cleared
(Cabrera et al., 2003). IFN-γ signaling can enhance MHC-I
antigen presentation by affecting the transcription of human
leukocyte antigen HLA-A. TCR on the surface of T cells

FIGURE 5
Drug resistance signaling network of immunosuppressive therapy.
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recognizes MHC on tumor cells and promotes the killing of PC cells.
Tumor antigen presentation occurs mainly through the MHC-I
pathway, defects in this pathway are more frequently observed than
defects in MHC-II antigen presentation (Kalbasi and Ribas, 2020).
LAG3 is a ligand for MHC-II and a common immune checkpoint
receptor that reduces the effecter T cell activity and proliferation.
Baleeiro et al. found that theMHC-II/LAG-3 pathway contributes to
the killing of PC cells by T cells. This contradicts the role of LAG3 as
an immune checkpoint in other cancers, which may be due to the
fact that LAG3 can play different roles depending on the activation
status of the T cells (Baleeiro et al., 2022). In addition, when cancers
develop, they accumulate mutations that form some new
autoantigen epitopes that are immunogenic and are called
“neoantigens”. PC, though it has a longer time to accumulate
mutations, produces fewer neoantigens (Luksza et al., 2022).
Finally, the immunosuppressiveTME (immune cells and
cytokines) unique to PC, changes in T cells (insufficient
production, poor effect, impaired memory), and various classical
cancer signaling pathways (TGFβ, WNT-β, CDK4/6, MAPK, PTEN)
may be involved in the resistance of PD-1/PD-L1 inhibitors. Further
verification is required (Jenkins et al., 2018; Tang et al., 2022).

CTLA4 is the first clinically targeted immune checkpoint
receptor and is expressed only on T cells. Similarly, sensitivity to
CTLA4 blockade is lacking due to insufficient antigenicity of PC
tumors (Pardoll, 2012; Kalbasi and Ribas, 2020). Other emerging
immune checkpoints such as TIGIT, GITR, LAG3, TIM3, and other
drug-resistance signal networks in PC still need to be further
explored (Borgeaud et al., 2023).

3.3 Cancer vaccines

3.3.1 mRNA vaccine
Compared with DNA vaccines, mRNA vaccines can naturally

target APCs and express a variety of powerful antigens without the
need for transgenes to enter the nucleus and avoid potential toxic
reactions. mRNA vaccine particle (MVP), after ingestion by DC,
triggers the production of IFN-β and TNF-α via IFN gene stimulator
factor (STING) and mitochondrial antiviral signaling (MAVS),
respectively. T cells are then turned on to destroy antigen-specific
PC cells (Chen et al., 2023). More recently, patients with surgically
excised PC have been treated with an RNA-based tailored
neoantigen vaccine (BNT122), immune checkpoint therapy
(atezolizumab), and chemotherapy (mFOLFIRINOX) to produce
a neoantigen-specific T cell response and postpone PC recurrence
(Rojas et al., 2023). However, the application of mRNA vaccines is
limited by instability, innate immunogenicity, and inefficiency of
delivery in vivo (Miao et al., 2021).

3.3.2 Peptide-based vaccine
Antigen epitope is the smallest immunogenic region of antigen,

and peptide vaccines are developed based on antigen epitope.
Peptide vaccines, after being presented with APC, activate the
immune response and promote activated T cell proliferation and
immune memory formation (Hu et al., 2021). In precancerous
lesions of PC, such as PanIN and IPMN, previous research has
found cancer-causing mutations in genes including GNAS and
KRAS (Fischer and Wood, 2018). The KRAS-targeted peptide is

the first polypeptide vaccine to undergo clinical trials. In addition,
there are peptide- and protein-based vaccines targeted by
telomerase, gastrin, survivin, vascular endothelial growth factor
receptor (VEGFR), and HSP-peptide complexes (McCormick
et al., 2016). At present, peptide vaccines are still limited by
MHC and only activate monoclonal T cells, which may lead to a
reduced anti-tumor immune response (Matsui et al., 2018).

3.3.3 Whole-cell vaccine
Autologous whole-cell tumor vaccines are typically tumor cells

that have been treated to remove tumorigenicity, retain their
immunogenicity, and contain a full range of tumor antigens.
However, it is still limited by low immunogenicity and high
tumor heterogeneity. As one of the neoadjuvant treatments for
PC, pancreatic tumor whole cell vaccine (GVAX) stimulates the
secretion of GM-CSF and promotes DC activation. GVAX can
increase the effectiveness of ICI by reprogramming the TME of
PC and causing PD-L1 to be upregulated in tertiary lymphoid
aggregates (Lutz et al., 2014; Soares et al., 2015; Wang et al.,
2024). Algenpantucel-L can express natural immunogenic epitope
α-galactose, promoting epitope spreading and immune response,
eventually leading to hyperacute rejection and killing PC cells
(McCormick et al., 2016; Hewitt et al., 2022).

3.3.4 DC vaccine
As the most effective APC, DC vaccines are usually loaded with

tumor-associated antigen (TAA) and reinfused into the patient. The
DC vaccine’s effectiveness is still quite low, mainly because of
insufficient tumor antigen expression and immunosuppressive
TME. Tumor cells under-express TAA on the one hand and
produce inhibitory factors to suppress DC differentiation and
maturation on the other. In addition, immune checkpoints
expressed on the DC surface (PD-1, PD-L1, and TIM-3) can also
impair its function (Zhang X. et al., 2023). Recently, Zhang et al.
found that DC vaccines expressing MUC1, MUC4, wilms tumor
gene-1 (WT1), and KRAS antigens can enhance CTL response and
prolong the median OS in PC patients (Zhang X. et al., 2023). It has
recently been shown that the fusion vaccine, which combines
autologous dendritic cells with primary tumor cells, activates and
expands lymphocytes more successfully and has superior anticancer
effects (Orr et al., 2023).

3.3.5 Microbiome-based vaccine
Microbial-based vaccines use natural immunogenic viruses or

bacteria as vectors that are engineered to express TAA. For example,
CRS-207 (Live-attenuated Listeria monocytogenes expressing
mesothelin) can be used in combination with GVAX and
cyclophosphamide (Cy) to treat PC (Tsujikawa et al., 2020).
Mesothelin is a tumor antigen that is highly expressed in PC.
Listeria can induce IFNβ expression through an STING-
dependent pathway (Tsujikawa et al., 2020). In addition, we first
induced an initial T-cell response with a novel vaccinia virus vector
expressing the tumor antigens CEA and MUC-1, as well as three co-
stimulatory molecules, followed by an enhanced immune response
with the same expression of a non-replicating fowlpox virus in PC
patients. However microbial-based vaccines require complex
engineering systems and careful manufacturing, which is not
conducive to their personalized therapeutic applications.
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3.3.6 Exosome-based vaccine
Numerous tumor antigens are found in tumor-derived

exosomes (TEXs), which can encourage DC binding and
exosome absorption. TEXs have promising development potential
and could represent the next-generation of cell-free vaccinations
(Dai et al., 2024). Currently, the use of DC-derived exosome vaccines
(DCexos) has not been able to stimulate T-cell responses and has
only little clinical efficacy. This may be because all current clinical
trials use monocyte-derived DC, which is not the optimal DC. Lack
of adequate maturation/adjuvant signal is also a possible cause (Yao
et al., 2021). In the study of Li et al., DCexos activated T-cell
responses in PC mice and played an antitumor role (Xiao et al.,

2017). It is worth noting that TEXs also include proteins and nucleic
acids, which may cause autoimmune diseases by upsetting the
immune system’s homeostasis after vaccination, raising concerns
about the safety of precision therapy (Sun et al., 2020).

4 Clinical trials

We summarized existing clinical trials of various treatments for
PC (Table 1). With every negative clinical trial, it is not hard to see
that monotherapy is unlikely to succeed in PC, while combination
therapies hold the most promise in the short term. Mitigating drug

TABLE 1 Existing clinical trials of various treatments for PC.

Therapy Study title NCT number Phase Conditions

PC matrix-targeted therapy Second-line Study of PEGPH20 and Pembro for HA
High Metastatic PDAC

NCT03634332 Ⅱ Pancreatic Ductal Adenocarcinoma;
Pancreatic Cancer;

Pancreatic Neoplasms

Stereotactic Body Radiotherapy and Focal Adhesion
Kinase Inhibitor in Advanced Pancreas

Adenocarcinoma

NCT04331041 Ⅱ Pancreas Cancer; Pancreas Adenocarcinoma

Hedgehog Inhibitors for Metastatic
Adenocarcinoma of the Pancreas

NCT01088815 Ⅱ Metastatic Pancreatic Cancer

Cell-targeted therapy Studying Fibroblast Activity in Patients With
Localized Pancreatic Cancer Undergoing Surgery

NCT00900016 Unknown Pancreatic Cancer

Macrophages Effect on Chemoresistance NCT01921699 Unknown Pancreatic Cancer

Metabolism-targeted therapy A Phase I/II/Pharmacodynamic Study of
Hydroxychloroquine in Combination With

Gemcitabine/Abraxane to Inhibit Autophagy in
Pancreatic Cancer

NCT01506973 Ⅰ/Ⅱ Pancreatic Cancer;
Pancreas Adenocarcinoma

Investigating Targetable Metabolic Pathways
Sustaining Pancreatic Cancer

NCT05296421 Unknown Pancreatic Cancer

Gene-targeted therapy Selumetinib Sulfate in Treating Patients With
Locally Advanced or Metastatic Pancreatic Cancer

With KRAS G12R Mutations

NCT03040986 Ⅱ Stage III Pancreatic Cancer; Stage IV Pancreatic
Cancer

Mutation of K-RAS, CDKN2A, SMAD4, and
TP53 in Pancreatic Cancer: Role of Liquid Biopsy in

Preoperative Diagnosis

NCT03524677 Unknown Pancreatic Cancer

Immune checkpoint
inhibitors

SBRT and Anti-programmed Cell Death Protein 1
(Anti-PD-1) in Late Stage or Recurrent Pancreatic

Cancer Patients

NCT03716596 Ⅰ Pancreatic Cancer

Immune Checkpoint Inhibition in Combination
With Radiation Therapy in Pancreatic Cancer or

Biliary Tract Cancer Patients

NCT02866383 Ⅱ Metastatic Pancreatic Cancer;
Metastatic Biliary Tract Cancer

Cancer vaccines Pooled Mutant KRAS-Targeted Long Peptide
Vaccine Combined With Nivolumab and

Ipilimumab for Patients With Resected Mismatch
Repair Protein (MMR-p) Colorectal and Pancreatic

Cancer

NCT04117087 Ⅰ Colorectal Cancer;
Pancreatic Cancer

GVAX Pancreas Vaccine (With CY) in
Combination With Nivolumab and SBRT for
Patients With Borderline Resectable Pancreatic

Cancer

NCT03161379 Ⅱ Pancreatic Cancer

CAR-T CD276-targeted Chimeric Antigen Receptor T Cells
in Treatment With Advanced Pancreatic Cancer

NCT05143151 Ⅰ/Ⅱ Advanced Pancreatic Carcinoma

Mesothelin-targeted CAR-T Cells as a Neo-adjuvant
Treatment in Patients With Resectable Pancreatic

Cancers: a Feasibility Study

NCT06054308 Unknown Pancreatic Cancer
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resistance can start with combining the key nodes of the signaling
network and enhancing the combination of various therapies.

5 Conclusion

PC is one of the most immune-resistant tumors, a characteristic
determined by its unique immunosuppressive matrix and genomic
landscape. Stiff matrix, abnormal vascularization, ECM-receptor-
mediated signaling, and immunosuppressive cellular components
are the main causes of resistance to targeted stroma therapy. In
addition, PC is characterized by genomic instability. In pancreatic
intraepithelial neoplasia, four common mutated genes play a key
driving role in promoting the development of PanIN to PC. In
addition, other carcinogenic drivers disrupt T-cell immunity in the
early stages of tumor initiation, which partly explains the failure of
ICI treatment. Cancer vaccines still need to be used in combination
with other medications to overcome immunosuppression because of
the lack of effector T cells and low PD-L1 levels.

Furthermore, other treatments for PC also have certain limitations.
CAR-T therapy uses genetic engineering to transfer an engineered T cell
receptor or chimeric antigen receptor into T cells. These T cells are then
transfused back to destroy tumor cells that express specific tumor
antigens. The reason for treatment limitation may be: (1) CAR-T cell
exhaustion; (2) Antigen escape; (3) Physical barrier formed by PC
matrix; 4) Immunosuppressive TME (Akce et al., 2018; Ma et al., 2019;
Hagel et al., 2023). Senescence induction therapy is also getting more
attention. In addition to inhibiting PC cell proliferation, this therapy
improves drug delivery and efficacy by restoring blood supply through
pro-angiogenic agents. However, because senescent cell escape and
senescent cell accumulation can promote PC, senescence induction
therapy still needs to be further explored (Chambers et al., 2021;
Chibaya et al., 2022; Bordon, 2023; Chibaya et al., 2023).
CD40 agonists can activate T cell immunity, activate macrophages
andDCs, and destroy the PC tumormatrix. However, due to the lack of
tumor-infiltrating lymphocytes in the TME, T cell function is impaired
and its application is limited (Vonderheide et al., 2013; Vonderheide,
2018; Djureinovic et al., 2021).

In summary, we believe that reducing drug resistance can start
from the key nodes of the signaling network and enhance the
combination of various therapies. Even in the future, studying
epigenetic and chromatin accessibility through new techniques
can more effectively predict the underlying mechanisms of
emerging drug resistance.
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