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Many mammalian cells, including endothelial cells and fibroblasts, align and
elongate along the orientation of extracellular matrix (ECM) fibers in a gel
when cultured in vitro. During cell elongation, clusters of focal adhesions (FAs)
form near the poles of the elongating cells. FAs are mechanosensitive clusters of
adhesions that grow undermechanical tension exerted by the cells’ pulling on the
ECM and shrink when the tension is released. In this study, we use mathematical
modeling to study the hypothesis that mechanical reciprocity between cells and
the ECM is sufficient for directing cell shape changes and orientation. We show
that FAs are preferentially stabilized along the orientation of ECM fibers, where
cells can generate higher tension than in directions perpendicular to the ECM
fibers. We present a hybrid computational model coupling three mathematical
approaches: first, the cellular Potts model (CPM) describes an individual
contractile cell; second, molecular dynamics (MD) represent the ECM as a
network of cross-linked, deformable fibers; third, a set of ordinary differential
equations (ODEs) describes the dynamics of the cell’s FAs, in terms of a balance
between assembly and a mechanoresponsive disassembly. The resulting
computational model shows that mechanical reciprocity suffices for stiffness-
dependent cell spreading, local ECM remodeling, and ECM-alignment-
dependent cell elongation. These combined effects are sufficient to explain
how cell morphology is influenced by the local ECM structure and mechanics.
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1 Introduction

The extracellular matrix (ECM) plays a crucial role in development and in disease. For
example, the ECM plays a role in cancer cell migration (Najafi et al., 2019; Yamaguchi et al.,
2005), wound healing (Maquart and Monboisse, 2014; Diller and Tabor, 2022), and
angiogenesis (Stupack and Cheresh, 2002). The ECM is a complex collection of large
fibers such as collagen, fibronectin, and other proteins (Theocharis et al., 2016). The
orientation of fibers in the ECM plays an important role in tumor vascularization (Balcioglu
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et al., 2016), mechanical cell–cell communication (Nahum et al.,
2023), and blood clot formation (KimO. V. et al., 2017). The ECM is
continuously remodeled by cells both chemically, through the
synthesis and degradation of ECM fibers and associated
components, and mechanically, by pulling and reorienting fibers
(Theocharis et al., 2016; Winkler et al., 2020). As ECM remodeling
leads to local changes in ECM properties such as stiffness, structure,
density, and isotropy, to which cells respond through changes in
adhesion, cell contraction, or pseudopod extension (Reinhart-King
et al., 2005; Malandrino et al., 2019; Doyle et al., 2022), there is a
bidirectional chemical and mechanical reciprocity between the cells
and the ECM. In this work, we focus specifically on the
mathematical modeling of mechanical cell–ECM reciprocity in
fibrous ECM, in particular the role of ECM isotropy. For
mathematical models of other forms of cell–ECM reciprocity, we
refer to Daub and Merks (2013); van Oers et al. (2014); Rens and
Merks (2017), Rens and Merks (2020); Chiang and Chung (2024).

The present study attempts to provide mechanistic explanations
for three behaviors of cells on fibrous matrices: (1) cell spreading as a
function of ECM stiffness, (2) alignment of cells to ECM fiber
orientation, and (3) a hypothetical role of ECM anisotropy in
mechanical cell–ECM reciprocity.

First, certain cell types, such as endothelial cells, fibroblasts,
smooth muscle cells, and osteogenic cells, show a monotonic
increase in spreading with substrate stiffness. These cells are
relatively small on softer substrates, elongate on intermediate
substrates, and achieve maximum spreading on highly stiff
substrates such as coated glass (Yang et al., 2017). Other cell
types, including Jurkat T cells and NIH 3T3 fibroblasts, show a
biphasic response of spreading to substrate stiffness, showing
maximal cell spreading at an intermediate optimal level of
substrate stiffness (Oakes et al., 2018; Wahl et al., 2019; Janmey
et al., 2020).

Second, cell alignment is influenced both by the mechanical
properties of the fibers and by the cell adhesion properties. In
Friedrichs et al. (2007), cells are cultured on a two-dimensional
substrate assembled out of thin aligned collagen fibrils. Cells align
along the collagen fibrils and bundle parallel fibrils together at their
poles and deform the orthogonal fibrils, which creates holes in the
substrate. When this experiment was repeated with fragile fibrils, the
cell did not elongate, and the fibers surrounding the cell were
digested. This suggests that cells require a firm ECM to adhere to
and that anisotropic traction force is required to elongate and align
to the fibrils. Next, they found that the cell adhesions to the fibrils
influence cell alignment. In general, cells adhere to the ECM with
integrins, which are membrane-piercing receptors that bind to
proteins in the ECM with varying binding strengths, possibly
regulated by mechanical tension (Kechagia et al., 2019).
Specifically, Friedrichs et al. (2007) found that cells expressing
the integrin α2β1 align on the fibrils, whereas cells that did not
express this integrin adhered to the fibrils but did not align.

Finally, cells not only respond to cues in the ECM but also
reorient the fibers in the ECM. Contractile breast cancer cells deform
fibrous collagen and reorient the fibers to point toward themselves.
Pairs of these contractile cells create aligned bridges of fibers
between them (Kim J. et al., 2017).

Computational modeling is well-suited for providing insights
into mechanical cell–ECM reciprocity (Crossley et al., 2024). Before

introducing our own approach, we briefly review a selection of
specific computational models of cell–ECM reciprocity involving
mechanosensitive adhesions and a fibrous ECM. We highlight two
factors that are crucial to be included in a computational model of
the reciprocity between ECM fiber alignment and cell morphology,
namely, (i) cell-induced changes in ECM structure and (ii) ECM-
induced changes in cell shape.

We first review computational models focused on ECM
mechanics in response to cell contraction (i). Using a 3D finite
element (FE) representation of the ECM, Paukner et al. (2023)
showed that cell contractility and force-dependent cell–ECM
adhesions suffice for guiding cell migration upward stiffness
gradients. This model focused on ECM deformation by the cell
but could not capture cell shape change due to changes in the ECM
because the cell was modeled as a point particle with an adhesive
annulus. They concluded that cell contractility, combined with
mechanosensitive cell–ECM adhesions, can explain several
phenomena in cell migration. In a different study of cell
migration, Feng et al. (2019) introduced a simple bead–spring
network approximation of a deformable ECM and a migrating
ellipsoidal cell. They showed that a torque balance on the
mechanosensitive adhesions of the cell causes the cell to orient
along fibers, after which the cell starts migrating. In Feng et al.
(2019), the cell’s ability to sense the fiber orientation disappears if
the fibers’ bending modulus is too high, showing that in this model,
fiber orientation is sensed through mechanical interactions with the
fibers. A model that links a fibrous network with breakable cross-
links to a circular radial cell suggests that fiber accumulation can
enhance cell–ECM adhesion by increasing the number of available
binding sites for cellular adhesion (Cao et al., 2017). Altogether,
these computational models have studied the potential effect of cell
contractility on the ECM, but they did not include the reciprocal
effects of the ECM on the cell (ii).

A number of models have considered only (ii), the effect of the
ECM on cell behavior. For example, Vargas et al. (2020) showed how
different cell migration modes can emerge based on adhesion
maturation and stress fiber strength using a 3D finite element
model of a moving cell on a non-fibrous, uniformly structured
ECM. A different finite element model of cell migration showed how
cell deformation and ECM porosity are of primary importance in
amoeboid cell migration (Campbell and Bagchi, 2021).

Models combining (i) and (ii), thus closing the loop to full
mechanical ECM reciprocity, include those by van Oers et al. (2014),
Rens and Merks (2017), and Rens and Merks (2020). In these
models, cell shape is modeled using the cellular Potts model
(CPM) and coupled to a finite element (FEM) simulation of the
ECM to form a hybrid CPM. Early CPM–ECM couplings assumed
that cellular protrusions are stabilized on highly stressed substrates
(van Oers et al., 2014), showing how mechanical cell–cell
communication can play a role in angiogenesis. Subsequently,
this coupling was extended by including a comprehensive model
of mechanosensitive adhesion between the cell and the ECM, leading
to emergent cell spreading, spontaneous cell elongation, and
durotaxis (Rens and Merks, 2020). Although these models
consider full mechanical reciprocity, their ECM is homogeneous,
i.e., there are no fibers. One of the first models of mechanical
cell–ECM reciprocity featuring a fibrous ECM was used to
explain how bands form between two contractile cells in a
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fibrous ECM and how the two cells elongate toward each other by
the remodeled matrix (see Reinhardt et al., 2013, reviewed in
Crossley et al., 2024). Another sophisticated model of cell–ECM
reciprocity is that of Kim M. C et al. (2018), where a triangulated
dynamic cell is coupled to a fibrous ECM using an FEM simulation.
They studied how cells can sense local stiffness in the fiber network
by considering filopodia–fiber binding. In this study, we build
upon our previously introduced hybrid CPM and molecular
dynamics (MD) model (Tsingos et al., 2023). This model
approximated the ECM by representing fibers using a beads-
and-spring model, where the fibers were linked using cross-
linkers. In this work, we modeled how the cell’s contractions
form the ECM and how these deformations propagate far into
the network. Furthermore, the cells’ contractile forces are
counteracted by the ECM, leading to less contraction in a
highly cross-linked, stiff ECM and high cellular contraction in a
soft ECM. In this model, the cellular adhesions were static, and
new adhesions could not be formed with the ECM.

To study the alignment of cells in anisotropic networks, we
extend our previous hybrid CPM and molecular dynamics model
(Tsingos et al., 2023) with dynamic adhesions. The choice of how to
couple cellular morphology and ECM dynamics is delicate as it
encodes the biological hypothesis of how cells sense and react with
the ECM. In this work, we adopt the coupling between cell and ECM
proposed by Rens and Merks (2020) and apply it to a hybrid CPM
with discrete fibrous ECM (Tsingos et al., 2023). The coupling is
made by assuming that the cell exerts cytoskeletal contraction forces
through integrin-based adhesions that behave according to the two-
spring model (Schwarz et al., 2006; Doyle et al., 2022). In essence, the
two-spring model views adhesion as a mediator between the
contractile forces of the cell and the restoring forces of the ECM.
The tension on the adhesion builds up slowly on the soft ECM and
quickly on the stiff ECM as the cell applies its contractile forces.
Additionally, we assume that adhesions strengthen as tension
increases. Adhesion strength is quantified by the number of
integrin proteins bound to the adhesion. These assumptions,
when combined with an isotropic material in a hybrid CPM, are
sufficient to produce phenomena such as cell spreading,
spontaneous elongation, and durotaxis (Rens and Merks, 2020).
We implement this two-spring adhesion model in the hybrid CPM
with a discrete fibrous ECM (Tsingos et al., 2023) and use the new
model to investigate the reciprocity between fiber orientation and
cell morphology. Specifically, with this new fibrous ECM model, we
show how cell elongation on oriented gels can be considered a
special case of stiffness-dependent cell spreading as fibers are easier
to bend than to stretch. Furthermore, we study how cell protrusions
can reorient fibers, thereby increasing tension on adhesions and
stabilizing the protrusions.

2 Methods

2.1 Modeling approach

We have introduced dynamic descriptions of mechanosensitive
focal adhesions (FAs) into a hybrid CPM and MD model (Tsingos
et al., 2023). The CPM part dynamically describes cell shape
changes, and the MD part simulates a cross-linked network of

ECM fibers and its dynamical response to cellular forces. In our
previous work, the CPM was connected to the MD model through
static adhesion particles. In the present model, the buildup and
breakdown of FAs are modeled dynamically using an ordinary
differential equation model that describes FAs as clusters of
integrins, with the breakdown rate assumed to be dependent on
the mechanical tension within the FAs. This ordinary differential
equation (ODE) model for FAs and their constituent integrins was
adapted from the work by Novikova and Storm (2013), as shown in
one of our previous models featuring a continuum description of the
ECM (Rens and Merks, 2020). Figure 1 provides an overview of the
key elements of the model.

The models are coupled using an operator-splitting approach.
The three submodels are sequentially iterated to a steady state, where
the output state of one submodel is used as the input state for the
next submodel (Figure 1B). The simulations were run until a quasi-
steady state was reached, i.e., until no large further changes were
observed. In the remainder of this section, we will describe each of
the three submodels and the coupling strategies.

2.2 Cellular Potts model

To describe cell shape changes, we employ the cellular Potts
model (Graner and Glazier, 1992; Hirashima et al., 2017). The CPM
is a lattice-based model in which cell shape is defined as a collection
of connected lattice sites. We implemented a CPM on a square grid
Λ ⊆ Z2 of 200 × 200 lattice sites. Each lattice site �x ∈ Λ is assigned a
spin σ( �x) ∈ Z≥0, which defines a spin field σ: Λ → Z≥0. The
collection of connected lattice sites that have the same positive
spin n defines the shape of the cell n. As shown in Figure 1A, the red
lattice sites indicate the shape of a single cell. The set of lattice sites
with spin 0 is not occupied by a cell.

The CPM evolves through a sequence of random extensions and
retractions, whose probability is given by a balance of contractile and
extensile forces and forces due to adhesion with the ECM. These are
given by a Hamiltonian energy function.

H σ( ) � λA2 + ∑
�x∈Λ

∑
�x′∈NB �x( )

Jσ �x( )σ �x′( )1σ �x( )≠σ �x′( ) − λc
A

A + Ah
, (1)

where A � |{ �x ∈ Λ: σ( �x)> 0}| is the area of the cell, NB( �x) is the set
of lattice sites in the neighborhood of �x, and λ, J, λc, and Ah are
parameters. The first part of Equation 1 describes the contractility of
the cell with magnitude λ. The second term penalizes, with strength
J, interfaces between the cell and the medium, effectively creating a
line tension along the cell’s perimeter. The final term describes the
formation of non-integrin-based adhesions with the substrate,
which bind with a strength parameter λc and a saturation
parameter Ah.

The Hamiltonian is minimized throughMetropolis dynamics, as
previously described by Graner and Glazier (1992), thus
dynamically updating the cell’s shape. In brief, we iteratively
select a random lattice site �x and a random adjacent lattice site
�x′. We then calculate the energy difference ΔH that would result due
to the update and accept the copy attempt with probability P(ΔH) �
1 if ΔH≥ 0, and P(ΔH) � exp(−ΔH/T) for ΔH> 0, where T is a cell
motility parameter.
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FIGURE 1
An overview of the model components and the model rules. (A) A schematic overview of the components in the model. The lattice-bound cellular
Potts cell (red squares) is attached to the beads (cyan) and springs (gray) of the ECM through the focal adhesions (FAs; purple). The contractile force
(dashed red) is visualized between FAs and the center of mass of the cell (red point). FAs connect the cell to the strands of the ECM. The strands are cross-
linked (green), and particles outside the simulation domain are fixed (yellow). (B) The submodels of the model are coupled as shown in this figure.
The CPM is responsible for the cell shape and sends the lattice state σ to the mechanical part of themodel. Themechanical part computes the tensionsΦ
in the FAs and gives this to the FA part of the model. The tensions are used to calculate the number of bound integrins N(i) for each FA i. These numbers
are then used in the CPM to update the new cell shape. (C) A scheme showing the creation of a new FA. When a cell extends over a free bead, it becomes
an adhesion bead. (D) Scheme showing a retraction copy-attempt when an FA is present. The FA is removed if the copy-attempt is accepted (left). The
presence of the FA increases the likelihood of rejecting the copy-attempt (right). (E) An FA is pulled toward the center of the cell in a process resembling a
CPM copy-attempt: first, the energy change between the original position of the FA and the new FA is determined by only considering springs that are
directly attached to the FA. The FA is moved if the energy difference is negative. Finally, the complete ECM is relaxed by running the molecular dynamics
simulation.
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The acceptance probability of a copy attempt is determined by
the energy change:

ΔH � H σ �x′( )( ) −H σ �x( )( ) + ΔHFA, (2)
where ΔHFA is an additional penalty for breaking integrin bonds
that the cell might have with the ECM at that location.

The term ΔHFA in Equation 2 is non-zero only if the copy
attempt corresponds to a retraction from a site �x ∈ Λ that contains
an FA, and in this case,

ΔHFA � λFA

∑
N∈N �x( )

N −N0( )

∑
N∈N �x( )

N −N0( ) +Nh
,

where N( �x) represents the number of integrins in the FAs situated
at �x, λFA represents a scaling parameter,N0 represents the initial size
of an FA, and Nh represents a saturation parameter. If a copy
attempt is accepted that leaves an FA outside of the cell, the FA is
removed, as shown in Figure 1D. If a copy attempt is accepted that
extends over a free bead of the ECM, then a new FA is created, as
shown in Figure 1C.

2.3 Extracellular matrix model

The ECM is described as a set of fibers connected through cross-
linkers, forming a fiber network that is superimposed on the CPM
lattice (Figure 1A). A fiber is built out of nbeads beads, which are
linked together with springs of stiffness Kpolymer and rest length
rpolymer. Fibers are illustrated in Figure 1A, where the blue beads are
connected by gray springs to form different fibers. Next to springs
linking beads into fibers of contour length rpolymer · (nbeads − 1),
consecutive triplets of beads in a fiber are connected with a
harmonic potential with bending rigidity Kbend. This angular
constraint ensures that unforced fibers remain straight and are
illustrated with dashed blue curves in Figure 1A. To create a
network, cross-linkers are added to the fibers (the green dashed
lines in Figure 1A). Cross-links are defined as springs with a small
rest length and stiffness equal to Kcross � Kpolymer and link different
fibers together to form a connected network.

To create a fiber network, we followed the method introduced by
Tsingos et al. (2023) with small modifications for creating networks
of aligned fibers. In brief, we distributed Nstrands randomly and
uniformly in space, selecting fiber orientations from the von Mises
distribution to control the degree of fiber alignment. Fibers were
created as follows: the position of the middle bead �bk ∈ Λ with
k ≔ floor(nbeads/2) of a strand was selected at random from a
uniform distribution, and a random angle θ ∈ [0, 2π) was
selected from the von Mises distribution with μ ∈ [0, 2π) and
κ ∈ [0,∞). Then, the remaining positions �xi making up the
beads were defined via

�bi � �bk + i − k( )rpolymer �v, for i ∈ 0, . . . , nbeads − 1{ },

where v � (cos θ, sin θ) is a unit vector with angle θ. Constructing
the fiber positions in this way ensures that the middle of each fiber is
within the simulation domain, while only the endpoints might
extend beyond the simulation domain. After the fibers have been

introduced, the network is cross-linked as described in the previous
work by Tsingos et al. (2023).

The springs connecting pairs of beads and the bending rigidity
connecting triples of beads impose forces on the ECM and make the
fiber network dynamic. The positions of the beads
�b1(t), . . . , �bn(t) ∈ R2 are governed by the overdamped Langevin
equation of motion

γdrag
d
dt

�bi � �Fi + �Wi, (3)

where γdrag is a drag coefficient, Fi is the force on the ith particle, and
�Wi is a random force satisfying 〈 �Wi〉 � 0 and 〈 �W

2
i 〉 �

2γdragTECM/Δt with TECM representing a parameter for degree of
noise in the system and Δt representing the size of a
timestep. Equation 3 was integrated to a steady state, with fixed
Δt during the simulation using the HOOMD-blue molecular
dynamics library (Anderson et al., 2020).

The energy of a single spring with a rest length r0 and spring
constant k, connecting a pair of beads (i, j), is determined by
the potential:

Uij � k

2
Δr2ij, where Δrij � r0 − ‖bi − bj‖2,

where ‖(x, y)‖2 �
������
x2 + y2

√
is the Euclidean norm. Similarly, the

harmonic potential between a triple of beads (i, j, k) is defined as

Uijk � Kbend

2
Δθ, where Δθijk � shortest angle between �bi, �bj, �bk.

where Kbend is the bending rigidity. Some beads are fixed in space
and are excluded from Equation 3. These beads are at the boundary
of the system, effectively clamping the ECM at the sides of the
integration domain.

2.4 Focal adhesions

FAs, schematically shown as purple beads in Figure 1A, are
modeled as clusters of catch-slip bonds (Novikova and Storm, 2013;
Rens and Merks, 2020; Schwarz et al., 2006). Each cluster is assumed
to be in constant flux as integrins are added and removed from the
cluster. The integrin addition rate is independent, whereas the
removal rate is suppressed by mechanical tension due to the
contractile force of the cell and the restoring force from the
ECM. The number of integrins N in a single focal adhesion is
the size of that FA and changes when under tension Φ following
the equation:

dN
dt

� γ Ntot −N( ) − d0d fp

Φ
N

( )N, (4)

where γ is the binding rate of integrins, Ntot is the maximum
number of integrins in a single FA (Changede and Sheetz, 2017),
d0 is the base detachment rate, fp is the force scale, and d(φ) is a
function of the tension per integrin that encodes the response of
mechanical tension to the unbinding rate of a single integrin.We use
a model for a catch-slip integrin that takes the following form:

d φ( ) � eφ−ϕs + eϕc−φ,
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where ϕs and ϕc describe the slip and catch regime of an integrin,
respectively (Novikova and Storm, 2013; Rens and Merks, 2020).

The tension Φ on the FAs is due to the force balance of the
contractile cellular force and the resultant force from the ECM. To
calculate the contractile force, we assume that the cell’s cytoskeleton
applies a force proportional to the distance from the cell center
(Lemmon and Romer, 2010), effectively modeling the cytoskeleton
as a spring connecting each FA to the cell’s center, as sketched in
Figure 1A with the dashed red lines connecting purple adhesion
particles to the cell center. The energy that the cytoskeleton exerts is
then assumed to be Ecyto � ∑ �x

Kcyto

2 ( �x − �xcenter)2, where �x is the
position of an FA, �xcenter is the center of the cell to which the FA
belongs, and Kcyto is a spring constant encoding the isotropic cell
force. Similarly, the energy of parts of the ECM that are directly
linked to the FA is defined as Eecm. An FA is then displaced using an
algorithm that is similar to the CPM algorithm:We attempt to move
an FA one lattice site toward the cell center, and this movement is
accepted if it is energetically favorable. Otherwise, the movement is
rejected. Specifically, we first compute the total energy
E � Ecyto + Eecm. Then, the energy E′ is computed if the FA was
moved one lattice site toward the center of the cell. If the difference
E′ − E is negative, the FA is moved to the new position; otherwise, it
is kept in place. This means that FAs are moved independently from
each other and can lead to multiple FAs, occupying the same lattice

site. Furthermore, the energies E are independent of Equation 1,
which describes the energy of the cell.

2.5 Parameter values

Table 1 lists the parameter values used for the CPM and MD
models. They are dimensionless and require scaling to fit to measurable
quantities. We follow the previous work by Tsingos et al. (2023) for this
scaling, and we briefly summarize the main points in this section. A
single lattice site of the CPM is set equal to 0.25 μm × 0.25 μm, and 104

model timesteps is roughly 8 h. The CPMparameters λ, J, λc,T, andAh

are calibrated to show generic cell area and activity in the absence of the
ECM, and the FA parameters γ, d0, andfp were estimated such that the
final FA size distribution was wide enough to differentiate between
softer and stiffer parts of the ECM. As in our previous work, we fit the
force units of the model to match up on the widely varying tensile
modulus Y of collagen. We set Y � 106 Pa, which yields a spring
constant of 3.1 · 10−2 Nm−1. As described by Tsingos et al. (2023),
tensile modulus is converted into the spring constant by approximating
a single collagen fiber as a cylindrical rod of diameter 0.125 μm and
applying the formula K � YA/L, with A representing the cross-
sectional area and L representing the length of a collagen segment.
This choice results in a contraction force of 3.1 · 10−4 Nm−1, leading to

TABLE 1 Parameter values used in the simulations unless otherwise specified. The parameter values reported here are the scaled values, which is why they
may appear as non-rounded numbers despite being chosen values.

Symbol Value Unit Reference

λ 4.96 · 107 Nm−3 Estimated

J 9.30 · 10−3 Nm−1 Estimated

λc 3.87 · 10−13 Nm Estimated

Ah 50.0 μm−2 Estimated

λFA 800 − Estimated

Kcyto 3.10 · 10−4 Nm−1 Estimated

T 50 − Estimated

TECM 0.001 − Tsingos et al. (2023)

γ 2.88 s−1 Estimated

d0 2.88 · 10−2 s−1 Estimated

fp 1.29 · 1010 N−1 Estimated

ϕs 4.02 − Novikova and Storm (2013)

ϕc 7.76 − Novikova and Storm (2013)

Ntot 390 − Changede and Sheetz (2017)

K 3.10 · 10−2 Nm−1 Estimated

Kbend 3.88 · 10−15 Nmrad−2 Estimated

θ0 3.14 rad Fibers are preferentially straight

Fiber density 0.48 μm−2 Estimated

Fiber anisotropy κ 0, 10 — Estimated based on the resulting order parameter

NB( �x) Second-order/Moore — Estimated
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FIGURE 2
Cell spreading on isotropic ECMs with regular or network structures. (A) Example of cell spreading on an isotropic ECM for three different spring
stiffness values. The cell is colored in red, FAs are presented as bright-green discs, ECM strands are in gray, and ECM crosslinks are shown in dark green.
The radius of the bright-green discs is proportional to the size of the FAs. All FAs are assigned to only a single lattice site, even if the visualization may
suggest otherwise. (B) Difference in the cell area from the starting size for the ECM of different stiffness. Colors indicate the factor by which the
contraction force of the cell is multiplied. (C) Time-evolution of the cell area as a function of ECM spring stiffness. (D) Simulation snapshots of cell
spreading on the isotropic ECM for a range of spring constants and cross-link densities. (E) Difference in the cell area from the starting size, at t � 0, for
ECM of different stiffnesses. Colors indicate the cross-link density. (F) Bar graph showing the final cell size as a function of collagen density, with stiffness
parameter K � 0.031Nm−1.
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FIGURE 3
Effect of ECM anisotropy on the cell shape. (A) Snapshots of simulations showing the effect of matrix anisotropy on the cell shape as a function of
collagen stiffness (K = 0.016Nm−1 (soft) and K � 0.093Nm−1 (stiff)). (B) Snapshots of simulations showing the effect of matrix anisotropy on the cell shape
as a function of cross-linker density ([Ncross] � 0.48 μm−2 (low) and [Ncross] � 4.8 μm−2 (high)). (C) Distribution of cell eccentricities as a function of
collagen stiffness (K). Distribution of cell eccentricities as a function of cross-linker density (D). (E–J) Distributions of FA angles relative to the
horizontal axis passing through the cell’s center of mass are shown for isotropic ECM conditions (E–G) and anisotropic ECM conditions (H–J).
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typical traction forces ranging from 8 nN to 15 nN on a single FA, with
a total range of 10−8 to 10−10 N. These values are slightly lower than
those reported by Tsingos et al. (2023) but fall in the correct order of
magnitude for cell traction forces (Wakatsuki et al., 2000; Labernadie
and Trepat, 2018). Although most parameters in this model were
estimated to produce reasonable behavior, the predicted dynamics and
interactions provide insights into the role of mechanical reciprocity in
cell biology.

2.6 Statistical significance

The error bars shown in Figures 2–4 denote the mean ± 1
standard deviation. Statistical significance: we computed a p-value
using the Welch’s test, which we reported with the following
symbols: (ns) p≥ 0.05, (*) p< 0.05, (**) p< 0.01, (***) p< 0.001,
and (****) p< 0.0001.

3 Results

3.1 Stiffness-dependent cell spreading

Cell spreading emerges in models of mechanosensitive dynamic
FAs with a uniform isotropic ECM (Rens andMerks, 2020), suggesting

that we should be able to capture cell spreading in the present model as
well. To stay close to the simulated case of the isotropic linear elastic
material used previously, we first studied cell spreading on a
homogeneous matrix constructed by creating long vertical and
horizontal strands and cross-linking them at the intersections. On
this homogeneous matrix, the cell’s spreading area depends on
matrix stiffness in a biphasic manner. Up to an optimum stiffness,
the cell-spreading area increases with matrix stiffness, after which the
cell spreading area decreases with matrix stiffness (Figures 2A, B;
Supplementary Videos S1, S2). After this optimum stiffness, the
tension within the FAs reaches the slip regime of the integrins
within the FAs. This biphasic effect was not observed in the
previous model with a uniform ECM (Rens and Merks, 2020) or in
endothelial cells (Reinhart-King et al., 2005). However, such a biphasic
response of cell spreading to matrix stiffness was observed in fibroblasts
and T-cells (Oakes et al., 2018; Wahl et al., 2019). Interestingly, the
biphasic effect disappears when they increase the lifetimes of the
integrin–ECM bonds (Oakes et al., 2018). To test whether our
model is consistent with this experimental observation, we doubled
the slip parameter ϕs, which leads to an increased integrin lifetime, and
observed that the biphasic effect shifts to higher stiffnesses
(Supplementary Figure S1). We did not study the effect of an
increased integrin ligand density on cell spreading as we have not
modeled individual integrins. We next tested how contraction force
affects cell spreading. Consistent with experiments showing that

FIGURE 4
Mechanical reciprocity between local cell spreading and local ECM alignment. (A) Cell state at two time points of the simulation corresponding to
t � 0 and t � 1000 in the far right panel. An example of the time series Si(t) (blue) andCi(t) (red) for a specific bin i together with a fitted sigmoid function is
included (dashed line), and the center of the fitted sigmoids is indicated on the x-axis. (B) Distribution of the difference in time of ECM alignment and cell
spreading. Almost all the mass is on the positive x-axis, indicating that the ECM reorientation occurs before the cell spreads. (C) The average order
parameter Si(t) of the network in an annulus around the cell at t � 0 and t � 1000. (D) Total displacement of ECM beads as a function of cross-link density.
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inhibition of myosin increases cell spreading (Wakatsuki et al., 2003), in
our model, we find that cell spreading decreases with an increase in the
cell contraction force (Supplementary Figure S2;
Supplementary Video S3).

In Rens and Merks (2020), a mechanism based on
mechanosensitive FAs was found to explain cell spreading, cell
elongation, and durotaxis on a homogeneous, regular ECM.
Having implemented a conceptually similar model, we discovered
the relationship between ECM stiffness and cell spreading on a
homogeneous, regular ECM. Next, we studied the relationship
between ECM stiffness and cell spreading on an inhomogeneous,
randomized, but isotropic ECM. We constructed isotropic
randomized matrices, as described in Section 2.3, by distributing
elastic strands of roughly one cell length and cross-linking them
together. We observed a biphasic effect on cell spreading when
increasing the spring stiffness of the network (Figure 2E;
Supplementary Videos S4, S5). We also modified ECM stiffness
by changing the cross-link density (Figure 2F). The cell spreading
area also increased with cross-linker density, which is consistent
with 2D in vitro experiments (Mullen et al., 2015).

3.2 Cells elongate on the anisotropic matrix
due to the local anisotropy of stiffness cues

In vitro, cells extend along fibers in the substrate (Lai et al., 2012;
Friedrichs et al., 2007; Sapudom et al., 2023; Chaubaroux et al., 2015).
We hypothesize that the mechanism driving such elongation is similar
to the mechanism of stiffness-dependent cell spreading on a regular,
isotropic ECM described in the previous section. We, therefore, asked
how ECM isotropy affects cell spreading. Figures 3A, B show example
simulations on inhomogeneous matrices with and without anisotropy.
Cells placed on anisotropic matrices elongate along the axis of
anisotropy, provided that the fibers are not excessively stiff (Figures
3A, C) and that the network is not overly cross-linked (Figures 3B, D).
This phenomenon occurs because FAs stabilize rapidly under increased
tension. In particular, in the ECM composed of parallel fibers, the
difference in tension built up along or orthogonal to the fibers is large as
fibers resist extensionmore effectively than bending. Consequently, FAs
stabilize more rapidly in response to force along the ECM compared to
force along the orthogonal orientation, resulting in the observed cell
alignment. Increasing the bending modulus of ECM fibers leads to the
creation of cellular protrusions orthogonal to the ECM orientation
(Supplementary Figure S3A). However, these protrusions are small, and
the cell still aligns with the ECM fibers (Supplementary Figure S3B).

Consistent with in vitro observations, our model simulations
predict that FAs form preferentially at the poles of the cells (Figures
3A, B) (Friedrichs et al., 2007; Chaubaroux et al., 2015; Lai et al.,
2012). The angles between the cell elongation axis and the FAs are
roughly uniformly distributed on isotropic matrices (Figures 3E–G).
By contrast, on anisotropic matrices, the FAs are centered at the
poles of the elongated cell (see single peaks at approximately
0 radians in Figures 3H, I). This effect was independent of
collagen fiber stiffness. For the highest stiffness tested, cells no
longer elongated, and FAs become uniformly distributed around
the cell (Figure 3J). Similarly, if we increased the degree of cross-
linking in anisotropic ECMwith intermediate fiber stiffness, the cells
failed to elongate (Figures 3B, D; Supplementary Videos S8, S9). In

both cases, the fibers provided more resistance to contraction forces
perpendicular to the axis of anisotropy than in the low-stiffness case,
either due to increased fiber stiffness or increased cross-linking. As a
result, the tension in the FAs, pulling perpendicular to the axis of
anisotropy, became sufficiently strong for FA maturation, leading to
cell rounding. Next, we tested the behavior of the model on strongly
cross-linked ECM consisting of stiff fibers. In this situation, our
model predicts that cells orient perpendicularly to the axis of ECM
anisotropy (Supplementary Figure S4; Supplementary Video S10)
because the FAs along the direction of fiber orientation enter the
slipping regime and break. Hence, the cell elongates orthogonal to
the fiber orientation. Finally, we looked at how the degree of isotropy
(as quantified by the order parameter S, with S � 0 for full isotropy
and S � 1 for full anisotropy, see supplemental material) affects the
cell shape. The cell eccentricity increased monotonically as a
function of the order parameter S (Supplementary Figure S5). In
short, we showed that ECM isotropy influences cell morphology as
the ECM determines local stiffness perceived by the cell.

3.3 Cell remodels fibers before it
starts spreading

In the previous sections, we studied how static, global
anisotropies of the ECM can affect cell shape. We next looked at
potential cell shape changes due to mechanical reciprocity between
the cell and the local ECM, potentially driving local ECM anisotropy.
We studied the time evolution of the local order parameter Si(t) and
compared it with local cell spreading Ci(t) around an area of a
cellular protrusion; both functions are defined below.

The functions Si(t) and Ci(t) are defined as follows: first, we
subdivided the domain into square bins of 5 × 5 lattice sites. Then,
for each bin i, we compute the order parameter Si(t) for the fibers in
that bin and quantified the degree of cell spreading Ci(t) as the ratio
of the number of lattice sites belonging to the cell and the total
number of lattice sites in the bin (i.e., 25). We perform smoothing of
the functions Si(t) and Ci(t) by computing a moving time average
over the past 10 time steps. Next, we use the functions Si(t) and
Ci(t) to study ECM remodeling by the cell.

Figure 4A shows two states of a model simulation, one shortly
after initialization and one after 104 timesteps, showing a large
protrusion at the upper right side of the cell. To quantify the degree
of cell spreading and ECM alignment in this region, we selected the
square-shaped region around the protrusion of size 20 × 20 lattice
sites (i.e., 16 bins) and studied the local ECM alignment Si(t) and
local cell spreading Ci(t). An example graph for a single bin is
shown alongside the screenshots in Figure 4A, with the order
parameter S shown in blue and the degree of cell spreading
shown in red. These graphs depict distinct low and high states,
with a pronounced transition between them. To examine the
variations in the onset of the timing of these transitions, we
fitted a sigmoid function to each graph:

f t( ) � L

1 + exp −k t − t0( )( ),

and plotted the distribution of t0,cell − t0,S in Figure 4B, where t0,cell
and t0,S represent the onset times of cell spreading and matrix
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alignment obtained from the fit, respectively. Most of the mass in
this distribution is positive, indicating that the cell remodels the
matrix first and then spreads over the remodeled fibers. This
behavior disappears if the cell contractile force is reduced
(Supplementary Figure S6).

The cells not only remodel the ECM at the pseudopodia but also
seem to remodel the ECM all around the cell. We, therefore,
quantified the alignment around the cell by taking the average of
order parameters in an annulus around the cell given by

Si: r< ‖xi − c‖< 1.5r{ },
where Si is the order parameter at the end of the simulation in bin i,
xi is the middle of bin i, c is the center of the cell, and r is the length
of the cell. Figure 4C shows that the average order parameter around
the cell increases over time and that cross-linking influences the
extent of realignment as higher cross-linker densities decrease the
impact of remodeling of the ECM. Additionally, a biphasic relation
is observed between the cross-link density and final matrix
displacements. Figure 4D presents the average displacements of
the matrices after 104 timesteps for varying cross-link densities.
Fiber networks with a low cross-link density show less displacement
compared to those with a medium number. Finally, highly cross-
linked fiber networks again show reduced displacements. This
biphasic relation between matrix cross-linking and matrix
displacement becomes evident when considering two extreme
cases: an ECM with few cross-links and an ECM with many
cross-links. In the case of an ECM with few cross-links, the
displacements induced by the cell do not propagate effectively
through the matrix, resulting in low overall displacement.
Conversely, in a highly cross-linked ECM, the force required to
displace the matrix exceeds the cell’s contractile force, thereby
leading to minimal displacement. This effect of cross-linking on
displacement can also be explained using the concept of percolation
of the network. Low cross-linking leads to a less connected and non-
percolated network, i.e., not all fibers are connected to one another
(Casey et al., 2021), and the networks considered in this paper are
percolated when the cross-link density is higher than 1.0 μm−2

(Supplementary Figure S8).

4 Discussion

In this paper, we studied the effect of mechanical cell–matrix
reciprocity across different ECMs. Assuming that tension-mediated
integrin turnover drives FA maturation, we find that FA formation
depends on both the angle of the ECM fibers with the cell and the
cell’s contractile force. Since FAs determine where the cell adheres to
the ECM, we see how ECM anisotropy influences cell morphology.
In the isotropic ECM, where fibers are uniformly oriented, FAs form
evenly around the cell, leading to uniform cell spreading over the
fibers. On the anisotropic ECM, however, FAs preferentially form
parallel to the fibers, causing the cell to elongate and align with the
overall orientation of the fibers. Interestingly, this model also
predicts a mechanical reciprocity between cell contractility and
ECM anisotropy: the cell’s contractile forces reorient ECM fibers
toward itself, enhancing the cell’s ability to adhere more strongly as
it continues to spread over these newly aligned fibers. In this section,
we discuss these observations and link them to existing experiments

and models. We start with the similarities and differences of this
model with earlier work that studies the mechanosensitivity of FAs
on a homogeneous isotropic matrix.

The model proposed in this paper is not a strict improvement over
the conceptually similar model proposed by Rens and Merks (2020),
which uses a continuum approach to model a homogeneous isotropic
ECM. Instead, the type of ECM considered in both models is different;
for ECMs with small physical components, a continuous approach, as
described by Rens and Merks (2020), could be better suited, whereas
many other realistic ECMs require the added plastic, fibrous details that
this paper develops. In the current paper, a cell situated on a fibrous and
non-elastic ECM, such as collagen, ismodeled, whereas Rens andMerks
(2020) considered an elastic ECM, such as a polyacrylamide gel. Both
models explain how cells spread less on soft substrates and more on
stiffer substrates. However, in the model proposed by Rens and Merks
(2020), the cell starts elongating on substrates of intermediate stiffness,
whereas this spontaneous elongation is not observed in the currently
discussedmodel. A possible reason for this discrepancy is the additional
assumption made by Rens and Merks (2020), namely, that planar
substrate stress strengthens FAs. To what extent FAs strengthen due to
substrate stress in the context of a fibrous ECM remains unclear.

The model presented in this paper predicts a biphasic
relationship between the extent of cell spreading and substrate
stiffness: on an isotropic ECM, the cell spreads up to an
optimum stiffness, whereas for even stiffer substrates, the cell
area decreases again (Figure 2). Cell spreading on an isotropic
regular ECM is best compared with in vitro spreading of cells on
a hydrogel, as is found in the biphasic spreading of T cells (Oakes
et al., 2018; Wahl et al., 2019). In the presented model, the biphasic
relation arises from the catch-slip behavior of the integrins in the
FAs, Equation 4, regulated by the slip parameter φs: on soft to
intermediate stiffness ECMs, the tension on each integrin φ is less
than φs, leading to higher spreading, whereas on stiff ECMs, the FAs
enter the slip-regime as φ>φs, leading to less spreading. This
mechanism, suggested by Oakes et al. (2018), is contrasted by
Wahl et al. (2019), who suggested that it is not the
mechanosensitive integrins that lead to the biphasic relation but
rather a different mechanosensitive protein linking the cell’s actin
cytoskeleton to the ECM receptor. To study this different
mechanism, a different description of cellular contractility and
FA dynamics could be implemented. Other cell types, such as
endothelial cells, spread monotonically on increasing ECM
stiffness (Reinhart-King et al., 2005). Monotonic cell spreading
occurs in our model if we increase the slip regime parameter φs

of the integrin, effectively replacing the catch-slip integrin with a
pure catch integrin (Supplementary Figure S1).

After considering cell spreading on isotropic and homogeneous
ECMs, we subsequently studied cell spreading on isotropic but
inhomogeneous ECMs, which model certain types of in vitro
fiber networks such as collagen or fibrin networks. The
mechanics of fibrous networks are different from those of
homogeneous ECMs because both respond differently to stress
due to, for example, the possibility of sliding and reorientation of
fibers (Storm et al., 2005). Our model predicts an increase in cell area
with an increase in cross-link density, which aligns with findings
that osteogenic cells are larger on highly cross-linked collagen fiber
networks than on low cross-linked networks (Mullen et al., 2015). In
a contrasting study, Baker et al. (2015) compared the cell spreading
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of NIH 3T3 fibroblasts and human MSC cells on synthetically
produced fiber networks with low or high fiber stiffness. The
cells spread more on softer fibers and less on stiffer fibers.
Together with a computational follow-up study, a model emerged
where cells on soft fibers could pull additional fibers toward the cell
over which it could spread (Baker et al., 2015; Cao et al., 2017). To
study this effect in our model, it can be extended to include two
additional mechanisms that are included in the study by Cao et al.
(2017). First, FAs should strengthen when the fiber density is higher.
Second, cross-links break under stress, leading to higher fiber
recruitment in soft networks.

We next studied the effect of anisotropy in the ECMby introducing
a bias in the fiber orientation and found that the cell elongates in the
direction of this bias and that FAs preferentially form at the poles of the
cell. The model explains cell alignment to anisotropic collagen fiber
networks (Lai et al., 2012; Chaubaroux et al., 2015; Sapudom et al.,
2023). The model suggests that mechanosensitivity of the FAs is
sufficient for the cell to sense the orientation of the fibers. This
suggests that the stiffness-dependent maturation of FAs allows the
cell to sense the orientation of the network. Others have suggested that a
positive feedback loop between cell contractility and ECM stress drives
cell elongation on anisotropic substrates, claiming that cells increase
their contractile forces when sensing higher ECM stress (Alisafaei et al.,
2022). This interesting explanation could be studied in further models.
A conflicting observation, however, is that cells do not increase their
contractile forces purely based on the stiffness of their environment
(Feld et al., 2020).

After discussing the effect of pre-aligned ECM fibers on cell
morphology, we studied the role of fiber orientation in mechanical
cell–ECM reciprocity. Recently, it has been proposed that fiber
reorientation by the cell is a two-way process: (1) cell protrusions
adhere to and reorient fibers and (2) these fibers then develop
anisotropic tension, which stabilizes the protrusions on aligned
fibers, creating a self-reinforcing cycle (Alisafaei et al., 2022). Our
model predicts a similar mechanism based on basic principles of
mechanosensitive FA maturation. This mechanical reciprocity plays
a role at larger multicellular scales. For example, in metastasis, the
contractile forces of tumors align surrounding fibers (Balcioglu et al.,
2016), and cancer cell migration is enhanced on aligned fibers
(Sander, 2014; Doyle et al., 2022).

Our hybrid model predicts cell spreading, alignment, and ECM
remodeling in terms of simple principles. However, we still could study
to what extent it quantitatively matches experimental observations. One
limitation to the model is its restriction to two dimensions. In 2D cell
cultures, for example, cells extend protrusions beneath collagen fibers,
wrapping around them (Friedrichs et al., 2007), a process not captured
in two dimensions. Extensions capturing 3D fiber effects would require
the use of a 3D or multi-layer CPM combined with additional cell-fiber
behavior such as fiber repulsion. A second limitation to the ECMmodel
is the lack of validation of its mechanical properties and network
topology against real ECM structures, despite its demonstration of
viscoelastic behavior (Tsingos et al., 2023).

Future work could incorporate more realistic ECM topologies,
as modeled in previous studies by Davoodi Kermani et al. (2021) and
Eichinger et al. (2021), which would significantly enhance the
accuracy of this model. Possible other extensions include the
study of cell migration along fibers by using one of the many
active cell migration models implemented for the CPM such as a

polarity vector (Beltman et al., 2007; Burger et al., 2022) or the Act
model (Niculescu et al., 2015). An additional mechanism for FA
breakdown is also needed because the current lifetimes of the FAs
are unrealistically high and can even span nearly the whole
simulated time (Supplementary Figure S9). The difficulty lies in
the detachment of FAs at the rear of the migrating cell, which could
be done, for example, by applying a model for asymmetric traction
forces that would rupture the rear FAs or by introducing a chemical
symmetry-breaking component (Yamaguchi and Knaut, 2022). To
model cell migration in 3D, fiber exclusion should be added. In the
current model, the cell interacts with the fibers only at adhesion sites,
so the cell membrane could move through the fibers, which is not
realistic. Another example of possible further study is that of
multicellular mechanical interaction, which has been studied
using CPM models (van Oers et al., 2014; Rens and Merks, 2017;
Chiang and Chung, 2024). These studies applied a linear elastic
continuous approach for modeling the ECM, whereas the realistic
ECM has non-linear behavior such as strain stiffening. Such non-
linear behavior is easily incorporated into the fibrous ECM model
(Tsingos et al., 2023) and, when linked to our model of dynamic
mechanosensitive FAs, could be used in modeling cell–cell
mechanical communication. The present model could also be
extended with the effect of proteolytic enzymes, such as MMPs,
that would digest matrix fibers or cross-linkers, e.g., during
angiogenesis, tissue remodeling, and tissue repair.

We demonstrated how the CPM can be used to study the
mechanical reciprocity between a cell and a fibrous ECM,
revealing that mechanosensitive adhesion explains the cell’s
tendency to align with the dominant fiber orientation in the
ECM, and their ability to reorient fibers to stabilize protrusions.
This model can now be applied to systems in which these
mechanisms are believed to play a key role.
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