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Pancreatic cancer continues to be a deadly disease because of its delayed
diagnosis and aggressive tumor biology. Oncogenes and risk factors are being
reported to influence the signaling pathways involved in pancreatic
embryogenesis leading to pancreatic cancer genesis. Although studies using
rodent models have yielded insightful information, the scarcity of human
pancreatic tissue has made it difficult to comprehend how the human
pancreas develops. Transcription factors like IPF1/PDX1, HLXB9, PBX1, MEIS,
Islet-1, and signaling pathways, including Hedgehog, TGF-β, and Notch, are
directing pancreatic organogenesis. Any derangements in the above pathways
may lead to pancreatic cancer. TP53: and CDKN2A are tumor suppressor genes,
and the mutations in TP53 and somatic loss of CDKN2A are the drivers of
pancreatic cancer. This review clarifies the complex signaling mechanism
involved in pancreatic cancer, the same signaling pathways in pancreas
development, the current therapeutic approach targeting signaling molecules,
and the mechanism of action of risk factors in promoting pancreatic cancer.
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Introduction

The close association between the incidence and death highlights the terrible prognosis
of pancreatic cancer (PC). Recent data indicates that the 5-year survival rate for pancreatic
cancer worldwide is approximately 11% (Pancreatic Cancer Statistics, 2024). Adding to this
low survival rate is late late-stage diagnosis of the disease (Kamisawa et al., 2016). Currently,
PC is the seventh leading cause of cancer-related deaths worldwide (Rawla et al., 2019) and
is assumed to become the second major cause of death globally by 2030. The European
countries have the highest occurrence rates, and China leads the Asian nations in incidence
and fatality, followed by Bhutan, Nepal, and India (Gaidhani and Balasubramaniam, 2021;
Kamisawa et al., 2016; Raimondi et al., 2009).

PC is more common in men (5.5 per 100,000, 243,033 cases) than in women (4.0 per
100,000, 215,885 cases). PC is more commonly observed in elderly populations and rarely
diagnosed before 55 years of age. The treatment strategies are complicated due to early
metastasis, recurrence, and resistance to radiation and chemotherapy (Brunner et al., 2019).
Signaling pathways play a significant role in disease progression and behavior. When
signaling pathways malfunction, cancer develops. Cancerous cells can grow and metastasize
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TABLE 1 Signaling pathways involved pancreas embryogenesis, pancreatic cancer and therapeutic development targeting the same signaling pathways.

Signaling pathway Role in pancreas
development

Role in pancreatic
cancer

Therapeutic approach Clinical trial drugs

K-Ras Involved in cell signalling, cell
growth, and differentiation.
Specifying pancreatic progenitor
cells from the endodermal tissue
during pancreas development.
(Hingorani et al., 2003)

It is frequently mutated in
pancreatic ductal
adenocarcinoma (PDAC). It
drives tumor growth, invasion,
and metastasis. (Bryant et al.,
2014; Luo, 2021; Strickler et al.,
2023)

Small-molecule inhibitors
targeting K-Ras membrane
localization (e.g., FTIs, GGTIs),
SOS/K-Ras interactions, and
downstream effectors are under
investigation; (Polireddy and
Chen, 2016; O’Bryan, 2019)

ELI-0027P (NCT05726864)
Sotorasib (AMG 510)
(NCT03600883). and Adagrasib
(MRTX849) (NCT03785249) both
specifically targets the KRAS G12C
mutation. MRTX1133
(NCT05737706) targets KRAS
G12D mutation (Bannoura et al.,
2021)

Histone deacetylase Critical for epigenetic regulation
of gene expression; Histone
deacetylase (HDAC)
deregulation implicated in
pancreatic cancer development.
(Klieser et al., 2015; Haumaitre
et al., 2008)

Overexpression of specific
HDAC isoforms observed in
pancreatic cancer; HDAC
inhibitors show anti-tumor
effects in preclinical models.
(Hai et al., 2021; Li et al., 2020)

HDAC inhibitors (HDACi) tested
include SAHA, romidepsin,
valproic acid, and entinostat;
ongoing research focuses on
selective HDAC inhibitors. (Safari
et al., 2023; Xiang et al., 2022)

pan-HDACi CG200745
(NCT02737228) (Wu et al., 2020)

Hh signaling pathway Hh signaling is significantly
involved in growth regulation
and embryonic patterning.
(Hebrok et al., 2000)

The ligand-dependent
activation of the Hh pathway is
more significant in
carcinogenesis. (Onishi and
Katano, 2014; Kayed et al.,
2004)

Natural compounds like
epigallocatechin-3-gallate and
sulforaphane inhibit pancreatic
CSCs via Hh signaling
suppression. Smo inhibitors (e.g.,
GDC-0449, IPI-926, LDE225) and
Gli transcription factor inhibitors
(e.g., GANT-61) target Hh
signaling for anti-tumor effects;
(Quatannens et al., 2022; Onishi
et al., 2022; Nguyen and Cho,
2022; Huang et al., 2013)

Adjuvant Autogene Cevumeran
Plus Atezolizumab and mFolfirinox
Versus mFolfirinox
(NCT05968326), Taladegib
(NCT05199584) in phase-2 clinical
trial; (Xie et al., 2019, Sally et al.,
2022)

Notch Signaling Notch was initially expressed in
pancreatic epithelial cells at E9.5,
and later by E14.5, it was broadly
expressed in the pancreatic
epithelium. Specific Notch
pathway component silencing
promotes premature endocrine
pancreatic development. (Li
et al., 2016)

Notch signaling can activate
genes involved in cell cylcle,
which leads to increased
proliferation. Hes1, the Notch
target, is expressed more in
PanIN lesions than in normal
ducts, according to an analysis
of the Pdx1-Cre; LSL-
KrasG12D mouse model.
(Avila and Kissil, 2013)

Gamma secretase inhibitors (GSIs)
like MRK-003 and PF-03084014
were tested in preclinical and
clinical studies. (You et al., 2023;
Fang et al., 2023)

RO4929097 (NCT01196416)
clinical trial completed in 2015.
Aderbasib (NCT04295759) is in
progress for glioma (Li et al., 2023;
You et al., 2023)

Cancer Stem Cells (CSCs)
signaling pathway

Embryonic stem (ES) cells have
been able to differentiate into
pancreatic and endoderm
lineages either through
prolonged (up to 4 weeks) cell
culture manipulations or through
overexpression of transcription
factors such as HNF3β (Wells
JM, 2003)

CSCs can spread tumors, and
become resistant to radiation
and chemotherapy. Through
activating Hedgehog, Wnt,
Notch, JAK-STAT, Nodal/
Activin, and Hippo pathways.
CSCs mediate tumor induction
and proliferation. (Bubin et al.,
2023; Barman et al., 2021)

Clinical trials for monoclonal
antibodies (e.g., NPC-1C) and
natural compounds (e.g.,
curcumin, resveratrol) targeting
CSCs in preclinical models are
ongoing. (Lo Iacono et al., 2022;
Hashem et al., 2022)

NALIRIFOX Plus Radiation
Therapy (NCT05851924)
Napabucasin (NCT02178956),
MCLA-128 (NCT02912949) targets
STAT3 signaling. (Ahn et al., 2018)

PI3K pathway Cellular rearrangements between
acinar and ductal cells are
regulated by the IGF/PI3K
pathway. It regulates the
protrusion and rearrangement of
epithelial cells associated with
morphogenesis. (Darrigrand
et al., 2024)

In 5% of pancreatic cancer cases,
there has been an incidence of
mutation in genes encoding the
PI3K pathway, particularly in
PI3KCA (encoding the p110α
subunit of PI3K); these
mutations result in activation of
the PI3K pathway, (Buchanan
et al., 2015; Noorolyai et al.,
2019; Vara et al., 2004)

Various inhibitors targeting the
PI3K pathway, including mTOR
kinase inhibitors (e.g., everolimus)
are under investigation. (Glaviano
et al., 2023; Sirico et al., 2023)

ASP2138 (NCT05365581), EO-
3021 (NCT05980416), AZD0901
(NCT06219941) (Yang et al., 2019;
Stanciu et al., 2022)

Hypoxia Involved in beta cell damage.
(Gerber and Rutter, 2017)

Hypoxia-induced Hh signaling
promotes EMT; promoting
tumor development. Human
PDACs are highly hypoxic. (Li
et al., 2021; Yuen and Díaz,
2014)

Hypoxia activates Hh signaling
independently of HIF-1α,
representing a therapeutic target;
combination therapies with Hh
inhibitors and gemcitabine or
cisplatin show synergistic effects;
(Onishi et al., 2013; Gu and minko,
2024; Rocha et al., 2018)

TH-302 (Evofosfamide)
(NCT02076230) targets hypoxic
tumor cells and PX-478
(NCT00522652) acts by inhibiting
hypoxia-inducible factor-1 alpha
(HIF-1α). (Tao et al., 2021; Kao
et al., 2023)

(Continued on following page)
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due to mutations and dysregulation in the signaling pathways that
link with pancreatic development (Kamisawa et al., 2016).

Understanding the signaling pathways in pancreatic
development is crucial for comprehending PC. In recent years,

research on transcription factors involved in the development,
function, and disease process of the pancreas has expanded
(Jennings et al., 2020). These include the signaling mechanisms
that might regulate cell connections in the developing pancreas.

TABLE 1 (Continued) Signaling pathways involved pancreas embryogenesis, pancreatic cancer and therapeutic development targeting the same signaling
pathways.

Signaling pathway Role in pancreas
development

Role in pancreatic
cancer

Therapeutic approach Clinical trial drugs

NF-κB Signaling Pathways The balance between β-cell
proliferation and apoptosis
throughout the early stages of
beta cell development is
maintained by NF-κB through
the physiological regulatory
circuit. In the T1D mouse model,
NF-κB controls the β-cells and
the progression of diabetes.
(Sever et al., 2021)

In pancreatic cancer, NF-κB is
actively expressed due to
oncogenic Kras mutations and
inflammatory signaling
pathways. NF-κB activation in
PDAC is influenced by
chemokines, cytokines, and
chronic inflammation and it
controls molecules related to
angiogenesis and metastasis.
(Prabhu et al., 2014; Silke and
O’Reilly, 2021)

Phytochemicals like curcumin and
COX inhibitors can inhibit NF-κB
and other signaling pathways,
offering potential therapeutic
benefits in PDAC. (Pramanik et al.,
2018; Ebrahimi et al., 2024)

AVA6000 (NCT04969835),
Bortezomib (NCT01668719)
inhibits the proteasome, which
inhibits NF-κB and has shown
potential in early-phase clinical
trials (Chen et al., 2011)

EGFR Pancreatic acinar and ductal cells
differentiate into endocrine islet
cells via EGFR. Therefore, EGFR
is crucial for controlling β-cell
bulk. (Miettinen et al., 2008)

Overexpression of EGFR or the
ability of mutant versions to
control downstream signaling
is observed in pancreatic
cancer. (Fitzgerald et al., 2015;
Oliveira-Cunha et al., 2011)

By competing with one another for
receptor binding, anti-EGFR
antibodies (Panitimumab,
Cetuximab) prevent ligand-
induced autophosphorylation.
Small molecule inhibitors
(Erlotinib, Gefitinib) compete with
ATP for binding to the EGFR
tyrosine kinase’s intracellular
catalytic domain. (Fang et al.,
2023; Kung and Yu, 2023;
Giovannetti et al., 2008)

DS-1062a (NCT03401385), RC68
(NCT05383547) based Antibody-
Drug Conjugates (ADCs) shown
promise in preclinical studies and
early-phase clinical trials. (Li et al.,
2019).

VEGF Involved in pancreatic beta cell
development, vascularization,
regeneration and differentiation.
(Brissova et al., 2014)

VEGF signaling in pancreatic
cancer can lead to malignant
transformation of the pancreas
when ligands bind with
VEGFRs. Growth factors,
genetic modifications, and
hypoxia are some of the
complicated processes that
control the production of
VEGF in tumor cells. (Nandy
and Mukhopadhyay, 2011)

Sunitinib (Sutent): targets multiple
receptor tyrosine kinases,
including VEGFR, and has shown
potential in reducing tumor
growth and metastasis in
pancreatic cancer (Doi et al., 2012)

combination of bevacizumab and
gemcitabine (NCT00366457) and
Axitinib (Inlyta) (NCT00219557)
evaluated in treating pancreatic
cancer (Waldner and Neurath,
2012; Duan et al., 2023; Srivani et al.,
2018)

RAS-MAPK Pathway Control cell cycle and
differentiation. (Tidyman and
Rauen, 2009). Insulin play a
controlling function in the Ras-
MAPK/ERK signaling pathway
during INSR alternative splicing.
(Malakar et al., 2016)

ERKs, JNKs, and p38MAPKs
are the three separate effector
classes that MAPKs belong to.
JNKs are mainly involved in
apoptosis and differentiation,
p38MAPKs in stress responses,
and ERKs in mitosis and
proliferation (Furukawa, 2015)

CI-1040 and PD 0325901 showed
promising effects in preclinical
models, but clinical trials had
mixed results. (Chappell et al.,
2011; Adamopoulos et al., 2024; Li
et al., 2022)

AB680 in Combination with
AB122 Immunotherapy, Nab-
Paclitaxel, and Gemcitabine
(NCT04104672), Avutometinib
(VS-6766) in combination with
Gemcitabine and Nab-paclitaxel
(NCT05669482) is in Phase I/II trial

PI3K-AKT-mTOR
Pathway

AKT plays a role in cell survival
and apoptosis by controlling the
pro-survival and anti-apoptotic
proteins Bcl-XL and NF-kB in
both healthy and malignant cells.
(Stanciu S et al., 2022)

RTKs activate PI3K signaling in
pancreatic cancer, recruiting
PI3Ks to phosphorylated
tyrosine residues. PI3K binds
via SH2 domain, activating its
catalytic subunit allosterically.
(Murthy et al., 2018)

LY294002 is a PI3K inhibitor
inducing apoptosis in vitro and
inhibiting tumor growth in vivo.
Rapamycin inhibits mTOR kinase
activity. (Chan et al., 2005

BA3011 (NCT03425279) is under
trial, RADIANT-1 (NCT05669482)
and Copanlisib (BAY 80–6946)
(NCT02631590) drug being
investigated for treating pancreatic
cancer (Höpfner et al., 2008;
Glaviano et al., 2023)

TGF- β Diverse functions of TGF-β
signaling are involved in the
emergence, function,
proliferation, death, and
dedifferentiation of β cells. In
both embryonic and mature β
cells, TGF-β signaling usually
inhibits the proliferation of β
cells. (Wang et al., 2022)

TGF- β develops pancreatic
cancer and treatment resistance
through activating EMT.
(Wang et al., 2017)

Targeting TGF- β signaling using
small molecule inhibitors,
monoclonal antibodies, or gene
therapies are under investigation.
(Liu et al., 2021)

Glipizide (NCT06168812) acts on
hyperglycemia
Galunisertib, Durvalumab
(LY2157299) (NCT02734160) has
shown promise in clinical trials.
(Holmgaard et al., 2018; Kim et al.,
2021)
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Here, we will explore the factors and genes involved in the signaling
pathways leading to PC while exploring how these pathways are
involved in pancreatic embryogenesis.

Signaling pathways in pancreatic
morphogenesis and cancer

The pancreas is a unique tissue with endocrine and exocrine
components. Acinar and duct cells constitute the exocrine portion of
the pancreas, and the islet of Langerhans comprises endocrine
components (Rizk et al., 2023). Ghrelin, somatostatin, insulin,
glucagon-producing cells, and pancreatic polypeptide comprise
the endocrine part of the islet of Langerhans (Ornellas et al.,
2020; Murtaugh and Melton, 2003). The development of
endocrine and exocrine cells, along with acini formation, is
influenced by signaling pathways (Dohrmann et al., 2000).
Signaling pathways are complex networks of molecular
interactions that allow cells to communicate with each other and
respond to external signals (Azeloglu and Iyengar, 2015). Interaction
between exocrine and endocrine components of Langerhans
through signaling components results in controlled hormone
secretion. The signaling component involves ligands, receptors,
and intracellular Smads (Figure 1), which are present in the
pancreatic epithelium and mesenchyme (El-Gohary et al., 2013).

Pancreatic embryogenesis requires complex signaling pathways;
Insulin Promoter Factor 1/Pancreatic and Duodenal homeobox 1
(IPF1/PDX1) is the most significant transcription factor, the earliest
expressed in the embryonic pancreas. IPF1/PDX1 is a ParaHox
group homeodomain transcription factor essential for the

development of the pancreas in humans and mice (Rosanas-
Urgell et al., 2005). This signaling molecule is expressed in
pancreatic cells of postnatal mice, and literature indicates that
this signaling pathway is necessary for specific tasks in the
mature cell (Ebrahim et al., 2022). It responds to growth signals
from the mesenchyme (Kim andMacDonald, 2002) and is expressed
in the endoderm. The expression is not limited to pancreatic tissue,
as PDX1 mutant mice commence dorsal and ventral bud
development (Offield et al., 1996), indicating that other
components are needed to designate the pancreas anlage. The
IPF1/PDX1 pathway is dysregulated in PC, leading to a loss of
normal functions. The loss of IPF1/PDX1 function can lead to
abnormal cell growth and decreased differentiation of pancreatic
cells, creating an environment conducive to cancer development
(Roy et al., 2016). IPF1/PDX1 regulates downstream molecules such
as Neurogenin 3 (NGN3), Forkhead Box A2 (FOXA2), Hepatocyte
Nuclear Factor 1 Beta (HNF1B), Fibroblast Growth Factor Receptor
2 (FGFR2IIIB), and Spondin 1, which are involved in pancreatic
development, differentiation, and function in pancreatic cancer
(Svensson et al., 2007; Oliver-Krasinski et al., 2009). IPF1/PDX1
expression levels are also being explored as potential diagnostic and
prognostic markers for PC (Kim and MacDonald, 2002). The
tumor’s aggressiveness can be determined based on IPF1/
PDX1 expression changes. Changes in signaling pathways,
epigenetic modifications, and genetic mutations might cause
dysregulation in IPF1/PDX1 expression (Kim and
MacDonald, 2002).

Pre-B-cell leukemia homeobox- 1 (PBX1) and Myeloid
Ecotropic Integration Site (MEIS) regulate the DNA binding
activity of other gene products like IPF1/PDX1. They control

FIGURE 1
Showing different signalling pathways involved in pancreatic development and carcinogenesis.
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gene expression and coordinate pancreas development (Kim and
Hebrok, 2001). PBX1 and MEIS interact with HOX genes and form
complexes that regulate gene expression during the embryonic
development of the pancreas. Dysregulation of these interactions
can potentially affect the normal growth and maintenance of
pancreatic tissue, indirectly contributing to the initiation or
progression of PC (Girgin et al., 2020). MEIS1 mutant mice die
during embryogenesis from hematological and vascular
abnormalities, indicating that MEIS1 is crucial for embryonic
development (Burstin et al., 2010). PBX1 contributes to cancer by
affecting lineages within the hematopoietic system, such as B cells,
HSCs, and Mk-Erythrocyte Progenitors (MEP) (Muggeo
et al., 2021).

Similarly, Homeobox gene B9 (HLXB9) is a vital transcription
factor required for dorsal pancreatic development and the formation
of insulin-producing beta cells (Jensen J, 2004). HLXB9 altered
expression contributes to the progression of the disease. Still, it is not
a driver mutation in PC; HLXB9 expression can impact the cellular
environment and promote cancerous growth (Chen et al., 2018). In
order to maintain cancer cell proliferation, HLXB9 upregulates
genes that are involved in the G1-S transition of the cell cycle,
such as Cyclin E1 (CCNE1) and Cyclin E2 (CCNE2) (Chen et al.,
2018). Understanding HLXB9’s role in pancreatic development
could have implications for regenerative medicine and potential
therapies that aim to restore or repair pancreatic tissue in patients
with PC (Desai et al.,2015). Hence, a temporally prolonged
expression of HLXB9 leads to severe impairment of pancreatic
development, whereas a total loss of HLXB9 expression blocks
the start of the dorsal pancreatic program (Li and Edlund, 2001).

Transforming growth factor - beta (TGF-β) signaling
components, including ligands like activin and TGF-β and their
corresponding receptors, as well as ligand antagonists like follistatin,
noggin, and gremlin, are present in both mesenchyme and
epithelium of embryonic and adult pancreas (Chang, 2016). The
distinct functions TGF proteins play in regulating the endocrine and
exocrine pancreas are suggested by the varied expression patterns for
each TGF-β isoform. All of them are expressed persistently and
become localized to the acinar cells later in gestation. They are all
faintly present in the E12.5 epithelial cells early in the pancreas
formation (Rane et al., 2006).

Additionally, TGF-β signaling regulates several cellular
functions; dysregulation of this signaling results in the onset and
spread of cancer (Baba et al., 2022). Upon binding of active TGF-β to
a class of transmembrane serine-threonine kinases known as Type I
and Type II TGF-β receptors (TβRI and TβRII, respectively), the
TGF-β signaling cascade is initiated. (Aashaq et al., 2022). After
binding to TβRII, the TGF-β ligand recruits TβRI to form a complex.
TβRII can cross-phosphorylate TβRI, which activates it, thanks to
this ligand-bound receptor complex (Smith et al., 2012). In advanced
stages, TGF-β can promote tumor growth and metastasis. However,
In the early stages of cancer, it acts as a tumor suppressor by
inhibiting cell growth and promoting apoptosis (Liu et al., 2021). A
similar trend is for PC; TGF-β signaling often becomes dysregulated,
contributing to disease progression. TGF-β can function as a tumor
suppressor by inhibiting the uncontrolled proliferation of cancer
cells in early pancreatic carcinogenesis (Sabbadini et al., 2021). Early
stages of PC development are due to the loss of the TGF-β receptor
or mutations in downstream signaling components that disrupt this

tumor suppressor role (Truty and Urrutia, 2007). The TGF-β
signaling pathway is the current research interest because of its
dual nature. TGF-β signaling inhibitors are being investigated as
possible therapeutics to counteract TGF-β′s pro-tumorigenic
activities and re-establish its tumor-suppressive properties (Javle
et al., 2014).

Early on, it was discovered that follistatin was widely distributed
in pancreatic mesenchyme and vanished at the E12.5 stage of
pancreas development. Follistatin is still expressed in adult islets
and reappears in E18.5 (Maldonado et al., 2000). Throughout the
early stages of embryogenesis, mesenchyme-derived follistatin
inhibits epithelium-derived activin, allowing for unopposed
exocrine differentiation and a relative reduction in endocrine
differentiation (Namwanje and Brown, 2016). Epithelial activin is
released later in life due to a decrease in mesenchyme compared to
epithelium and a drop in follistatin levels (Xia and Schneyer, 2009).
This helps to differentiate endocrine cells into mature islets after
birth (Maldonado et al., 2000). TGF-β antagonist follistatin is a
glycoprotein primarily known for regulating the activity of TGF-β
family members, such as activin and myostatin. The ability of
follicular fluid to block follicle-stimulating hormone (FSH) led to
the discovery of follistatin (FST) (Kappes et al., 2023; Welt et al.,
2002). Activins are bound to FST, amonomeric glycosylated protein,
with remarkable affinity, neutralizing their binding affinity and
bioactivity. FST also exhibits a lower affinity for binding to
myostatin (MST) and Bone Morphogenetic Proteins (BMPs) 2, 5,
7, and 8 (Sidis et al., 2006; Amthor et al., 2004; Hedger et al., 2011;
Iemura et al., 1998) in addition to other TGF-β superfamily
members. These studies demonstrate how FST may affect the
biological activities of many members of the TGF-β superfamily,
especially at greater doses (Pervin et al., 2021). Follistatin inhibits
TGF-β signaling pathways by binding to ligands and preventing
them from binding to their receptors (Harrington et al., 2006). It
affects embryonic exocrine and endocrine cell differentiation. By
controlling the TGF-β pathway, follistatin shapes cell development
in the pancreas (Lee et al., 2021; Kahata et al., 2018).

Similarly, pancreas transcription factor 1A (PTF1A) plays a
crucial role in controlling the proliferation of multipotent progenitor
cells throughout pancreatic development and in the maintenance
and specification of acinar cells. The inhibitory neuronal cell fate in
neural tissues is determined by PTF1A, transiently produced in the
post-mitotic cells, and mediated mostly by downstream genes such
as transcription factor activation profiles (TFAP2A/B) and Positive
Regulatory Domain (PRDM13). In humans and rodents, Mutations
in the coding and non-coding regulatory spaces cause PTF1A gain
or loss of function, which is linked to hereditary disorders such as
pancreatic and cerebellar agenesis (Jin and Xiang, 2019).

The vital pancreatic transcription factor PTF1A is induced in the
dorsal pancreatic endoderm by aortic endothelial cells; in contrast,
ventral PTF1A induction and ventral pancreatic bud commencement,
do not require the vitelline veins, which are often located next to the
developing ventral pancreatic bud. We discover that PTF1A is
induced in dorsal endoderm explants by the aorta cells,
independent of the blood supply (Yoshitomi and Zaret, 2004).

The Sry-related HMG box (SOX) family of transcription factors,
also known as the sex-determining region on the Y box, is involved
in developing multiple tissues throughout embryogenesis and
determining cell destiny. In PDX1+ ductal cells of the human
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pancreas, SOX9 is detected in the eighth week of embryonic
development. It frequently co-localizes with Neurogenin-3
(NGN3) and other significant islet beta-cell progenitor markers
(McDonald et al., 2012). SOX9 transcription factor plays a less
important role in the development of the exocrine pancreas and
regulates the adoption of an endocrine phenotype (Seymour
et al., 2008).

Notch signaling in pancreatic
embryogenesis and cancer

Tumor-suppressing and tumor-promoting effects in PC are
mediated by Notch signaling. Cancer cell proliferation,
metastasis, and cancer stem cell phenotype formation are also
mediated by notch signaling. Notch signaling governs the
development of pancreatic endocrine and exocrine cells. Notch
signaling involves the activation of ligands by neurogenin genes,
which leads to the transcription of Hairy and Enhancer-of-Split
(HES) genes that influence cell fate (Kim et al., 2010; Li et al., 2016).
Abnormalities in Notch signaling and PC are associated. The most
common PC, pancreatic ductal adenocarcinoma (PDAC), has the
notch pathway dysregulated. Several studies have shown that NGN3,
a pro-endocrine factor, is negatively regulated by Notch signaling.
Pro-endocrine factor activation or Notch processing inhibition
dramatically promotes the development of insulin-producing β-
cells. However, as of late, several scientists have disputed that the
Notch pathway prevents the growth of endocrine cells. It has been
suggested that either the inactivated Notch pathway favors acinar
cell development or the Notch pathway determines the pancreatic
progenitors developing towards endocrine lineage. Based on the
current research, Notch signaling controls the quiescence, self-
renewal, and differentiation of pancreatic progenitor cells during
pancreatic development in a manner dependent on the Notch level
(Li et al., 2016).

Hedgehog (Hh) signaling in pancreatic
embryogenesis and cancer

Hedgehog signaling, in addition to notch signaling, is essential
for PC. Hh ligands (Sonic, Indian, and Desert Hhs), Smoothened
(SMO), Patched receptor (PTCH1), and transcription factors (GLI1,
GLI2, and GLI3) are essential elements of the Hh signaling system.
The Hh ligands bind to the transmembrane receptor, PTCH1, which
usually inhibits another transmembrane protein, SMO. Active SMO
triggers a downstream signaling cascade that involves a family of
transcription factors known as GLI proteins (GLI1, GLI2, and
GLI3). In the absence of Hh signaling, GLI proteins are inhibited
through a complex formation involving other proteins, resulting in
abnormal cell growth. Activin signaling suppresses the expression of
Sonic Hedgehog (SHH), ensuring proper pancreatic development
(Han et al., 2016). The differentiation of diverse cell types in the
embryonic pancreas is then regulated by Hh signaling pathways
(Carballo et al., 2018). The Hh pathway regulates insulin production
in the adult pancreas, but it is also necessary to regenerate the
exocrine pancreas in response to damage, Its activity is highly
restricted to the beta-cells of the endocrine pancreas.

Two independent studies first reported aberrant activation of the
Hh pathway in human PC. The normal pancreas does not produce
Shh, whereas 70% of human PC samples exhibit overexpression of
Shh in both pre-invasive and invasive epithelium; this
overexpression can be observed as early as pancreatic
intraepithelial neoplasia-1 (PanIN1) and persists throughout the
disease (Gu et al., 2016). On the other hand, most PC cell lines have
an abnormal expression of the Hh ligand. This finding in PDAC in
humans was also validated in a genetically modified mice model. In
PDAC, oncogenic Kirsten rat sarcoma (KRAS) expression is closely
linked to abnormal SHH expression. Increased SHH transcript
results from oncogenic KRASG12D ectopic expression in healthy
human pancreatic ductal cells, suggesting that SHH functions as a
downstream effector of oncogenic KRASG12D in developing PC. It
has also been demonstrated that NF-κB targets the gene SHH and is
constitutively activated in PC. In both cell-based and in-vivo
scenarios, NF-κB activation can enhance SHH’s transcriptional
activity. The putative NF-κB binding sites are present in the
human SHH promoter region. Furthermore, oncogenic KRAS is
recognised to activate the transcriptional activity of NF-κB. Thus,
oncogenic KRAS may use NF-κB signaling to encourage SHH
expression (Gu et al., 2016).

Oncogenes altering common
signaling pathways

The literature presents an increasing number of oncogenes that
cause PC (Hezel et al., 2006; Avila and Kissil, 2013; Wood, 2013).
When oncogenes are mutated and activated, they contribute to
cancer growth. PC was attributed to genetic alterations, germline
mutations, and somatic mutations. KRAS, TP53, CDKNA2A, MLL3,
ZIM2, MAP2K4, ARID1A, NALCN, SMAD4, EPC1, ARID2, ATM,
TGFBR2, SLC16A4, SF3B1, and MAGEA6 are the sixteen mutant
oncogenes that have been found majorly associated with this disease
(Cicenas et al., 2017).

KRAS mutations, one of the earliest changes in PC, trigger
signals promoting cancer cell survival and multiplication
(Berrozpe et al.,1994). These mutations lead to the continuous
activation of the KRAS protein, which acts as a molecular switch
to activate several downstream signaling pathways, including the
MAPK/ERK and PI3K/AKT pathways (Buscail et al., 2020). Tumor
suppressor genes help control cell growth and prevent tumors from
forming. In PC, these brakes often malfunction due to mutations
(Bardeesy and DePinho, 2002). P16/CDKN2A, TP53, and SMAD4/
DPC4 are critical players in this process. Loss of P16/CDKN2A
function leads to unchecked cell cycle progression from the G1 to the
S phase. Loss of SMAD4 function disrupts TGF-β signaling and
promotes epithelial-mesenchymal transition (EMT), enhancing the
invasiveness and metastatic potential of pancreatic cancer cells (Hu
et al., 2021). Loss of these genes removes the brakes, giving cancer
cells a growth advantage (Austen and Bronte, 2023).

Growth factor receptors work as antennas on the cell surface.
These antennas receive signals from growth factors like epidermal
growth factor (EGF), insulin-like growth factor (IGF), and vascular
endothelial growth factor (VEGF). In PC, growth factor receptors
can be proactive, leading to uncontrolled cell growth and spread.
When activated, the receptor for advanced glycation end products
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(RAGE) acts as a magnifier of inflammation and promotes the
progression of PC. Researchers are exploring ways to turn down the
activity of RAGE to slow down cancer growth and enhance the
effectiveness of treatments (Faruqui et al.,2022). EMT is crucial for
cancer cells to spread and form new tumors in distant places (Zhou
et al., 2017). TheWNT signaling pathway acts as a control center for
cell growth (Scheibner et al., 2019). This control center can go
haywire in PC, leading to unregulated cell division and migration
(Zeng et al., 2006).

Risk factors and their mechanism of action in
altering signaling pathways

Risk factors like the combination of family history, obesity,
smoking, diabetes, and chronic pancreatitis can contribute to the
development of PC. A genetic predisposition to the disease is noticed
by studying a family history of PC. Hereditary mutations in the
BRCA1, BRCA2, and PALB2 genes are risk factors for PC. These
genetic alterations may affect cellular signaling pathways, including
KRAS oncogene activation. Similarly, Genetic mutation can also
cause disruptions to cellular processes, potentially leading to the
activation of WNT/β-catenin Pathway and an increased risk of
developing PC (Zanini et al., 2021).

One of the most common risk factors that raises the possibility
of developing PC is type 2 diabetes (Pannala et al., 2008). The
complete mechanism is still a doubt for researchers. However, there
is evidence that insulin resistance and abnormal signaling pathways,
such as the serine/threonine kinase (AKT) pathway, may play a role.
AKT (AKT1, AKT2, AKT3), previously known as protein kinase B
(PKB), signaling pathway is currently driving the research as it plays
a vital role in primary cellular functions, including regulation of
glucose metabolism, cell size, and cell cycle progression (Hu et al.,
2022; Permert et al., 1993). In type 2 diabetes Insulin resistance and
hyperinsulinemia activate PI3K/AKT pathway, low grade
inflammation activates the NF-κB pathway and high glucose
levels activate the TGF-β1 pathway, leading to a decrease in
E-cadherin levels and promoting a mesenchymal phenotype
(Gong et al., 2014; Duan et al., 2021).

Another risk factor for PC is Chronic pancreatitis. Chronic
inflammation leads to the activation of Pancreatic Stellate Cells
(PSCs), which transform into myofibroblast-like cells. PSCs secrete
chemokines, reactive oxygen species, and cytokines which activates
TGF-β, MAPK, and NF-κB, promoting cancer cell proliferation,
invasion (Jin et al., 2020).

There is an established connection between the risk of PC and
obesity. Adipose tissue secretes leptin, and it is possible that leptin
could influence Hh signaling (Zanini et al., 2021). Like in other
cancers, smoking is a well-established risk factor in PC. nitrosamines
and polycyclic aromatic hydrocarbons present in smoke, can cause
mutations in the KRAS gene and activates NF-κB Pathway, Overall
leads to mutation in key genes like KRAS, p53, and CDKN2A.
Nicotine, a major component of tobacco smoke, can bind to
nicotinic acetylcholine receptors (nAChRs) on pancreatic cells.
This binding activates the EGFR signaling pathway, leading to
increased cell proliferation and survival (Schaal and Chellappan,
2014; Weissman et al., 2020). Accumulation of mutations and
epigenetic alterations in the DNA due to age-related changes can

lead to the activation of oncogenes or the inactivation of tumor
suppressor genes. Gender-related differences may influence
oncogene activation by triggering hormonal and genetic factors.
For instance, hormones, including estrogen, testosterone, and
insulin-like growth factor-1 (IGF-1) in men, significantly
contribute to a higher incidence of PC. Genetic variations
between racial groups lead to oncogene activation differences
(Zanini et al., 2021).

Therapeutic interventions targeting
common pathways

The initial step in treating PC is to remove the tumor surgically,
which is followed by gemcitabine-based chemotherapy. In cases
where patients exhibit a favourable performance status and surgery
is not feasible, a combination of gemcitabine, FOLFIRINOX, and
nanoparticle-bound (nab) paclitaxel is used. However, the prognosis
is still dismal, and chemotherapy medications have only been shown
to be palliative in PC patients whose cancer has spread or is
incurable (Lambert et al., 2019). However, there is hope due to
the known molecular mechanisms underlying the onset and spread
of PC and the availability of novel medications that can disrupt
essential signaling pathways (Polireddy and Chen, 2016).

Another therapeutic target for PC can be the hypoxia-inducible
factor (HIF1α), which is a downstream effector of PBX1-MEIS1.
This target utilisation has been observed to influence
Myeloproliferative neoplasm (MPN) cells via PBX1 (Crisafulli
et al., 2024). As discussed, HLXB9 can play a significant role in
tumor progression, the GSK-3β phosphorylates and stabilizes the
HLXB9 protein and, therefore, can be targeted to control the
development of insulinomas (Desai et al., 2014).

Many inhibitors have applications in treating PC since the PI3K/
AKT pathway can be blocked at multiple places (Stanciu et al., 2022).
The mTOR kinase inhibitors, such as everolimus, are among the
medications used to slow the disease progression to an end-stage and
can also improve the effectiveness of gemcitabine-based
chemotherapy. Agents that have demonstrated enhanced efficacy
and can inhibit mTORC1 and mTORC2 are preferable. By attaching
to the PH domain of AKT, perifoxine (KRX041, NSC639966)
functions as an allosteric AKT inhibitor (Glaviano et al., 2023).
Numerous clinical trials with this alkyl phospholipid have been
conducted following encouraging outcomes from studies conducted
on animal models. In pancreatic cell cultures, erifosine suppresses
S6K1–GLI1 signaling and prevents gemcitabine resistance (Ying
et al., 2014). Prior research indicates that cancer stem cells play a
significant role in patient relapse, maybe through the reactivation of
the SHH signaling pathway and the PI3K/AKT/mTOR pathway. A
combination of NVP-BEZ235 and NVP-LDE225 may provide new
hope for treating PC (Sharma et al., 2015). An oral medication called
NVP-LDE225 (Sonidegib, Novartis) inhibits the Hh pathway by
acting as an antagonist for the SMO receptor (Pan et al., 2010; Ruiz-
Borrego et al., 2019; Wang et al., 2019; Stanciu et al., 2022).

Anti-TGF-β treatments are effective in preclinical research, and
several of these tactics are presently undergoing clinical trials. TGF-β
neutralizing antibodies, which prevent TGF-β ligands from binding
to their receptor, TGF-β receptor kinase inhibitors, and direct
delivery of antisense oligonucleotides (ASO) into tumors or
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immune cells are the three main strategies for inhibiting TGF-β or
its pathway components. (Smith et al., 2012).

Although anticancer drugs have historically focused on TGF-β
pathway inhibitors, the efficacy of contemporary therapy has not kept
pace with this focus (Tian et al., 2019). This emphasizes the need for a
more thorough investigation of FST as a strong and efficient TGF-β
antagonist that can target cancer cells specifically or stop them from
developing resistance to TGF-β′s anti-proliferative effects. It can also be
used as a biomarker to classify cancer patients and enhance their
responses to treatment more accurately. Comprehending the role of
FST in specific disorders holds the potential for creating innovative
therapeutics, especially with the current focus on secreted molecules in
drug development (Table 1) (Sosa et al., 2024).

Conclusion

PC poses a significant difficulty because of its late-stage
diagnosis and aggressive nature. Our complete investigation
exposed the intricate interaction of oncogenes and risk factors,
essential signaling networks in the development of the pancreas,
and modulation in the same signaling pathway in PC. Our
understanding of how transcription factors and signaling
pathways are regulated in PC has grown by comprehending
pancreas development. Despite having a low occurrence, genetic
abnormalities and alterations in tumor suppressor genes
significantly influence PC. Future research on precise
mechanisms by which signaling pathways are activated and
further exploration of the specific transcription factor expression
patterns associated with PC could enable more personalized
treatment strategies.

Different care strategies are used according to the stage and
resectability of the cancer, with surgical procedures being explored
in some situations. Despite difficulties, continuous research on
signaling pathways and biomarkers can give optimism for
improvements in early identification, more efficient therapies,

and eventually better results for people with PC. Clinical trials,
including combination therapies and signaling pathway inhibitors,
hold promise for improving outcomes for PC.
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