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Purpose: This study aims to develop a diffusion-based workflow to precisely
predict postoperative appearance in blepharoptosis patients.

Methods:We developed PtosisDiffusion, a training-free workflow that combines
face mesh with ControlNet for accurate post-operative predictions, and
evaluated it using 39 preoperative photos from blepharoptosis patients. The
performance of PtosisDiffusion was compared against three other diffusion-
based methods: Conditional Diffusion, Repaint, and Dragon Diffusion.

Results: PtosisDiffusion demonstrated superior performance in subjective
evaluations, including overall rating, correction, and double eyelid formation.
Statistical analyses confirmed that PtosisDiffusion achieved the highest overlap
ratio (0.87 ± 0.07) and an MPLPD ratio close to 1 (1.01 ± 0.10). The model also
showed robustness in extreme cases, and ablation studies confirmed the
necessity of each model component.

Conclusion: PtosisDiffusion generates accurate postoperative appearance
predictions for ptosis patients using only preoperative photographs. Among
the four models tested, PtosisDiffusion consistently outperformed the others
in both subjective and statistical evaluation.
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1 Introduction

Blepharoptosis (Ptosis) is characterized by an abnormally low upper eyelid margin in
the primary gaze, which narrows the eye opening and partially covers the eye (Finsterer,
2003). Unilateral or bilateral ptosis can impair appearance and visual function, significantly
affecting quality of patient life by causing amblyopia and increased anxiety and depression
related to appearance, thereby impacting overall patient wellbeing. The primary treatment
for managing ptosis is surgery (Bacharach et al., 2021). Surgical correction of ptosis is
recommended not only for cosmetic improvement but also to prevent visual impairments
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(Salamah et al., 2022). However, ptosis surgery is highly
personalized, with the type of procedure determined by the
underlying cause of ptosis, its severity, and the function of the
levator muscle. This personalized approach, combined with the
potential for unexpected surgical outcomes, can increase patient
anxiety and depression, and may even reduce patient confidence in
decision-making. Therefore, accurate prediction the of
postoperative appearance is essential for the success of ptosis
surgery (Koka and Patel, 2019).

Accurate predictions provide surgeons with visual feedback on the
anticipated changes, aiding in the optimization of surgical plans and the
precise adjustment of eyelid positioning to correct any residual
deformities. This approach not only improves the precision and
effectiveness of the surgery but also enhances patient understanding
and confidence in the outcomes. There have been attempts to predict
postoperative results in ptosis surgery. Mawatari et al. utilize Adobe
Photoshop for predicting levator resection images (Mawatari and
Fukushima, 2016) and employ mirror image processing software for
ptosis surgery (Mawatari et al., 2021). However, this method is limited
by the subjective nature of manual image manipulation and operator
variability. Sun el al employed a Generative Adversarial Network
(Goodfellow et al., 2014) (GAN) trained on paired pre- and post-
surgery data to perform image translation tasks for ptosis prediction
(Sun et al., 2022). The GAN approach have been used in image
translation tasks widely (Song et al., 2023; Armanious et al., 2020).
Though more automated, it faces several constraints. It requires paired
data of pre- and post-operative images, which are difficult to acquire.
Additionally, GANs are known for training instability and artifacts in
generated images. Some results exhibit unrealistic artifacts in the center
of the eyebrow.

Recently, diffusion-based methods (Ho et al., 2020; Nichol and
Dhariwal, 2021; Rombach et al., 2021) have demonstrated significant
success in generating realistic images. Leveraging these advancements,
we developed a workflow named PtosisDiffusion, which can accurately
predict postoperative outcomes in blepharoptosis without requiring
additional model training. We compared PtosisDiffusion with three
other diffusion-based methods using human evaluation and abstract
statistical analysis. Our results indicate that PtosisDiffusion outperforms
the other three methods.

Our primary contributions are as follows.

• Unpaired Data Requirement: In contrast to other image
translation methods, our model operates without the need
for paired data.

• Training Efficiency: Our model functions effectively without
necessitating additional training.

• State-of-the-Art Performance: Our model achieves state-of-
the-art results.

• New Evaluation Parameters Proposed: We propose two
evaluation parameters that are agnostic to real-world
measurements and are solely based on image analysis.

2 Methods

We began with the quantification of facial attributes, followed by
a brief introduction to diffusion methods and a detailed explanation
of each individual method.

2.1 Ptosis attributes measurements

To advance the study of ptosis, it is crucial to develop efficient
methods for quantifying various clinical measurements.
Traditionally, this process requires the use of a reference object
with known dimensions, such as a ruler or a sticker of
predetermined size, placed adjacent to the face. While this
approach provides accurate measurements, the availability of
such reference objects is limited to specific circumstances,
thereby restricting the broader application of these clinical
measurements. Leveraging artificial intelligence (AI) offers a
promising avenue for achieving this goal. Specifically, the use of
face mesh, a machine learning model that accurately maps facial
landmarks, presents a robust starting point. Face mesh and iris
detection (Kartynnik et al., 2019; Ablavatski et al., 2020) detects
468 face landmark 3D points and iris locations, see Figure 1A.
Comparing with traditional face landmarks detection with typically
68 points, it achieves better accuracy and offers more flexible face
landmarks choices.

Inspired by the marginal reflex distance-1 (MRD1) (Bodnar
et al., 2016) and mid-pupil lid distances (MPLDs) (Morris et al.,
2011), we define analogous quantities for measuring ptosis
attributes. First, we introduce the marginal reflex ratio (MRR),
see Figure 1B. This ratio is determined by two vertical distances:
the first is the distance along the y-axis from the center of the pupil to
the top edge of the pupil’s bounding box, and the second is the
distance from the center of the pupil to the top edge of the upper
eyelid. Next, we define mid-pupil lid pixel distances (MPLPDs), see
Figure 1C, which are similar to MPLDs but measured in pixels.
These two criteria are utilized for guiding the models and for
evaluating their performance metrics.

2.2 Diffusion methods

Diffusion models are a class of generative models that have
gained significant attention for their ability to produce high-quality
synthetic samples, including images, audio, and text. In the realm of
medical imaging, diffusion methods have been applied to tasks such
as classification, segmentation, denoising and reconstruction
(Wolleb et al., 2022; Sanchez et al., 2022; Chung and Ye, 2022;
Friedrich et al., 2023). Compared to other generative methods,
diffusion models excel in generation quality and training stability.
Numerous studies have expanded their generative capabilities,
including control over the structure of generated results and the
manipulation of color schemes (Ruiz et al., 2023; Zhang et al., 2023;
Hu et al., 2021).

Recent stable diffusion models trained on billions of real images
have achieved remarkable results (Rombach et al., 2021). We
leverage this capability for post-operative prediction. We
developed a workflow called PtosisDiffusion based on face mesh
(Kartynnik et al., 2019; Ablavatski et al., 2020) and ControlNet
(Zhang et al., 2023) for accurate post-operative prediction.
Additionally, we compared this workflow with three other
diffusion-based methods, namely, Conditional Diffusion (Song
et al., 2020), Repaint (Lugmayr et al., 2022) and Dragon
Diffusion (Mou et al., 2023).
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2.2.1 Denoising diffusion probabilistic
model (DDPM)

As the foundational diffusion model, Denoising Diffusion
Probabilistic Models (Ho et al., 2020) (DDPM) serve as the basis
for all subsequent diffusion-based methods. DDPM consists of two
processes: the forward process, which repeatedly adds small
amounts of Gaussian noise to the sample x0 until it becomes
random noise xT, and the reverse process, which gradually
denoises xT back to the original sample x0 based on the model
estimated noise, see Figure 2. Assuming the data distribution of xt is
q(xt). The forward process can be characterized by Equation 1:

q xt | xt−1( ) � N xt;
�����
1 − βt

√
xt−1, βtI( ), (1)

where βt ∈ (0, 1) is a predefined hyper-parameter. Moreover, a
sample at any given time t can be characterized as Equation 2:

xt � ��
�αt

√
x0 +

�����
1 − �αt

√
ϵt, ϵt ~ N 0, I( ) (2)

where αt � 1 − βt, �αt � ∏T
i�1αi � ∏T

i�1(1 − βi). The reverse process
is learnable and characterized by Equation 3:

pθ xt−1 | xt( ) � N xt−1; μθ xt, t( ),Σθ xt, t( )( ) (3)
and further reduced to Equation 4:

xt−1 � 1��
αt

√ xt − 1 − αt�����
1 − �αt

√ ϵθ xt, t( )( ) + σtz, (4)

where z ~ N (0, I), σt is a constant derived from βt and ϵθ is an
estimation of ϵt.

During training, a U-Net model is trained to estimate ϵθ . The
loss function can be derived as Equation 5:

Et~U 1,T[ ][ ],x0~q x0( ),~N 0,I( ) λ t( )  − θ xt, t( )‖ ‖2[ ] (5)

where λ(t) is a positive weighting function, xt is computed by
Equation 2, t ~ U[[1, T]] is a uniform distribution over the set
{1, 2, . . . , T}.

FIGURE 1
Face attributes illustration. (A) Example of face mesh (human face generated by AI). (B)MRR � r0/r1 where r0 indicates pixel distance from iris center
point to upper lid point and r1 indicates pixel distance from iris center point to iris top point. (C)MPLPD indicates pixel distance from iris center point to lid
point for angle θ.

FIGURE 2
The workflow for DDPM. Red arrow indicates forward process which gradually adds random Gaussian noise to the image. Blue arrow indicates
reverse process which gradually denoises the image.
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During inference, we sample xT from Gaussian distribution.
Following reverse process, the noise ϵθ at each step t is estimated and
subtracted from xt. At final step, we obtain a clean image x0.

2.2.2 Conditional Diffusion
Conditional Diffusion leverages a probabilistic model to generate

images guided by predefined conditions, such as postoperative targets.
By incorporating prior information, the diffusion process is directed to
produce images that match desired outcomes. This technique is often
used for tasks like image synthesis and inpainting, ensuring that the
generated images meet specific criteria. Conditional diffusion model
generates result under condition label y. Using Bayesian rule, it can be
shown (Song et al., 2020) that conditional diffusion can generate images
using an unconditional diffusion model, augmented by an additional
term ∇xt logpt(y|xt), where xt is the image sample at step t, to account
for the conditional information. We use the target MRR as condition
label and create a Gaussian distribution for pt(y|xt). Then the
conditional term becomes −∇xt(y − y0)2 where y is the measured
MRR for image xt and y0 is the target MRR. This approach enables the
generation of images with an MRR value close to the desired target,
ensuring accurate prediction of postoperative outcomes.

2.2.3 Repaint
Repaint (Lugmayr et al., 2022) is a variation of the diffusion

inpainting technique that focuses on editing image content within a
specified mask region. During the denoising process, it
systematically adds noise to the masked areas, ensuring that their
latent distribution gradually aligns with that of the adjacent
unmasked sections. Repaint iteratively refines targeted regions,
blending them seamlessly with the surrounding image, achieving
the desired modifications while maintaining coherence with the
unedited sections. This approach is frequently used for tasks
requiring selective changes, such as image correction or
restoration. In this study, it ensures that edited areas of the
eyelid are integrated smoothly into the overall postoperative
prediction.

2.2.4 Dragon Diffusion
Dragon Diffusion (Mou et al., 2023) enables drag-style

manipulation through gradient guidance and cross-attention
guidance, everaging advanced mathematical principles such as
attention mechanisms and gradient descent. This approach allows
for dynamic adjustments in image generation, facilitating tasks such
as object movement, resizing, appearance replacement, and object
pasting on diffusion models. The ability to manipulate image
elements in real-time makes Dragon Diffusion particularly
valuable in applications such as augmented reality and image
editing, where precise control over visual content is essential. In
this study, we utilize a face mesh to detect key points on the upper
eyelid, and manually determine the targeted dragging points. This
allows for fine-tuned adjustments to the eyelid’s position, which is
crucial for generating accurate predictions of postoperative
appearance.

2.2.5 PtosisDiffusion
We designed a PtosisDiffusion workflow specifically designed

for ptosis post-operative prediction, leveraging ControlNet to
provide additional control over the image generation process.

ControlNet introduces external conditioning information (such
as the edge map) into the diffusion process via zero-convolution,
utilizing convolutional neural networks (CNNs) to influence the
latent space of the diffusion model, enabling more targeted and
constrained generation. A common implementation of ControlNet
involves integrating Canny edge detection (Canny, 1986) as a
conditioning method. Canny edge detection is a widely-used
algorithm that identifies boundaries within an image by
detecting areas of rapid intensity change, producing a binary
image where edges are highlighted. This representation offers a
clear and concise depiction of the structural outlines within the
original image. The pre-trained ControlNet model guides the
diffusion model to generate images that have similar Canny
edge detection results.

By employing face mesh technology, we developed a robust
workflow for accurate ptosis postoperative prediction. Initially, the
face mesh is used to detect the patient’s eye contour and iris location,
from which a Canny edge image and a binary mask are generated.
The Canny edge image reflects the appropriate MRR value and
serves as input for ControlNet diffusion inpainting, while the binary
mask is utilized in the inpainting process. This methodology ensures
that the generated images retain the desired structural
characteristics, which are crucial for accurate and reliable
predictions of postoperative outcomes. Furthermore, this
approach has applications in other fields requiring precise image
manipulation, such as cosmetic surgery and facial reconstruction. A
schematic representation of this workflow is illustrated in Figure 3.

3 Experiment results

We collected pre-operative photos from a total of 39 patients.
Among them, 13 had bilateral ptosis, 26 had unilateral ptosis,
26 were male, and 13 were female. Figure 4 displays a selection
of postoperative predictions generated by different methods. A
comprehensive set of all 39 predicted images is provided in the
Supplementary Information (SI) for complete transparency. We
conducted both human evaluation and statistical analysis to
assess the performance of each method.

3.1 Subjective evaluation

We engaged two doctors—a junior ophthalmologist and a senior
ophthalmologist—to assess the prediction results of four models
across three different aspects: overall rating, correction amount, and
double eyelid formation (DEF). In selecting the metrics for better
evaluating prediction quality, we focused on both functional and
aesthetic outcomes. The correction amount is vital for ensuring
proper eyelid functionality post-surgery, which directly impacts the
patient’s visual comfort and overall satisfaction. Additionally, the
creation of a well-defined and persistent double-eyelid crease is of
paramount importance, especially for East Asian patients (Lee et al.,
2013), where aesthetic outcomes are closely tied to patient
satisfaction. Therefore, double eyelid formation (DEF) was
chosen as a key metric to assess the accuracy of aesthetic
predictions. By incorporating both correction amount and DEF,
our evaluation framework provides a comprehensive assessment of
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the surgical outcomes that are most relevant to patients and
clinicians alike. For the overall rating, we adopted a three-point
scale, evaluating and scoring in three distinct categories: 0 (poor), 1
(average), and 2 (excellent), larger value indicates better result. For
correction amount, under-correction was scored as −1, over-
correction as 1, and correct correction as 0, value closer to zero
indicates better result. For DEF, we used a similar rating standard to
the overall rating.

The results, as shown in Table 1 and Figure 5, indicate that our
PtosisDiffusion model outperformed the other three models in
all aspects.

3.2 Statistical evaluation

Since we only collected pre-operative images of patients, we do
not have post-operative images for direct comparison. Instead, due
to the symmetry of the eyes, we selected patients with unilateral
ptosis and used the unaffected eye as a standard for comparison.
There are a total of 26 patients, with 15 having left eye ptosis and
11 having right eye ptosis. Among them, 20 are male and 6 are
female. For comparison, we first aligned the two eyes and then
horizontally flipped one eye so that it overlaps with the other. We
then detected the contours for both eyes, as shown in Figure 6. We
use two stats for evaluation. One is overlap ratio, which is defined as
the intersection area of the two eyes over the union area of the two
eyes. Another metric is the MPLPD ratio, defined as the ratio of the
MPLPDs of the two eyes at a given angle, θ. We select θ at
increments of 15° from 0° to 360°. We also introduce a control
group, which involves calculating statistics for the original,
unmodified images.

As shown in Table 2 and Figures 6C, D, all four models perform
better than the control group. Our model outperforms the other
three models in terms of overlap ratio and performs comparably in
MPLPD ratio to Dragon Diffusion and Repaint.

FIGURE 3
The workflow of PtosisDiffusion.

FIGURE 4
Typical examples of predicted postoperative images obtained with different models.

TABLE 1 Mean and standard deviation of evaluation metrics. For overall
rating and double eyelid formation (DEF), larger value indicates better
result. For correction amount, value closer to zero indicates better result.

Model Overall ↑ Correction → 0 DEF ↑

Conditional 0.45 ± 0.50 −0.94 ± 0.34 0.36 ± 0.51

Dragon 0.81 ± 0.46 −0.47 ± 0.75 0.71 ± 0.63

Repaint 0.99 ± 0.44 −0.67 ± 0.50 0.76 ± 0.74

PtosisDiffusion 1.79 ± 0.41 −0.15 ± 0.36 1.45 ± 0.73
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FIGURE 5
Subjective evaluation of predicted postoperative images obtained with different models: three-point scale of overall rating, correction and double
eyelid formation (DEF).

FIGURE 6
Objective assessment of the predicted postoperative images obtained with different models. (A) The clinical characteristics for patients with
unilateral ptosis. (B) Illustration for eye contour and overlap ratio: the ratio of the intersection area over the union area of the predicted eye region (green)
and the original eye region (yellow). (C, D) The plots for the overlap ratio and MPLPD ratio across the four models and the control group.
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3.3 Robustness evaluation

We investigate post-operative predictions in extreme cases with
severe ptosis, as shown in Figure 7. The other three models fail to
output meaningful post-operative images. Yet face meshes are still
detected for these cases, and thus output reasonable measurements
based on face mesh. This elucidates why the subjective evaluation of
our model demonstrates significantly superior performance
compared to other models, whereas the statistical evaluation
shows relatively less pronounced improvements.

3.4 Ablation study

In our ablation study, we conducted a series of comparisons
to evaluate the individual contributions of different components
within our workflow. First, we examined the results after
removing ControlNet from the complete workflow. Second, we
assessed the impact of excluding the inpainting component.
Finally, we compared these modified workflows against the

results produced by the full, unaltered workflow. The results
in Figure 8 clearly demonstrate that both components are
essential to our workflow.

4 Discussion

Our study employs a diffusion model to predict the
postoperative appearance of ptosis patients using preoperative
photographs. We use both statistics and subjective evaluations to
assess the predicted images. To the best of our knowledge, this is the
first time a diffusion model has been used for such predictions in
ptosis patients.

Subjective evaluation results show that PtosisDiffusion model
significantly outperformed the other three models in overall rating,
correction, and double eyelid formation. This highlights the superior
quality and accuracy of the images generated by our diffusionmodel,
underscoring its potential for clinical use in predicting postoperative
outcomes. Statistical evaluation shows that PtosisDiffusion model
achieved the highest overlap ratio and second best MPLPD ratio.
Compared to the unmodified control, there is a significant
improvement, indicating that our model produces better
postoperative symmetry in patients with unilateral ptosis. These
findings are consistent with the results from the subjective
evaluation.

The robustness evaluation reveals that our model maintains
consistent performance even in extreme cases, such as fully closed
eyes, where other models fail to produce reasonable reconstructions.
This robustness underscores the effectiveness of our diffusion model
in handling a variety of challenging scenarios, further validating its
potential for reliable clinical application.

The results of our ablation studies demonstrate that each
component of our model is essential. The removal of the

TABLE 2 Mean and standard deviation of evaluation metrics. For overlap
ratio, larger values indicate better result. For MPLPD ratio, values closer to
one are better.

Model Overlap ratio ↑ MPLPD ratio → 1

Control 0.81 ± 0.10 0.90 ± 0.12

Conditional 0.83 ± 0.08 0.94 ± 0.11

Dragon 0.85 ± 0.07 1.00 ± 0.12

Repaint 0.84 ± 0.10 1.01 ± 0.13

PtosisDiffusion 0.87 ± 0.07 1.01 ± 0.10

FIGURE 7
An example of predicted postoperative images obtained with different models. (A)Model outputs under extreme case. (B) Face mesh detections for
test models.

FIGURE 8
An example of input preoperative images and predicted postoperative images obtainedwith three differentmethods (w/o ControlNet, themodel w/
o inpainting, the full model).
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ControlNet component results in the model losing the ability to
control the eye contour of the image. Similarly, omitting the
inpainting component results in a loss of identity preservation
for the original patients.

Compared to studies using GAN networks, our diffusion model
does not require paired data and extra training. This is a significant
advantage as it reduces the complexity and resource intensity
associated with data collection and preparation. The ability to
generate the prediction without the need for paired preoperative
and postoperative images can streamline the process and make it
more feasible to implement in clinical settings. Notably, the model
takes approximately 12 s to generate predictions on a Nvidia
T4 GPU, which underscores its computational efficiency and
feasibility for implementation in a clinical environment.
Furthermore, the images generated by the diffusion model are
more realistic, enhancing the visual accuracy and reliability of the
predicted postoperative appearances.

An important consideration in studies involving postoperative
image prediction is the quality of the preoperative images. In previous
studies, image-to-image translation methods were employed, where
the quality of the input preoperative image directly influenced the
quality of the generated postoperative prediction. However, in our
study, we utilized the inpainting approach, which is a generative
process rather than a translation. This method synthesizes the
postoperative appearance based on the input image’s features
rather than simply altering the original image. As a result, the
quality of the preoperative photograph does not significantly
impact the quality of the predicted image, provided that the
preoperative image is not extremely blurry—a condition that is
typically avoided in clinical practice. The inpainting method we
used in this study mitigates the dependency on preoperative image
quality, thus ensuring the reliability and applicability of the findings.
While our inpainting method offers improved robustness, certain
factors may still influence the accuracy and consistency of the model’s
predictions. The accuracy of the facial mesh used in the workflow is
critical; if key facial landmarks are incorrectly identified, it can lead to
distorted outputs. Additionally, variability in facial expressions in the
preoperative images can impact the predictions, as different
expressions may alter the appearance of features and affect
synthesis outcomes. Furthermore, the parameters and settings
applied during the inpainting process can also affect the quality of
predictions. Careful optimization of these settings is essential to
accommodate different input images and ensure high-quality
postoperative predictions.

One limitation of our study is the lack of actual postoperative
photographs for comparison, as the diffusion model does not
require paired data. This absence of real postoperative images as
a benchmark may impact the thorough evaluation of the model’s
predictive accuracy. However, the use of unpaired data is also an
advantage, as it allows for greater flexibility and applicability of the
model, particularly in scenarios where obtaining paired data is
challenging. Despite this limitation, we have employed statistical
methods based on symmetry and overlap rates to evaluate the
model’s performance. These methods, while valuable, may not
fully capture the nuances of individual patient outcomes.
Therefore, future work should consider integrating methods to
validate the predicted images against actual postoperative results
to further substantiate the model’s effectiveness. Expanding the

dataset to include postoperative images will enable more
comprehensive and direct comparisons, thereby enhancing the
overall evaluation of the model’s predictive capabilities.

Another limitation is the lack of precise control over the
generated images. While we generate canny edge maps based on
the MRR value for ControlNet reference, the output results often
exhibit different MRR values. We attribute this discrepancy to the
inherent characteristics of the ControlNet and the diffusion model.
The accuracy of ControlNet is contingent upon the precision of the
canny edge detection, which may not be ideal for our specific case.
Additionally, as a probabilistic model, the diffusion model may
produce slightly varying results with each iteration. This variability
in generated images introduces a degree of uncertainty that could be
a limitation when applying the model to clinical decision-making.
Future research should aim to develop methods that enhance the
control over image generation, possibly by refining edge detection
techniques or incorporating additional constraints to reduce output
variability. If further techniques become available for precise control
of the diffusion model, our model could potentially achieve even
greater performance enhancements.

Despite the limitations, our study opens several promising
avenues for future research and clinical applications.
PtosisDiffusion could be particularly useful in preoperative
planning, allowing surgeons to simulate and visualize potential
outcomes based on individual patient characteristics. This
capability could enhance patient counseling, helping patients set
realistic expectations and making informed decisions about their
surgery. Additionally, PtosisDiffusion could serve as a valuable tool
in surgical training, enabling trainees to explore different surgical
outcomes without actual patient involvement. Future studies could
also explore the application of diffusion models in predicting
outcomes for other types of ocular and facial surgeries,
broadening the scope of its clinical utility. Additionally,
integrating longitudinal data that captures different stages of
postoperative recovery could offer more comprehensive
predictions, aiding in both surgical planning and patient
counseling. Moreover, the integration of longitudinal data
capturing different stages of postoperative recovery could provide
more dynamic and comprehensive predictions, aiding surgeons in
tailoring postoperative care and optimizing recovery outcomes.

5 Conclusion

This study introduced a diffusion model approach to predict
postoperative appearance for ptosis patients using preoperative
photographs, without the need for paired data and extra training.
We tested four different diffusion models, with PtosisDiffusion,
producing the best results. Subjective and statistical evaluations
demonstrated that PtosisDiffusion outperformed others in overall
rating, correction, and double eyelid formation, achieving better
postoperative symmetry.

Despite limitations such as lack of real postoperative
photographs for comparison, our model showed robustness in
generating satisfactory images under extreme conditions. Overall,
our diffusion model, particularly PtosisDiffusion, represents a
significant advancement in predicting postoperative outcomes for
ptosis patients, with the potential to enhance clinical practice.
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