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Fibro/adipogenic progenitors (FAPs) that reside in muscle tissue are crucial for
muscular homeostasis and regeneration as they secrete signaling molecules and
components of the extracellular matrix. During injury or disease, FAPs
differentiate into different cell types and significantly modulate muscular
function. Recent advances in lineage tracing and single-cell transcriptomics
have proven that FAPs are heterogeneous both in resting and post-injury or
disease states. Their heterogeneity may be owing to the varied tissue
microenvironments and their diverse developmental origins. Therefore,
understanding FAPs’ developmental origins can help predict their
characteristics and behaviors under different conditions. FAPs are thought to
be the major cell populations in the muscle connective tissue (MCT). During
embryogenesis, the MCT directs muscular development throughout the body
and serves as a prepattern for muscular morphogenesis. The developmental
origins of FAPs as stromal cells in the MCT were studied previously. In adult
tissues, FAPs are important precursors for heterotopic ossification, especially in
the context of the rare genetic disorder fibrodysplasia ossificans progressiva. A
new developmental origin for FAPs have been suggested that differs from
conventional developmental perspectives. In this review, we summarize the
developmental origins and functions of FAPs as stromal cells of the MCT and
present novel insights obtained by using patient-derived induced pluripotent
stem cells and mouse models of heterotopic ossification. This review broadens
the current understanding of FAPs and suggests potential avenues for further
investigation.
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1 Introduction

In 2010, fibro/adipogenesis-associated muscle-resident cells
were identified in adult mice based on PDGFRα expression (Joe
et al., 2010; Uezumi et al., 2010). These cells were isolated using the
expression of specific surface antigens, such as Sca1 and Tie2, while
excluding muscle satellite (SM/C-2.6+), hematopoietic (CD45+), and
endothelial (CD31+) cell lineages and were termed fibro/adipogenic
progenitors (FAPs). In 2014, FAPs from human skeletal muscle were
also identified (Uezumi et al., 2014). FAPs reportedly orchestrate
regenerative signals via paracrine functions to modulate the
proliferation, differentiation, and myogenic capacity of muscle
stem cells in various body regions (Farup et al., 2015; Wosczyna
et al., 2019; Kim et al., 2022). They are the primary source of cells for
regenerative matrix deposition and contribute to fibrous
deformation/fatty infiltration in muscle tissues through
differentiation into fibroblasts and adipocytes, particularly in the
context of muscle damage and neuromuscular diseases (Cordani
et al., 2014; Lemos et al., 2015; Contreras et al., 2016; Gonzalez et al.,
2017; Malecova et al., 2018; Moratal et al., 2018; Moratal et al., 2019;
Farup et al., 2021; Engquist et al., 2024; Flores-Opazo et al., 2024).

FAPs’ diversity and heterogeneity have hindered the
understanding of their characteristics and predicting their
functions and behaviors. FAPs have been found to exhibit altered
gene regulatory networks or express state-specific markers under
different conditions, which in turn regulates their fate and plasticity.
Therefore, Resting FAPs in undamaged mouse muscles (Scott et al.,
2019; De Micheli et al., 2020a; Oprescu et al., 2020) and FAPs
activated during muscle regeneration (Malecova et al., 2018; Scott
et al., 2019; De Micheli et al., 2020a; De Micheli et al., 2020b;
Oprescu et al., 2020; Rubenstein et al., 2020) are heterogeneous
populations with different functions or at different stages. Their
heterogeneity may be caused by varied muscle tissue
microenvironments and their diverse developmental pathways.
Tracing the developmental origins of FAPs is an important entry
point for understanding their intrinsic properties. During
embryonic muscle development, FAPs are identified as the main
sources of developmental extracellular matrix (ECM). Genetic
lineage tracing has shown that the transcription factor odd-
skipped-related 1 (Osr1) marks a subpopulation of FAP-like cells
that supports myogenesis by promoting myogenic progenitor
proliferation and survival (Vallecillo-García et al., 2017). Adult
FAPs are reported to share a common lineage with embryonic
muscle connective tissue (MCT) cells, which are responsible for
the development of the macroscopic and microscopic attributes of
muscle (Nassari et al., 2017; Sefton and Kardon, 2019).

MCT cells, the primary cell type in the muscle tissue, are
responsible for producing and depositing ECM components, such
as fibrous collagen and proteoglycans (Light and Champion, 1984).
They are associated with the healing process following muscle injury
and exhibit phenotypic characteristics akin to those of fibroblasts
(Williams and Goldspink, 1984; Gatchalian et al., 1989; Schmitt-
Gräff et al., 1994; Gabbiani, 1998; Chapman et al., 2017). With
contributions from many researchers, it has been established that
adult MCT is primarily derived from muscle-resident PDGFRα+
FAPs. These cells exhibit the characteristics of tissue-resident
mesenchymal stem/progenitor cells (MSCs/MPCs) with
multilineage differentiation potential and a fibroblast-like

phenotype (Nesti et al., 2008; Jackson et al., 2009; Judson et al.,
2013; Scott et al., 2019). However, these discoveries have led to some
confusion in terminology. Contreras et al. (2021) proposed that
these muscle-resident multipotent progenitor cells, whether called
FAPs or fibroblasts, are essentially the same cell populations in
studies related to MCT. Although careful identification of these cell
types and the use of context-appropriate terminology are necessary,
this review integrates previous literature on the developmental
origins of FAPs by adopting the perspective that MCT cells serve
as a collective term encompassing fibroblasts, MSCs/
MPCs, and FAPs.

Relevant studies have provided valuable prospects into the
origins of FAPs. As the primary precursor cells give rise to
heterotopic ossification (HO) (Wosczyna et al., 2012), recent
investigations utilizing patient-derived induced pluripotent stem
cells (iPSCs) and mouse models have introduced new
perspectives on FAPs’ embryonic origins. We discuss the
conventional developmental perspectives on the origins and
functions of MCT cells/FAPs during myogenesis and introduce
novel insights emerging from diseased iPSCs and mouse models
to deepen our understanding of related research field.

2 Embryonic origins and roles of
MCT cells and FAPs during muscle
development

Muscle formation and development involve two parallel
processes: myogenesis and morphogenesis. Myogenesis involves
the formation of muscle progenitor cells that express Pax3 and
Pax7, followed by differentiation into myoblasts. Committed
myoblasts then proliferate, express myogenic regulatory factors
(including Myf5, MyoD, and myogenin), undergo morphological
changes, and fuse to form multinucleated muscle fibers (Rudnicki
et al., 1992; Braun and Gautel, 2011; Abmayr and Pavlath, 2012;
Sampath et al., 2018) (Figure 1A). Early development and initial
differentiation into myoblasts are not controlled by MCT cells.
Instead, the MCT stromal cells control multiple aspects of muscle
morphogenesis (Sefton and Kardon, 2019). They direct myoblasts to
migrate to the target region, as well as promote expansion, viability,
and maturation of adjacent myoblasts into myofibers by secreting
complex signaling molecules and ECM components (Bladt et al.,
1995; Dietrich et al., 1999; Vasyutina et al., 2005; Hasson et al., 2010;
Swartz et al., 2012; Iwata et al., 2013; Vallecillo-García et al., 2017;
Stumm et al., 2018) (Figure 1B). MCT may act as a pre-model to
determine the location of myofiber differentiation, which in turn
determines the quantity, position, scale, and structure of a muscle.
The following sections introduce the origins and functions of
MCT cells/FAPs in major regions of the body.

2.1 Roles of MCT/FAPs in development of
axial muscles

The axial or trunk muscles adjacent to the dorsal notochord,
vertebrae, and abdomen originate from somites of the paraxial
mesoderm (Buckingham, 2006; Bryson-Richardson and Currie, 2008;
Wotton et al., 2015). Lineage studies using Prx1Cre transgenic mice
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identified two distinct developmental origins of axial muscle MCT: 1.
MCT surrounding the distal intercostal, pectoralis, transverse, internal/
external oblique, and rectus abdominis (medial/lateral muscles)
originate from the lateral plate mesoderm; 2. MCT surrounding the
intercostal and longissimus (proximal muscles) are derived from
somites (Durland et al., 2008) (Figure 1C). Additionally, ScxGFP-
transgenic mice, marking syndetome and tenocyte cells, also labeled
MCT cells in some lateral muscles (Deries et al., 2010; Ono et al., 2023).
Morphogenesis of the medial/lateral and proximal muscles is closely
linked to ECM alterations concerning MCT of the lateral plate
mesoderm and somite. MCT-derived fibronectin may contribute to
this stage (Deries et al., 2010; Deries et al., 2012). Fat1 is associated with
planar cell polarity and plays a crucial role in the distribution and
differentiation of myoblasts. Fat1 absence in the lateral plate mesoderm
of Prx1-expressing cells causes myofibril dysfunction and low count of
myogenic cells, implying that mesenchymal cells derived from the
lateral platemesoderm control axial musclemorphogenesis by secreting
ECM and regulating critical signaling pathways (Helmbacher, 2018).
Furthermore, the axial muscles, tendons, and bones are derived from
different somite regions, and their spatial interrelationships enable
coordinated development. MCT derived from somite and lateral
plate mesoderm likely regulate these interactions.

2.2 MCT/FAPs and limb muscle formation

The first step in limb muscle morphogenesis is the migration of
myoblasts from the somites to the limbs. Once in the limbs,
myoblasts undergo a complex morphogenetic process that
ultimately forms the limb muscle pattern.

During the initial migration, attraction and repulsion signals in the
limb bud mesoderm, produced by MCT cells derived from embryonic
lateral plate mesoderm, are essential at this stage (Helmbacher and
Stricker, 2020). For instance, stromal cell-derived factor 1 (SDF1 or
Cxcl12) produced in this area, binds to CXCR4 produced by migrating
myoblasts, actively regulating their survival and entry into the limbs
(Vasyutina et al., 2005). Meanwhile, the ligand EphrinA5 expressed in

the MCT repels myoblasts that express the receptor Epha4, preventing
their settlement in the limb regions (Swartz et al., 2001).

In the subsequent step, the prepattern established by limb MCT
determines the differentiation location and the number of myoblasts.
Several key transcription factors, which have been identified in mouse
MCT, importantly regulate this process. Knockout of the T-box
transcription factors Tbx5 and Tbx4, respectively, cause
misplacement of the forelimb and hindlimb muscles (Agarwal et al.,
2003; Hasson et al., 2007; Naiche and Papaioannou, 2007).
Tcf7l2 mutations cause truncation of the muscle near the knee and
affect myofiber development and profile (Mathew et al., 2011). Tbx3-
mutant mice lack two specific anterior muscles: the lateral triceps and
brachialis (Colasanto et al., 2016). Compoundmutations inHoxa11 and
Hoxd11 cause abnormalities in the forearm and calf muscles (Swinehart
et al., 2013).

In summary, the MCT cells of the lateral plate mesodermal
origin is essential for limb muscle morphogenesis. Activities of the
signaling and transcription factors determine the position and
number of myoblasts in the limbs, thereby influencing muscular
pattern formation.

2.3 MCT/FAPs in cranial muscle
development

The head muscles and MCT develop from diverse origins. The
cranial mesoderm is the primary source of head muscles. It is
positioned bilaterally along the neural tube and spans somites
across the forebrain during embryonic development (Michailovici
et al., 2015; Ziermann et al., 2018). MCT cells within the head
muscles typically derives from the cranial neural crest. Moreover,
neck muscles derive from somites and the head mesoderm. The
MCT cells of the neck originates in the neural crest and lateral plate
mesoderm (Matsuoka et al., 2005; Durland et al., 2008; Lescroart
et al., 2015; Sefton and Kardon, 2019) (Figure 1C).

Formation of head muscles is initiated by the simultaneous
migration of myogenic and neural crest cells (NCCs), accompanied

FIGURE 1
Function and embryonic origin of fibro/adipogenic progenitors (FAPs) as muscle connective tissue (MCT) cells during muscle development. (A) The
development of muscle tissue. Myogenesis encompasses the formation of muscle progenitor cells, differentiation into myoblasts, and the fusion of
myoblasts into multinucleated muscle fibers. (B) MCT cells control multiple aspects of muscle morphogenesis by directing myoblasts to migrate to the
target region and promoting their expansion, viability, and maturation through the production of signaling molecules and ECM components. (C)
Embryonic origin of MCTs representing the traditional developmental biology perspectives. Axial MCT originates from the somites and lateral plate
mesoderm, limb MCT from the lateral plate mesoderm, and cranial MCT from the neural crest.
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by myoblast specialization. Within the pharynx, the myogenic cells
constitute the central structure of each arch. Neural crest-derived
MCT cells surround and invade them, causing significant mixing of
both cell types. Simultaneously, myogenic cells begin myogenesis and
specialize into myoblasts (Trainor et al., 1994; Grenier et al., 2009).
Although neural crest-derived MCT cells are not required for the
initiation of craniomandibular myogenesis (Heude et al., 2018), they
critically regulate the migration, stereotyping, and differentiation of
craniofacial myogenic precursors (Tzahor et al., 2003; Rinon et al.,
2007). Deletion of Pitx2 in NCCs in Wnt1Cre mice proves that it
crucially regulates positioning of the extraocular muscles (Evans and
Gage, 2005). Deletion of the transcription factors Dlx5 and Dlx6 in the
murine cranial NCCs causes mandibular absence, indicating that they
are critical for morphogenesis of jaw muscles (Heude et al., 2010).
Lingual muscle development commences with the migration of
myogenic and NCCs into the tongue bud (Han et al., 2012).
Conditional knockout studies in mice indicated that cilium-
dependent GLI in the neural crest is crucial for the viability and
movement of myogenic cells toward the bud (Millington et al.,
2017). Thus, signaling by the MCT cells originated from neural crest
modulates myoblast expansion and maturation, eventually developing
the cranial muscle patterns.

3 Novel insights into the origin of FAPs:
perspectives from iPSCs and mouse
models of HO

Studies based on traditional perspectives, which classify FAPs as
MCT cells, have provided a comprehensive understanding of the
embryonic origins of MCT/FAPs and their roles in muscle
development (Table 1). However, it remains a challenge to

confirm whether the FAPs present in different regions of adult
muscle are completely originate from the MCTs described in the
previous sections. In recent years, studies related to HO using
patient-derived iPSCs and mouse models have provided new
insights into the origin of FAPs.

3.1 FAPs are the principal precursor cells
for HO

HO is abnormal bone formation in soft tissues, such as muscles,
tendons, and ligaments. HO has two main subtypes: acquired and
hereditary. Acquired HO is a common complication of major
injuries to connective tissues, traumatic injuries to the central
nervous system, and surgical interventions, and may cause pain
and postoperative disability. Fibrodysplasia ossificans progressiva
(FOP) is a rare but destructive form of hereditary HO that is caused
by ACVR1 mutations, which activate the bone morphogenetic
protein (BMP) signaling pathway and subsequent ossification.
FOP usually begins during childhood and manifests as soft-tissue
swelling and inflammatory episodes that may progress to form
ectopic bones (Shore et al., 2006; Kaplan et al., 2012).

FAPs residing in the interstitium of skeletal muscles, labeled
with Tie2Cre, PDGFRα, and Sca-1, are identified as the major
precursor cells driving HO (Uezumi et al., 2010; Wosczyna et al.,
2012). Despite evidence from various studies suggesting that other
cell types, including Prrx1+ skeletal progenitor cells (Chakkalakal
et al., 2016; Hesse, 2016), Scx+ tendon-derived progenitor and
muscle-resident interstitial Mx1+ population (Dey et al., 2016)
and Tie2-expressing endothelial-related cells (Medici et al., 2010),
as potential contributors to HO lesions, lineage-tracing studies have
demonstrated the decisive role of FAPs in HO. PDGFRα-expressing

TABLE 1 Embryonic origins and function of fibro/adipogenic progenitors as muscle connective tissue stromal cells in major regions of the body.

Body
regions

Embryonic
origins

Functional studies

Representative
genes

Mutant/knockout effects Reference

Axial Muscle 1. Lateral plate
mesoderm
2. Somites

Fat1 Myofibril dysfunction and low count of myogenic cells Helmbacher (2018)

Scx Disfunction of the back muscles Deries et al. (2010)

Limb Muscle Lateral plate mesoderm CXCR4 Reduced number of muscle progenitors that colonize the dorsal
limb

Vasyutina et al. (2005)

Tbx4 Misplacement of the hindlimb muscles Naiche and Papaioannou
(2007)

Tbx5 Failure of forelimb formation Agarwal et al. (2003)

Tcf7l2 Truncation of the muscle near the knee and affect myofiber
development and profile

Mathew et al. (2011)

Tbx3 Lack of the lateral triceps and brachialis Colasanto et al. (2016)

Hoxa11 and Hoxd11 Abnormalities in the forearm and calf muscles Swinehart et al. (2013)

Pitx2 Positioning of the extraocular muscles Evans and Gage (2005)

Cranial Muscle 1. Neural crest
2. Lateral plate
mesoderm

Dlx5 and Dlx6 Mandibular absence Heude et al. (2010)

GL1 Viability and movement of myogenic cells toward the bud Millington et al. (2017)
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cells labeled with fusion of CreERT and glutamate–aspartate
transporter (GLAST–CreERT) or α-smooth muscle actin
(αSMA–CreERT2) significantly contribute at all stages of BMP-
induced HO (Kan et al., 2013; Matthews et al., 2016). The FAPs are
identified as the major cell population in muscles capable of
ectopically depositing cartilage or bone after BMP2 injection or
overexpression (Lees-Shepard et al., 2018; Wang et al., 2020; Eisner
et al., 2020). In models of HO induced by burns or tendon excisions,
highly proliferative PDGFRα+ MSC-like cells accumulate at injury
sites, subsequently generating HO (Agarwal et al., 2016; Agarwal
et al., 2017). Furthermore, mouse model expressing ACVR1
(R206H) in FAPs recapitulates the full HO spectrum observed in
patients with FOP, including injury-induced and spontaneous HO
production (Lees-Shepard et al., 2018). These studies collectively
demonstrate that FAPs give rise to HO, whether acquired or owing
to FOP. Originally defined by their fibrogenic and adipogenic
capabilities, the term ‘FAPs’ did not consider their chondrogenic
and osteogenic potentials revealed in recent HO studies. A
reconsideration of this terminology might better reflect the
evolving understanding of these progenitors and their
diverse functions.

3.2 New perspectives from iPSC-based
disease models derived from patients
with FOP

Studies of iPSCs derived from patients with FOP have provided
new insights into FAPs’ origins. Many studies on the pathogenic
mechanisms of FOP have relied on animal experiments; however,
specific mechanisms in humans remain largely unknown.
Additionally, obtaining clinical samples for FOP research is
difficult, with triggering factors such as surgery possibly
complicating the patients’ conditions. Human iPSCs derived from
patients with FOP provide unique opportunities to study the
mechanisms underlying the human disease. We previously
generated a series of iPSC lines using the dermal fibroblasts of
patients with FOP (FOP-iPSCs) (Matsumoto et al., 2013). Rescued
iPSC clones (resFOP-iPSCs), with the pathogenic ACVR1R206H

mutation was corrected by BAC-based homologous
recombination to correct the FOP mutation (617G > A) existing
in exon 7, were generated using FOP-iPSCs as genetically matched
controls. Using a stepwise induction method that mimics embryonic
development (Fukuta et al., 2014), induced MSCs (iMSCs) were
generated from resFOP/FOP-iPSCs using the NCC lineage. Using
these methods, we previously constructed a human-derived in vitro
disease model of FOP (Matsumoto et al., 2015). In FOP-iMSCs,
BMP and transforming growth factor (TGF)-β signaling were
stronger compared to resFOP-iMSCs. FOP-iMSCs exhibited
enhanced chondrogenic capacity, which is crucial for promoting
endochondral ossification. Furthermore, enhanced mineralization
was confirmed in FOP-iMSCs cultured in a mineralization medium.

Research has shown that chondroprogenitor cells derived from
FOP-iPSCs via sclerotome, the developmental origin of tendons and
ligaments, did not display enhanced chondrogenesis (Nakajima
et al., 2018). These results indicate target cells induced via a
specific pathway that exhibit a disease-prone phenotype might to
some content reflect the cellular origins of the disease. MSCs derived

from NCCs could be a potential cellular origin for ectopic bone in
FOP (Figure 2A). Consist with these observations, by tracing cell
lineages in mice, we investigated the correlation between NCC-
derived FAPs and HO by different stimuli in mouse limbs. NCCs
were marked in mice using P0-Cre or Wnt1-Cre (P0, migrating
NCCs; Wnt1, dorsal neural tube before migration to neural crest)
with a floxed LacZ reporter gene. In HO tissues induced by
BMP7 injection, approximately 80% of cells positive for P0-Cre
and Wnt1-Cre were co-labeled with the osteoblast marker SP7 and
co-localized with regions positive for COL2 and COL1, which label
the cartilage and bone matrix. Thus, NCCs are the origin for ectopic
formation of cartilage and bone. Moreover, expression FOP-ACVR1
specifically in the P0-lineage cells was sufficient to cause HO under
CTX-induced muscle injury. BMP7-induced P0-Cre-positive and
Wnt1-Cre-positive cells, as well as RFP-labeled P0-Cre-FOP-
ACVR1-expressing cells, co-stained with approximately 90% of
the PDGFRα- and Vimentin-expressing cells in HO tissues (Zhao
et al., 2023). These findings affirm the pivotal contribution of FAPs
originating from the neural crest to the pathogenesis of limb HO,
regardless of etiology (Figure 2B). However, both the
aforementioned results and other studies suggest that NCC-
derived FAPs are not the exclusive source of HO. For instance,
research has indicated that Prx1-Cre labeled mesoderm-derived
adipose precursor cells are found in the muscle interstitium
(Krueger et al., 2014). This may suggest the presence of HO-
related mesenchymal precursors with distinct developmental
origins. Additionally, another study using WNT1-Cre/R26-YFP
mice did not find NCC-derived FAPs in the interstitial space of
uninjured limb muscle (tibialis anterior) (Lemos et al., 2012). This
discrepancy with the aforementioned study may be due to
differences in the YFP and LacZ marking methods, or variations
in the muscle microenvironment of the model mice under static
conditions. Further validation from different perspectives, such as
comparing the proportions of corresponding cells in injured limb
muscle or HO tissue between the two model mice, would provide
greater clarity on these findings.

3.3 FAPs derived from neural crest in the
peripheral nerves contribute to HO

The neural crest is a stem cell/progenitor cell population that
contributes to various conditions, including formation of the
craniofacial cartilages and bones, smooth muscles, peripheral
and intestinal neurons, and neuroglia (Le Douarin and
Kalcheim, 1999). Cells derived from the neural crest are
localized in various adult tissues and possess differentiate
potential, associated with the new tissue formation following
stimuli, injuries, or stresses (Neirinckx et al., 2013; Parfejevs
et al., 2018). Studies based on muscle development have shown
that neural crest-derived MCT cells/FAPs are primarily found in
the craniofacial muscles, rather than in the axial or limb muscles.
However, research discussed earlier has indicated that in the limb
muscles, FAPs originating from neural crests play a significant role
in HO. Consistently, studies of mouse models have revealed
osteogenic precursor cells, which have originated from neural
crests, within the peripheral nerves (Lazard et al., 2015;
Olmsted-Davis et al., 2017; Carr et al., 2019).
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The connective tissue sheath that encases each peripheral
nerve bundle, the perineurium, contains MSCs that are tightly
intertwined with axons and Schwann cells. These cells originate
from the neural crest, and this unique embryonic origin may
enhance their regenerative capacity (Davis et al., 2018; Joseph
et al., 2004; Richard et al., 2014). These cells exhibit features of
FAPs and are associated with tissue regeneration and ectopic bone
formation. Storer et al. demonstrate that Pdgfra-expressing
mesenchymal cells in uninjured digits establish the regenerative
blastema and are essential for regeneration (Storer et al., 2020).
Interestingly, single-cell RNA sequencing and lineage tracing of
injured sciatic nerves in adult mice transfected with an EGFP
reporter knocked into the Pdgfra gene revealed that a substantial
population of Pdgfra-EGFP-positive cells exhibit a mesenchymal
precursor and embryonic mesenchyme transcriptional signature.
These cells proliferate after injury, express genes related to
chondrogenesis and osteogenesis, such as Sox9 and Alpl, and
can differentiate into osteo/chondro/adipogenic lineages.
Crossing Wnt1CreR26-LSL-tdTomato (TdT) mice with the
above mice showed that most Pdgfra-EGFP-positive
endoneurial FAPs were Wnt1Cre-TdT-positive, indicating a
neural crest origin in the injured nerves. These FAPs contribute
to the formation of the regenerative blastema and, ultimately, to
the regenerated bone following digit-tip amputation. Similar
results were obtained in mice with another neural crest lineage
tracing line, DhhCre mice (Carr et al., 2019). These findings
support the hypothesis that the peripheral nerves facilitate
tissue repair and regeneration by providing FAPs derived from
the neural crest.

In the HO mouse model induced by muscle injection of
Ad5BMP-2, cells expressing the osteoblast-specific transcription
factor osterix appeared in the neurons at the injection site
(Lazard et al., 2015). Subsequently, these cells migrated away
from the endoneurial compartment and entered the site of new
bone formation. These cells expressed both PDGFRα and the NCC
marker low-affinity nerve growth factor receptor p75, suggesting
that this HO precursor cell may be FAPs of NCC origin. Lineage
tracing in mice that contained a tamoxifen-regulated Wnt1-Cre
recombinase crossed with a TdT reporter (Wnt1CreErt:Ai9Tm)
confirmed that following BMP-2 intramuscular injection, TdT-
positive cells within the endoneurium co-expressed SP7 (osterix),
pre-chondrocytes (Sox9), and transient brown fat (tBAT, UCP1),
which is closely associated with subsequent HO (Olmsted-Davis
et al., 2017). Additionally, human nerves near the HO site contain
many phosphoSMAD1/5/8-positive cells. Constitutively activated
ACVR1 in the cranial NCCs of mice induces ectopic cartilage
formation in the craniofacial region by enhancing BMP signaling
(Mishina and Snider, 2014). This finding may explain why patients
with FOP develop HO in the craniofacial regions specifically
through endochondral ossification. These studies indicate that, in
both mouse and human acquired HO and FOP, the precursor cells
for HO originate from NCCs in peripheral nerves (Figure 2C).

NCCsmay persist in the endoneurium because of their immune-
privileged position behind the blood–nerve barrier. Meanwhile,
PDGFRα, a factor crucial for glia–endothelium interactions and
the maintenance of the blood–brain barrier, is expressed in FAPs of
neural crest origin and may play a key role in their transition from a
neural to mesodermal fate (Lazard et al., 2015). Wnt1 is a major

FIGURE 2
Novel perspectives developed by studying patient-derived induced pluripotent stem cells (iPSCs) and mouse models. (A) Mesenchymal stem cells
(MSCs) derived from fibrodysplasia ossificans progressiva (FOP) patient-derived iPSCs (FOP-iPSCs) via neural crest cells (NCCs) are the fundamental origin
cells of heterotopic ossification (HO) in FOP. Rescued iPSC clones (resFOP-iPSCs), with the pathogenic ACVR1R206H mutation was corrected, were
generated using FOP-iPSCs as genetically matched controls. Only induced MSCs (iMSCs) generated from FOP-iPSCs through NCC lineage exhibit
the phenotype of FOP. (B)Critical role of FAPs derived from the neural crest in HO. (C) FAPs originate from neural crest lineage (Wnt1-Cre+) located in the
peripheral nerves contribute to HO.
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inducer of the neural crest (García-Castro et al., 2002; Ikeya et al.,
1997). When not inhibited, Wnt1 signaling causes the formation of
sensory neurons from neural stem cells (Lee et al., 2004). However,
when inhibited by BMP2, Wnt1 signaling in NCCs leads to the
formation of other cell types including osteogenic precursors
(Kléber et al., 2005). Therefore, in addition to the FAPs present
in the muscle interstitium, FAPs in adult muscle tissues may
originate from NCCs deposited in the endoneurium during
neural crest migration and sensory nerve formation, which re-
enact embryonic processes for tissue regeneration upon activation
by specific signals. This may explain the NCC-derived FAPs in the
peripheral nerves that contribute to HO and their mechanisms
of action.

3.4 Application of iPSCs-derived FAPs as a
tool to investigate HO

iPSCs derived from patients with HO offers potential for
understanding of the disease. Utilizing MSCs derived from FOP-
iPSCs, a mechanism has been discovered in which FOP-ACVR1
abnormally transduces BMP signaling in response to Activin-A.
This mechanism is distinct from the previously identified FOP-
ACVR1-mediated ligand-independent constitutive activity and
BMP ligand-dependent hyperactivity in BMP signaling. Activin-A
enhanced the chondrogenesis of FOP-iMSCs via aberrant activation
of BMP signaling in vitro, and induced endochondral ossification of
FOP-iMSCs in vivo (Hatsell et al., 2015; Hino et al., 2015). Further
research revealed that mTOR signaling as a critical pathway for the
aberrant chondrogenesis induced by Activin-A in FOP-MSCs (Hino
et al., 2017). Furthermore, drug screening based on the FOP-iMSCs
has identified specific small-molecule compounds, such as
rapamycin (Hino et al., 2017) and AZD0530 (Hino et al., 2018),
as potential candidates which have entered clinical trials for treating
FOP, supporting the reliability of the iPSC-based disease models.

However, FAPs and MSCs originated from iPSCs may not be
entirely congruent cell populations. FACS sorting was used to isolate
different subsets of MSC-like cells derived from FOP-iPSCs via
somite (Nakajima et al., 2018). The results showed that PDGFRα+/
CD31− cells exhibited enhanced chondrogenesis compared to
PDGFRα−/CD31- cells, suggesting that specific differentiation
protocols and isolation based on surface markers such as
PDGFRα can be employed to obtain FAPs from iPSCs.

Building on the insights into the distinct origins of FAPs, iPSC-
derived FAPs can serve as a valuable tool to investigate the role of
embryonic origin on the behavior of FAPs in heterotopic
ossification. By comparing the characteristics and functional
capacities of FAPs derived from different embryonic origins,
researchers can elucidate how these populations contribute to the
pathogenesis of ectopic bone formation and potentially identify
novel therapeutic targets. Furthermore, recent studies have shown
that iMSC-mediated delivery of therapeutic agents, such as the
ACVR2B-Fc fusion protein, can effectively alleviate HO
symptoms in FOP model mice (Gao et al., 2024). Based on the
different embryonic origins of FAPs, these cells may also provide a
promising avenue for developing targeted therapies aimed at
mitigating HO.

4 Conclusion

FAPs are essential for muscle homeostasis and regeneration in
adults. They are vital for the regulation of muscle development. The
previous literatures, by adopting the perspective that FAPs are
MCT cells, mapped their origin and fate during embryonic
development and elucidated their roles in regulating muscle
morphogenesis. The axial MCT is thought to originate from the
somites and lateral plate mesoderm; the limb MCT originates from
the lateral plate mesoderm; and the cranial MCT originates from the
neural crest and lateral plate mesoderm. Recent studies using iPSCs
derived from patients with FOP and HOmouse models revealed the
contribution of NCC-derived FAPs to HO. This novel finding,
departing from traditional developmental perspectives, suggests
that the heterogeneity of FAPs may be attributed to specific
environments and signals that activate FAPs of different
embryonic origins, leading to diverse responses. These
perspectives aid in understanding the intricate roles of FAPs in
muscle homeostasis, regeneration, and pathological conditions.
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