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Introduction: Protein O-GlcNAcylation is a dynamic post-translational
modification involved in major cellular processes and associated with many
human diseases. Bioinformatic prediction of O-GlcNAc sites before
experimental validation is a challenge task in O-GlcNAc research. Recent
advancements in deep learning algorithms and the availability of O-GlcNAc
proteomics data present an opportunity to improve O-GlcNAc site prediction.

Objectives: This study aims to develop a deep learning-based tool to improve
O-GlcNAcylation site prediction.

Methods:We construct an annotated unbalanced O-GlcNAcylation data set and
propose a new deep learning framework, DeepO-GlcNAc, using Long Short-
Term Memory (LSTM), Convolutional Neural Networks (CNN) combined with
attention mechanism.

Results: The ablation study confirms that the additional model components in
DeepO-GlcNAc, such as attention mechanisms and LSTM, contribute positively
to improving prediction performance. Our model demonstrates strong
robustness across five cross-species datasets, excluding humans. We also
compare our model with three external predictors using an independent
dataset. Our results demonstrated that DeepO-GlcNAc outperforms the
external predictors, achieving an accuracy of 92%, an average precision of
72%, a MCC of 0.60, and an AUC of 92% in ROC analysis. Moreover, we have
implemented DeepO-GlcNAc as a web server to facilitate further investigation
and usage by the scientific community.

Conclusion: Our work demonstrates the feasibility of utilizing deep learning for
O-GlcNAc site prediction and provides a novel tool for O-GlcNAc investigation.
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Introduction

Protein post-translational modification (PTM) refers to the
covalent modification of a protein after synthesized (Conibear,
2020). It plays a crucial role in diversifying protein functions and
regulating cellular processes. Among currently known PTMs
(Ramazi and Zahiri, 2021), O-linked β-N-
acetylglucosaminylation (O-GlcNAcylation) is considered as a
critical regulation mechanism (Yang and Qian, 2017). This
modification involves the attachment of N-acetylglucosamine
(GlcNAc) moieties to serine (S) or threonine (T) residues, a
process catalyzed by O-GlcNAc transferase (OGT) and reversed
by O-GlcNAcase (OGA) (Yang and Qian, 2017). Among the
currently known post-translational modifications (PTMs),
O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is
regarded as a critical regulatory mechanism. This modification
involves the attachment of N-acetylglucosamine (GlcNAc)
moieties to serine (S) or threonine (T) residues, a process
catalyzed by O-GlcNAc transferase (OGT) and reversed by
O-GlcNAcase (OGA). O-GlcNAcylation plays a vital role as a
cellular nutrient and stress sensor, regulating key processes such
as signal transduction and cell cycle control (Yang et al., 2020). Its
dysregulation has been linked to diseases like cancer,
neurodegenerative disorders (Smet-Nocca et al., 2011), and
metabolic conditions (Hart et al., 2007; Slawson and Hart, 2011).
Identifying O-GlcNAc sites may uncover detailed mechanisms of
disease pathology and offer novel therapeutic options. In
neurodegenerative diseases, the hyperphosphorylation status of
Tau proteins contributes to the neuronal death, and proposed as
promising therapeutical targets. The O-GlcNAcylation at residue
S400 of the Tau protein may reduce the phosphorylation at
S404 which disrupts the GSK3β-mediated sequential
phosphorylation process in neuron (Smet-Nocca et al., 2011).
Therefore, the elevation of O-GlcNAcylation with O-GlcNAcase
inhibitors are proposed as a novel therapy for (Alzheimer’s disease)
AD (Arnold et al., 1996; Liu et al., 2004; Morris et al., 2015;
Bartolome-Nebreda et al., 2021). In metabolic disorders, the
dysregulation of gluconeogenesis is one of the processes that is
regulated by Peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1α). The O-GlcNAcylation at Ser333 of
PGC-1α is proved to protect PGC-1α from ubiquitination and
further proteasomal degradation, which shedding light on new
strategies for diabetes treatment (Ruan et al., 2012). Hence,
identifying the specific O-glycosylation sites on proteins of
interest is crucial for disease and novel drug investigation.

Bioinformatics-based approach has been proved to be
advantageous for PTM site identification, with low cost and high
throughout capabilities (Meng et al., 2022; Chen et al., 2019).
Predicting potential PTM sites prior to experimental validation has
become an essential tool for molecular biologists (Wen et al., 2020;
Khan et al., 2021). Early predictors like YinOYang (2002) (Gupta and
Brunak, 2002) and O-GlcNAcScan (Wang et al., 2011) used machine
learning techniques such as artificial neural networks and support
vector machines to improve O-GlcNAcylation site identification.
Over time, more advanced models like GlycoMine (Li et al., 2015),
further improved prediction performance by coupling the Random
Forest (RF) algorithm with effective features selected through
information gain (IG) and minimum redundancy maximum

relevance (mRMR) (Li et al., 2015). Consideration of protein
structural features was also proposed for O-GlcNAc prediction,
GlycoMinestruct was constructed for O-GlcNAc prediction based on
29 O-linked glycosylated PDB structures, which corresponded to
47 O-linked glycosylation sites (Li et al., 2016). These predictors
have demonstrated the effectiveness of bioinformatics approaches in
O-GlcNAc prediction, and some of them have been well adopted by
researchers. However, several critical issues persist in O-GlcNAc
prediction, such as overall unsatisfactory performance and limited
availability of online prediction servers. Therefore, more
sophisticated models are needed for improving prediction
performance. One potential approach to improve prediction
accuracy involves leveraging deep learning-based methods, which
have demonstrated success in other PTM predictions (Li et al.,
2022a; Wang et al., 2022). Deep learning has presented its
remarkable performance in comparison to traditional machine
learning methods due to its robustness and generalization. Recently,
Hu et al. reported an O-GlcNAc predictor based on connection of a
convolutional neural network and bidirectional long short-term
memory, indicting the potential of deep learning in O-GlcNAc
prediction (Hu et al., 2023). However, the performance is still
insufficient, and more algorithms are in need to improve current
achievement, such as attention mechanism (Mauri et al., 2021).

In this study, we construct an annotated unbalanced
O-GlcNAcylation data set and propose a new deep learning
framework, DeepO-GlcNAc, using Long Short-Term Memory
(LSTM), Convolutional Neural Networks (CNN) combined with
attention mechanism. We have developed a web server for the
prediction of protein O-GlcNAcylation sites, making it freely
accessible to the public. To evaluate the generalization
performance of DeepO-GlcNAc, we incorporate cross-species
data from five organisms—mouse, Drosophila, Caenorhabditis-
elegans, Arabidopsis, and rat, our model demonstrates strong
robustness. Additionally, we conduct ablation experiments to
assess our model’s performance. Our model outperforms other
architectures such as CNN, CNN-LSTM, CNN-Attention, and
CNN-Attention-LSTM, establishing itself as a powerful deep
learning-based O-GlcNAc predictor.

A workflow on ensemble DeepO-GlcNAc is showed in Figure 1.
A fixed dataset is retained for testing, with the remaining data as
training set. PTM data at the protein level are mapped to core
sequences using the slide window of 21 size strategy; One-hot
encoding was used to digitize discrete features. Each individual
model is trained on the processed data under the label setting; each
model is subsequently evaluated in the evaluation steps. An online
service of DeepO-GlcNAc was constructed. The framework of
CNN-Attention-LSTM model is showed in Figure 2.

Materials and methods

Data collection and preparation

We downloaded 4,577 reviewed O-glycosylated protein
sequences in dbPTM database (Li et al., 2022b). The obtained
16,691 O-GlcNAcylation sites were experimentally validated.
Considering the sequence similarity used in experiments in
O-GlcNAcylation site-specific modification assays, we used the
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CD-HIT tool to remove protein sequences with greater than 30%
homology (Li and Godzik, 2006). As the O-glycosylated sites occur
in serine or threonine (S/T), we took S or T as the center and
intercepted peptide fragments of length 21. Finally, we obtained
protein sequences containing a total of 23,252 S/T sites. They can be
represented in the following scheme:

P 0( ) � N−10N−9 . . .N−2N−1ON+1N+2 . . .N+9N+10

Where the center O denotes serine (S) or threonine (T). If there
are fewer than 21 amino acids, we extended these sequences as
virtual amino acids with non-existent residual “*” to ensure that the
window length of each sequence was fixed at 21. The peptides
fragments can be further divided into two classes:

P O( ) ∈ P+ O( ), if the center is anO-glycoslated site,
P− O( ), otherwise{ }

where P+(O) is an experimentally verified O-glycosylated site,
i.e., 2,696 positive samples; P−(O) a non-O-glycosylated site,
i.e., 20,556 negative samples.

A total of 23,252 potential sites (Serine and Threonine) are
included in the dataset. Among them, 2,696 sites are validated
O-GlcNAc sites, and 20,556 sites are considered as negative
samples. The dataset was randomly divided into two parts, one
part includes 80% of the data as training set and the other with 20%
data was used as an independent testing set. A peptide similarity
check was performed between two parts with CD-HIT to ensure the
testing dataset is independent of training dataset (threshold = 40%)
(Li and Godzik, 2006).

To demonstrate the generalization performance of our model,
DeepO-GlcNAc was tested on five cross-species benchmark data
sets including mouse, Drosophila, Caenorhabditis-elegans,
Arabidopsis and rats, the O-GlcNAcylation information in these
species were obtained from this website: https://oglcnac.org/atlas/
download/. The statistical information on the data is listed
in Table 2.

One-hot encoding

The dataset was encoded with One-hot encoding approach,
which is a common and popular feature extraction technique
that can generate a numerical feature vector from a protein
sequence (Meng et al., 2022). According to this method, one
amino acid is denoted as a feature vector of 21-dimension such
as amino acid alanine (A) is presented as “100000000000000000000”
and the dummy amino acid “*” is presented as
“000000000000000000001”. Therefore, an Lp21-dimensional
feature vector can be obtained for a protein fragment of length L.
In this study, we used window size 21 to generate peptide samples
and got a 441 (21 × 21) dimensional feature vector to encode a
peptide fragment.

Bi � bn1, bn2, bn3, bn4, . . . , bn21( )

b ∈

A: 100000000000000000000
C: 010000000000000000000

. . .
Y: 000000000000000000010
p: 000000000000000000001

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭

n ∈ A,C, . . . , Y, p{ }
We used a weighted cross-entropy loss function (BCE_Loss),

which assigns greater importance to positive samples ensuring that
the model does not become biased towards predicting the negative
class. The “pos_weight” parameter was opted for 4.

BCE Loss � − 1
N

∑N
i�1

w · yi · log σ xi( )( ) + 1 − yi( ) · log 1 − σ xi( )( )[

Convolutional neural networks

A convolutional neural network (CNN) architecture was
employed for feature extraction and presentation.
Convolutional Neural Networks are originally proposed by
Fukushima (1980) as noncognition model, which is one of the
earliest algorithms in the field of deep learning. This network
mainly consists of four layers of operations (Kim, 2014):
convolutional layer, pooling layer, fully connected layer, and
output layer. The convolution operation is represented
mathematically as shown below:

I ⊗ K( )ij � ∑k1−1
m�0

∑ks−1
n�0

I i +m, j +m( ) · K m, n( )

Where I is the feature matrix, K is the convolution kernel, i and j
represent the i − th and j − th rows and columns of the feature
matrix, and m and n represents the m − th and n − th rows and
columns of the convolution kernel. Maximum pooling retains the
maximum value of each feature, The pooling layer is used to reduce
the dimensionality of data, select and filter the features learned, to
reduce the complexity of the model and avoid overfitting
(Kim, 2014).

Specifically, the CNN model consisted of two convolutional
layers (Conv1 and Conv2) followed by rectified linear unit (ReLU)
activation functions and max-pooling layers. The first convolutional
layer (Conv1) had 10 output channels and a kernel size of 5 × 5,
while the second convolutional layer (Conv2) had 20 output
channels and a kernel size of 3 × 3. The stride for both
convolutional layers was set to 1. The ReLU activation function
was applied after each convolutional to introduce non-linearity into
the model.

Long short-term memory

Long Short-Term Memory (LSTM) is a type of recursive
neural network extension model proposed by Hochreiter and
Schmidhuber (1997). The main advantage of LSTM lies in its
internal mechanism of gates that control information flow. With
the addition of special “gate” structures, LSTM can handle the
problem of long-term memory. The LSTM layer exhibits a hidden
state dimensionality of 512. Additionally, two fully connected
(dense) layers (FC1 and FC2) followed by the LSTM layer. The
first fully connected layer manifests an output dimensionality of
288, serving as an intermediary transformation stage between the
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LSTM layer and subsequent layers. This dimensionality is
selected based on considerations of feature representation and
model complexity. The second fully connected layer exhibits an
output dimensionality of 2, aligning with the binary classification
nature of the task. The ReLU activation function was applied after
the first fully connected layer to introduce non-linearity into
the model. After the output layer, the log_SoftMax function
was employed to compute the logarithm of the softmax
probabilities, facilitating model predictions for the binary
classification task.

Attention mechanism

Attention Mechanism is widely applied in various fields such as
image and natural language processing, due to its ability to achieve
fast parallel computations through matrix operations (Ning and Li,
2022). It calculates the attention distribution on input features and
outputs the weighted features based on the attention distribution.
Therefore combination of Attention Mechanism may benefit for
independent CNN or LSTM network models. The SE block (Hu
et al., 2017) is adopted as the core structure of attention in this paper,

FIGURE 1
Methodology workflow.
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in order to obtain the importance of each feature channel and the
interdependence between feature channels. Weight values are
assigned to each feature channel to allow the neural network to
focus on these feature channels. For an input of feature channel
number C, the weighted feature channels with number C are
calculated and then weighted based on the following three
operations.

The Squeeze operation uses global average pooling for each
channel. It represents the global distribution of responses on feature
channels and allows layers near the input to obtain a global
receptive field.

zc � Fsq Uc( ) � 1
H × W

∑H
i�1
∑W
j�1
uc i, j( )

The Excitation operation, which is a mechanism similar to the
gate in recurrent neural networks, generates weights for each feature
channel through the parameter w. The Scale operation considers the
weights output by Excitation to represent the importance of each
feature channel after feature selection, and then scales the original
feature channel through multiplication to complete the re-scaling of
the original feature along the channel dimension.

X̃c � Fscale Uc, sc( ) � sc · Uc

Specifically, two SE blocks were employed after first and second
convolutional layer, for the two SE modules, input channels are
10 and 20, corresponding to the output channels of the first and the
second convolutional layer.

Model evaluation

For deep learning model training, ten-fold cross-validation is
performed by dividing the dataset into 10 subsets and using 9 of
them as training sets and 1 as test set in turn. Each subset is
validated once in the ten-fold cross-validation process
(Supplementary Figure S1, Supplementary Table S1). The
accuracy of each validation is recorded and the model with
the highest accuracy is considered as the optimal model. The
independent test set is further used to evaluate the model and
compare it with the other tools. Several evaluation metrics are
employed in this work, including Accuracy (ACC), Matthew’s
correlation coefficient (MCC), Sensitivity (Sn), Specificity (Sp),
Precision, and F1-score which are illustrated as

Accuracy � TP + TN

TP + FP + TN + FN

MCC � TP × TN − FP × FN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√

Sensitivity � TP

TP + FN

Specificity � TN

TN + FP

Precision � TP

TP + FP

F1 � 2 × recall × precision

recall + precision

where FP FN TP and TN represent the number of false positives,
false negatives, true positives and true negatives, respectively. In
addition, we use the area under the ROC (AUC) to measure the
classifier’s ability by plotting the true positive rate (TPR) against the
false positive rate (FPR).

Results

Motif conservation analysis of O-GlcNAc
sites in human proteins

To illustrate the different distribution and preference of flanking
residues surrounding O-GlcNAc sites on human proteins, we used
the Probability Logo Generator (pLogo) algorithm. This allowed us
to compare the amino acid sequences surrounding observed
O-GlcNAc sites with sequences from non-O-GlcNAc sites,
utilizing our dataset (Figure 3). Currently, there is no confirmed
conservation motif for O-GlcNAc. Our analysis revealed a
predominant presence of Threonine (T) and Proline (P) residues
in the vicinity of O-GlcNAc sites, whereas Leucine (L) and Cysteine
(C) residues were observed around non-O-GlcNAc sites.

Ablation studies on independent test

To evaluate the impact of different model components on
performance of DeepO-GlcNAc. We conducted ablation
experiments using an independent dataset. The Area Under the
Curve (AUC) values of ROC curves indicating that the DeepO-
GlcNAc model (AUC = 0.92) outperforms CNN (AUC = 0.79),

FIGURE 2
Framework of the fusion of CNN-Attention-LSTM (DeepO-GlcNAc). The amino acid sequences are encoded using one-hot encoding, and passed
through a series of layers including Convolution, MaxPooling, Attention, LSTM, and Fully connected layers to construct the framework, then activated
by Softmax.
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CNN-SE (AUC = 0.87), and CNN-LSTM (AUC = 0.87) models in
terms of true positive rate versus false positive rate (Figure 4A). In
Precision-Recall curves, the Average Precision (AP) of DeepO-
GlcNAc (AP = 0.72) exceeds that of the CNN (AP = 0.44),
CNN-SE (AP = 0.62), and CNN-LSTM (AP = 0.62) models
(Figure 4B). These results highlight the superior performance of
DeepO-GlcNAc, especially in reducing false positives and
maintaining higher precision across various recall levels.
Compared to CNN, CNN_SE, and CNN_LSTM, DeepO-GlcNAc
demonstrated the highest sensitivity (Sn = 0.68), Matthews
Correlation Coefficient (MCC = 0.60), accuracy (Acc = 0.92), and
F1 score (0.65). Meanwhile, CNN_SE achieved the best specificity
(Sp = 0.96) and precision (0.62), as shown in Table 1. These results
highlight the superior performance of DeepO-GlcNAc and the
importance of the SE module in enhancing model performance.

For each model, the area under the ROC curve and the
Precision-Recall curve are reported.

DeepO-GlcNAc demonstrated varied
predictive performance across
different species

To evaluate the generalization performance of DeepO-
GlcNAc, we incorporate cross-species data from five
organisms—mouse, Drosophila, Caenorhabditis-elegans,
Arabidopsis, and rat. The statistical information on the data is
listed in Table 2. As can be seen in Figure 5A, accuracy (ACC)
values for all species hovered around 0.6, with the highest for
Arabidopsis at 0.63, while rat, Caenorhabditis-elegans and

FIGURE 3
Motif conservation analysis of O-GlcNAc sites. (A)Motif conservation analysis of O-GlcNAc sites for Threonine (T) (B)Motif conservation analysis of
O-GlcNAc sites for serine (S). The sequence logos were generated with pLogo with scaled better data visualization. The default values ± 3.92 (P < 0.05)
were used as the thresholds for significantly overrepresented and underrepresented amino acids, respectively. The red horizontal lines on the sequence
logos denote the P < 0.05 threshold.
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Drosophila showed slightly lower accuracy values at 0.63 and
0.51. Specificity (Sp) was higher in Arabidopsis and rat, both
achieving values above 0.60. Sensitivity (Sn) was highest in
Caenorhabditis-elegans and mouse, with the former reaching
1.00. The ROC curves (Figure 5B) further reflect the model’s
performance, where Caenorhabditis-elegans displays the highest
AUC of 0.83, indicating the most reliable predictions, followed
by Arabidopsis with an AUC of 0.66. Conversely, rat had the
lowest AUC of 0.50, suggesting limited predictive power for
this species.

Performance comparison between DeepO-
GlcNac and current predictors

To demonstrate the predictive capability and robustness of DeepO-
GlcNAc, we conducted a performance comparison with other currently
available predictors. We compared our model with two available web
services and the most-recently released O-GlcNAc prediction tool,
including YinOYang, NetOglyc-4.0, and GlcNAcPRED-DL. The
independent test dataset was submitted to all the predictors and the
results were compared parallelly. DeepO-GlcNAc outperformed all the
tools in terms of accuracy (ACC), specificity (Sp), and AUC, Matthew’s
correlation coefficient (MCC), F1 score and Precision. It achieves an
AUC value of 0.92, which is 24% higher than YinOYang, 10% higher
than NetOglyc-4.0% and 11% higher than GlcNAcPRED-DL
(Figure 6). Our model has the highest precision of 0.61, ACC of
92%, as well as the highest MCC of 0.60. Metrics related to class
balance, such as precision-recall curves and the F1-score, DeepO-
GlcNAc performs the best. These results highlight the advantages of
DeepO-GlcNAc (Table 3). And we also provide the list of the
independent dataset as a supporting material including which
specific sites and proteins were successfully identified when using a
certain tool for benchmarking (Supplementary Table S1).

FIGURE 4
Ablation experiments on DeepO-GlcNAc. (A) ROC Curves for O-GlcNAc site prediction models. The ROC curves illustrate the performance of
various computational models in predicting O-GlcNAcylation sites on the independent dataset including DeepO-GlcNAc, CNN, CNN_SE, CNN_LSTM.
(B) Precision-recall curves for O-GlcNAc site prediction models. Precision-recall curves assess the precision against recall for the O-GlcNAcylation site
prediction models including DeepO-GlcNAc, CNN, CNN_SE, CNN_LSTM.

TABLE 1 Results of the test data in ablation experiments.

Sn Sp MCC ACC Precision F1 AUC

CNN 0.47 0.91 0.35 0.86 0.39 0.43 0.79

CNN-SE 0.49 0.96 0.50 0.91 0.62 0.54 0.87

CNN-LSTM 0.54 0.95 0.50 0.90 0.57 0.55 0.87

DeepO-GlcNAc 0.68 0.95 0.60 0.92 0.61 0.65 0.92

Bold indicates the most significant value among the comparisons of different models.

TABLE 2 Statistical information on species apart from human species.

Species Positive Negative

mouse 180 11,240

Drosophila 101 6,212

Caenorhabditis-elegans 86 1,538

Arabidopsis 548 24,028

rats 454 10,375
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Implementation of the DeepO-
GlcNAc webserver

To facilitate the usage of DeepO-GlcNAc by other researchers, we
have developed a user-friendly web server based on DeepO-GlcNAc.
The online service of DeepO-GlcNAcwas constructed in an easy-to-use
manner using Flask and HTML. The model was deployed in Tencent
Cloud, which is equipped with 16 cores, 64 GB memory and a 2 TB
hard disk. It was developed using the Windows Sever 2016-Flask-
HTML open-source web platform and has been extensively tested on
various web browsers including Internet Explorer, Mozilla, Firefox and
Google Chrome to provide a robust service. For convenience, the online
service of DeepO-GlcNAc was implemented and freely available at
http://124.220.189.245:8000/.

Supplementary Figure S2 showcases the user interface of the
server, along with an example of prediction output. The server is
hosted on the Tencent cloud computing facility. The server utilizes
DeepO-GlcNAc to identify O-GlcNAc sites within submitted protein
sequences. On the index webpage, users can conveniently submit
FASTA formatted protein sequences in the provided textbox. The
prediction results include comprehensive information such as the
positions of predicted modification sites, corresponding scores, and
the overall prediction outcomes. Users also have the option to download
the generated prediction results in plain text format for further analysis.
In addition, the curated benchmark datasets and the independent test
dataset used in our study are available for downloaded from the
O-GlcNAc web server (Supplementary Figure S2).

Discussion

In this work, we built a dataset containing 700 experimentally
validated O-glycoproteins from humans. Then, we specifically
designed three neural network frameworks—CNN, LSTM, and
Attention, respectively—to extract protein sequence features. In our
analysis, based on the results of ablation experiments, the

combination of CNN, LSTM and Attention presented the best
performance. Both CNN and LSTM have been proved efficient in
PTM prediction (Naseer et al., 2021). CNN excels at capture spatial
patterns inherent in the input data. While LSTM networks are adept at
capturing sequential patterns and long-range dependencies. We consider
that both local sequence patterns and the temporal of these patterns are
crucial for O-GlcNAc modification prediction. Therefore, LSTM
complements this by processing the spatial feature maps across spatial
dimensions to capture temporal dependencies among features for each
sequence. Through this fusion, the model gains a comprehensive
understanding of both spatial and sequential characteristics associated
with O-GlcNAc modification sites, ultimately enhancing its predictive
performance. We also deployed an attention mechanism which
introduces an adaptive approach where the importance of each
channel is individually assessed based on its context. It has been
proved that attention mechanism yield substantial performance
enhancements in state-of-the-art CNNs (Hu et al., 2020). In our
model, the utilization of attention mechanism improved the model’s
AUC value from 0.87 in the CNN-LSTM architecture to 0.92. This
suggests that certain amino acid patterns are more critical for O-GlcNAc
prediction. Given that the detailed mechanism of protein
O-GlcNAcylation is not fully clear, this information could be valuable
for further investigation. Moreover, by suppressing redundant or
irrelevant feature maps, the attention mechanism enhances the
model’s generalization ability and robustness. Consequently, LSTM
can focus more on valuable feature information pertinent to the
prediction task, thus enhancing the overall performance of the model.

Deep learning-based approaches have been widely applied to
various types of PTM prediction, and their advantages have been
well demonstrated (Meng et al., 2022; Naseer et al., 2022). However,
the application of deep learning in O-GlcNAc prediction has not yet
achieved significant success (Mauri et al., 2021). Previous attempts using
the CNN for O-GlcNAc prediction did not yield substantial
improvements (Hu et al., 2023; Zhu et al., 2022), possibly due to the
relatively small dataset sizes and model construction limitations. In our
study, we benchmarked five deep learning-based models and

FIGURE 5
(A) Five cross-species datasets testing results onDeepO-GlcNAc. (B)Comparison of the ROCcurves and AUC values of five cross-species prediction
on DeepO-GlcNAc.
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demonstrated the potential of the CNN-Attention-LSTM fusion model
through both independent testing and cross-validation. This indicates
the feasibility of using deep learning in O-GlcNAc prediction and
suggests that further optimization of deep learning models could
enhance the prediction performance. Based on the test results of

incorporating cross-species data from five organisms—mouse,
Drosophila, Caenorhabditis-elegans, Arabidopsis, and rat, our model
demonstrates strong generalization performance.

Despite the existence of several algorithms for O-GlcNAc
prediction, the availability of public online services is still limited.

FIGURE 6
The performance comparison between DeepO-GlcNAc to three currently existing predictors, including YinOYang, NetOglyc-4.0, and
GlcNAcPRED-DL. (A) The ROCs of different predictors are compared based on the independent test dataset. DeepO-GlcNAc presents the best AUC of
0.92 compared to YinOYang (0.68), NetOglyc-4.0 (0.82) and GlcNAcPRED-DL (0.81). (B) The PR plots of different predictors are compared. DeepO-
GlcNAc presents the best AP of 0.72 compared to YinOYang (0.25), NetOglyc-4.0 (0.49) and GlcNAcPRED-DL (0.49). (C) The Radar plot displayed
themetrics of Sp, Sn, AUC, F1, Precision, ACC and MCC. DeepO-GlcNAc, YingOyang, NetOglyc-4.0 and GlcNAcPRED-DL are shown in red, blue, purple,
and green respectively. DeepO-GlcNAc ranks first in Precision, AUC, F1, ACC, and MCC, and second in Sn among the predictors.

TABLE 3 Performance comparison of DeepO-GlcNAc with other prediction models.

Tool Sn Sp MCC ACC Precision F1 AUC

DeepO-GlcNAc 0.68 0.95 0.60 0.92 0.61 0.65 0.92

YinOYang 0.21 0.95 0.19 0.86 0.33 0.25 0.68

NetOglyc-4.0 0.35 0.97 0.39 0.90 0.57 0.43 0.82

GlcNAcPRED-DL 0.82 0.61 0.28 0.64 0.21 0.34 0.81

Bold indicates the most significant value among the comparisons of different models.
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Currently, only a few O-GlcNAc prediction services are accessible,
which hampers O-GlcNAc research. In this study, we developed a free
online service platform based on the CNN-Attention-LSTM model.
Compared to the other existing servers, our server demonstrated
improved performance in sensitivity, specificity, and precision. Thus,
our sever can be a new helpful tool for O-GlcNAc research.

There are still several limitations in our work. In the study, we
used a dataset with 2696 O-GlcNAcylation sites experimentally
validated. Due to the nature distribution, it is an imbalanced
dataset with more negative peptides than positive ones. Even it
may better reflect the actual situation, such imbalance may make
deep learning algorithms tend to be biased toward the negative class.
This could potentially explain why our model exhibited less
sensitivity compared to O-GlcNAcPRED-DL, which utilized a
balanced dataset. On the other hand, our predictor and another
two predictors with imbalanced dataset presents better specificity
compared to O-GlcNAcPRED-DL. Whether and how should we
deal with such kind of dataset in PTM prediction need to be further
investigated. In addition, we employ sliding window method to
construct O-GlcNAc sites, which is commonly in PTM predication.
However, this method introduces information redundancy and may
lead to inefficient resource utilization. Moreover, it captures local
sequence information, and neglects the overall structure within the
global sequence. This limitation may be improved by optimizing the
length of the window.

In summary, the developed DeepO-GlcNAc predictor achieved
remarkable performance in O-GlcNAc site prediction. Its success
demonstrates the feasibility of using deep learning for O-GlcNAc
prediction, and the online predictor service provides a valuable tool
for future research in this field.
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