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Introduction: Grafts with alcohol-associated liver disease (ALD) subjected to
prolonged cold ischaemia from donors after brain death (DBD) are typically
unsuitable for transplantation. Here, we investigated the role of growth hormone
(GH) in livers with ALD from DBDs and its relationship with vascular endothelial
growth factor A (VEGFA) and VEGFB.

Methods: Livers from rats fed ethanol for 6 weeks and with brain death (BD) were
cold stored for 24 h and subjected to ex vivo reperfusion. Hepatic damage and
proliferative and inflammatory parameters were analysed after BD, before graft
retrieval, and after reperfusion. Survival was monitored using an in vivo
transplantation model.

Results: In DBDs, the administration of GH, which increased the levels in the
intestine but not in the liver, induced the generation of both VEGFA and VEGFB in
the intestine and protected against hepatic damage caused by BD before
retrieving liver grafts from donors. However, VEGFA was the only factor that
protected against damage after cold ischemia and reperfusion, which also
increased the survival of the recipients.

Discussion: In conclusion, the signalling pathway and beneficial properties of the
GH-VEGFA/VEGFB pathway, in which the intestine-liver axis plays a key role, were
disrupted when grafts with ALD from DBDs were retrieved from donors and
subjected to cold ischemia and reperfusion.
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1 Introduction

Currently, more than 70% of grafts are obtained from donors after brain death (DBDs)
(Kwong et al., 2021). Brain death (BD) markedly reduces liver graft tolerance to ischemia/
reperfusion (I/R) injury as well as graft survival (Van Der Hoeven et al., 2001; ONT, 2023;
Weiss et al., 2007). In clinical liver transplantation (LT), the shortage of hepatic graft donors
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and consequent increase in waiting lists for transplants has led
centres to expand their criteria for accepting organs from
marginal donors.

According to the National Transplant Organization (ONT),
approximately 25% of grafts come from donors with some kind
of alcoholic condition, and during the last 10 years, many of these
liver grafts have been discarded because of the presence of alcohol-
associated liver disease (ALD). Failure and dysfunction of liver grafts
are directly related to the amount of alcohol consumed by donors
throughout their lifetime (ONT, 2023). ALD has a high prevalence
in society and represents a socioeconomic problem, and steatosis is a
key donor variable for predicting post-transplant outcomes (ONT,
2023). ALD could be accompanied by steatosis and inflammation
(alcoholic steatohepatitis, ASH) (Mackowiak et al., 2024). Its
progression causes not only liver damage, but also the affectation
of different tissues such as the intestine among others (Wu et al.,
2023). Furthermore, it is known that excessive alcohol consumption
can modulate the immune system by increasing or reducing its
activity (Barr et al., 2016; Lewis et al., 2023; Wu et al., 2023).
Globally, data indicate that alcohol causes 3 million deaths
annually and is one of the major causes of morbidity and
mortality related to liver pathologies (Wu et al., 2023). ALD in
clinical liver transplants from DBD, especially when liver grafts are
subjected to prolonged ischemic periods, such as 24 h, negatively
affects postoperative outcomes and recipient survival (ONT, 2023;
Pan et al., 2018).

Some studies suggest that endocrine abnormalities in DBDs
include a rapid decrease in circulating hormones, such as growth
hormone (GH) (Kgosidialwa et al., 2019; Kreber, Griesbach, and
Ashley, 2016). GH is released from the anterior pituitary gland,
circulates in plasma, and binds to its receptors in different target
tissues (Álvarez-Mercado et al., 2019). Moreover it has been
reported that GH can modulate pathways affected by ALD (Qin
and Tian, 2010), thus establishing a relationship between GH,
BD, and ALD.

Different results have been reported regarding the effects of GH
on various pathologies. For example, GH replacement protects
against inflammatory responses in cardiovascular diseases
(Boccanegra et al., 2023; Caicedo et al., 2018). However, previous
studies of LT from DBDs using a genetically induced obesity model
of liver steatosis and without associated inflammation reported that
steatotic livers subjected to 6 h of cold ischaemia (CI) had altered
GH levels and an exacerbation of damage after exogenous GH
administration (Álvarez-Mercado et al., 2019). In addition,
preclinical ALD models have demonstrated that GH
administration over long periods (6 weeks) may exert a positive
effect on reducing fat infiltration (Qin and Tian, 2010).

GH is well known to have the ability to induce changes in
different growth factors in liver pathologies. An in vitro model of a
hepatocellular carcinoma (HCC) cell line showed that GH may
increase vascular endothelial growth factor A (VEGFA) levels and
promote proliferation (S. Li et al., 2010). In experimental models of
genetically induced obesity, different results have been reported
regarding the effects of VEGFA on I/R injury. VEGFA plays a minor
role in the benefits of the NRG1-PAK1 signalling pathway in
steatotic LT from DBDs (Micó-Carnero et al., 2022), whereas
VEGFA exacerbates damage in steatotic livers undergoing partial
hepatectomy (PH) under I/R (Bujaldon et al., 2019). Many studies,

including those related to PH, have reported that VEGF receptor 2
(VEGFR2) is the principal mediator of the pathophysiological effects
of VEGFA (Ding et al., 2010; Rossato et al., 2020; Zhang et al., 2019;
Zhou et al., 2022).

Moreover, VEGFA and VEGFB are closely related, with VEGFA
having affinity towards VEGFR2 and VEGFR1 (the VEGFB
receptor) (Boucher et al., 2017; Lal, Puri, and Rodrigues, 2018).
VEGFB plays an important role in fatty liver. In a recent study using
diabetic and NAFLD-induced mouse models, treatment with anti-
VEGFB for long periods (2 months) prevented NAFLD
development by blocking white adipose tissue lipolysis (Falkevall
et al., 2023). In contrast, results based on VEGFB-KO mice with
induced obesity indicate that VEGFB increases NAFLD
development (R. Li et al., 2022). To the best of our knowledge,
studies on the role of VEGFB in hepatic I/R conditions have not
been reported.

Given the close bidirectional anatomical and functional
relationship between the gastrointestinal tract and the liver via
portal circulation, several studies have reported an important role
of the intestine in I/R liver injury (Micó-Carnero et al., 2021). It is
also important to highlight the role of other factors in the
importance of this axis in the context of LT, such as certain
growth as FGF15 (Álvarez-Mercado et al., 2019; Gulfo et al.,
2020). These data added to the fact that a recent study
demonstrated the production of VEGFB and VEGFA in the
intestine (Zhang et al., 2018), suggest that intestine-liver axis may
be crucial in the study of those factors role.

Herein, we explored the role of GH, VEGFB, and VEGFA in the
following conditions: (a) in DBDs before graft retrieval from donors,
evaluating whether GH modulates VEGFA and VEGFB and the
importance of the intestine-liver axis in such pathways due to the
close anatomical and functional bidirectional interaction between
the intestine and liver and its crucial role as a modulator of diverse
liver pathologies and liver injury in I/R injury (Micó-Carnero et al.,
2020); (b) in an ex vivo model after 24 h of cold ischaemia in a liver
normothermic perfusion machine; and (c) in an LT model in order
to study the postsurgical survival rate. Our investigations focused on
the pharmacological modulation of GH, VEGFB, and VEGFA, as
well as the involvement of the intestine-liver axis in DBDs before
liver retrieval from donors, to investigate whether the effects on the
liver induced by the pharmacological modulation of such growth
factors (GH-VEGFB/VEGFA) in DBDs are maintained when liver
grafts are retrieved from DBDs and subjected to 24 h of cold
ischaemia in either an ex vivo liver perfused model or in vivo LT.
The results of this study could lead to the identification of new
molecular mechanisms and therapeutic targets that would address
the unmet need of improving the function and quality of livers with
ALD in LT from DBDs.

2 Material and methods

2.1 Animals and experimental model of ALD

Male Sprague-Dawley (SD) rats weighing 200–250 g were used.
Rats were fed standard chow (Teklad Global 14% Protein Rodent
Maintenance Diet; ENVIGO). ALD was induced ad libitum by
diluting ethanol (12% v/v) in tap water for 6 weeks to induce
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chronic toxicity (Nevzorova et al., 2020; Radic et al., 2019). Steatosis
(via Oil Red O staining), fibrosis (via Sirius red staining), and
collagen I and alpha-smooth muscle actin (α-SMA) levels were
measured. Low steatosis levels (<30% steatosis) and an increase in
fibrotic markers were detected in the liver (Supplementary Figure
S1). Rats were maintained under a 12-h light/dark cycle in a room at
25°C ± 2°C.

All procedures were conducted according to EU regulations
(Directive 2010/63/EU of the European Parliament and Council of
22 September 2010).

2.2 Experimental groups

To study the effects of the GH pathway on hepatic damage in
DBD livers after BD induction in an ALD experimental model, we
established the following experimental groups:

1. Cont. 1 (n = 6): rats with ALD (see Section 2.1).
2. BD (n = 6): BD was performed via frontolateral trepanation in

rats with ALD, and a balloon catheter was introduced into the
extradural space. Intracranial pressure was increased by
inflating the balloon for 1 minute, which induced rapid
brain injury and led to immediate BD. The rats were
maintained normotensive with colloid infusion for 3 h.

3. BD +GH (n = 6): as in group 2, with recombinant GH (100–40,
Thermo Fisher Scientific, Waltham, Massachusetts,
United States of America) administered intravenously
immediately after BD (0.1 mg/kg).

4. BD + VEGFB (n = 6): as in group 2, with VEGFB (100-20B-
100UG, Thermo Fisher Scientific, Waltham, Massachusetts,
United States of America) administered intravenously
immediately after BD (5 μg/kg).

5. BD + VEGFA (n = 6): as in group 2, with recombinant VEGFA
(100–20-100UG, Thermo Fisher Scientific, Waltham,
Massachusetts, United States of America) administered
intravenously immediately after BD (5 μg/kg).

6. BD + GH + anti-VEGFR1 (n = 6): as in group 3, with an
antibody against VEGFR1 (BS-0170R-100UL (Bioss Inc.,
Woburn, Massachusetts, United States of America)
administered intravenously immediately after BD (10 mg/kg).

7. BD + GH + anti-VEGFR1 + anti-VEGFR2 (n = 6): as in group
6, with an VEGFR2 antagonist (orb61120, Biorbyt, Cambridge,
United Kingdom) administered intravenously (2.5 mg/kg).

Tissue and plasma samples were collected 3 h after BD induction
and immediately frozen at −80°C. Liver samples were fixed in 4%
buffered formaldehyde solution overnight at 4°C and in OCT for
histological and immunohistochemical analyses.

To investigate the effects of the GH pathway on hepatic damage
in the experimental model after BD, cold ischaemia (CI) and
reperfusion in our ALD experimental model, an ex vivo
normothermic perfusion model, was established. After 3 h of BD,
livers were flushed with University of Wisconsin (UW) solution,
isolated, and preserved in UW solution at 4°C for 24 h. Livers were
then connected via the portal vein to a recirculating perfusion
system for 120 min at 37°C. In the ex vivo liver perfusion model,
the perfusate was composed of 2% dextran in Krebs-Henseleit

bicarbonate (KHB) buffer (K3753, Sigma Aldrich from St. Louis,
Missouri, United States of America) with 2 µI/mL of heparin. The
buffer was continuously ventilated with a 95% O2 and 5% CO2 gas
mixture (Carnevale et al., 2019). The following groups were
established:

8. BD + CI (n = 6): as in group 2, but livers were flushed with
UW solution, isolated, and preserved at 4°C for 24 h of CI.

9. BD + GH + CI (n = 6): as in group 3, but livers were flushed
with UW solution, isolated, and preserved at 4°C for
24 h of CI.

10. BD + VEGFB + CI (n = 6): as in group 4, but livers were
flushed with UW solution, isolated, and preserved at 4°C for
24 h of CI

11. BD + VEGFA + CI (n = 6): as in group 5, but livers were
flushed with UW solution, isolated, and preserved at 4°C for
24 h of CI

12. Cont 2 (n = 6): The livers of ALD rats were flushed with UW
solution without CI or reperfusion.

13. BD + CI/R (n = 6): as in group, 2 but livers were flushed with
UW solution, isolated, and preserved at 4°C for 24 h of CI and
2 h of normothermic ex vivo reperfusion.

14. BD + GH + CI/R (n = 6): as in group 3, but livers were flushed
with UW solution, isolated, and preserved at 4°C for 24 h of CI
and 2 h of normothermic ex vivo reperfusion.

15. BD + VEGFB + CI/R (n = 6): as in group 4, but livers were
flushed with UW solution, isolated, and preserved at 4°C for
24 h of CI and 2 h of normothermic ex vivo reperfusion.

16. BD + VEGFA + CI/R (n = 6): as in group 5, but livers were
flushed with UW solution, isolated, and preserved at 4°C for
24 h of CI and 2 h of normothermic ex vivo reperfusion.

Liver and perfusate samples were collected after 24 h of CI and
2 h after reperfusion and were immediately frozen at −80°C. Liver
samples were fixed in 4% buffered formaldehyde solution overnight
at 4°C and in OCT for histological and immunohistochemical analyses.

All doses of the compounds administered in this study were
determined based on previous studies (Álvarez-Mercado et al., 2019;
Atzori et al., 2022; Bujaldon et al., 2019; Micó-Carnero et al., 2022)
and preliminary data obtained by our group.

Finally, to study whether the treatments played a role in the
survival rate, LT groups were created, as follows:

17. BD + LT (n = 12, 6 transplantations): After 3 h of BD (as in
group 2), livers from ALD rats were flushed with UW
solution, isolated, and preserved in UW solution at 4°C for
24 h. Livers were implanted in healthy rats according to the
cuff technique described by Kamada, with an anhepatic phase
of 15–20 min (Kamada and Calne, 1979).

18. BD + GH + LT (n = 12, 6 transplantations): Same as group 17,
but with GH (dose and pretreatment times similar to those
of group 3).

19. BD + VEGFB + LT (n = 12, 6 transplantations): Same as
group 17, but with VEGFB (dose and pretreatment times
similar to those of group 4).

20. ALD + BD + VEGFA + LT (n = 12, 6 transplantations): Same
as group 17, but with VEGFA (dose and pretreatment times
similar to those of group 5).
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After the surgical procedure, the survival of receptors was
monitored for 14 days.

2.3 Biochemical determinations

Plasma transaminases (alanine aminotransferase [ALT];
GN41125, Gernon, Sant Joan Despí, Spain and aspartate
aminotransferase [AST]; GN40125, Gernon, Sant Joan Despí,
Spain) were measured using standard procedures. GH (E-EL-
R3003), VEGFA (E-EL-R2603; Elabscience Biotechnology Co.,
Ltd., Wuhan, China), and VEGFB (MBS269676; MyBioSource,
Inc., San Diego, CA, United States of America) levels in the liver
and the entire wall thickness of the small intestine were determined
using an immunoassay kit. IL-1β (ab100768), collagen-I (ab285314;
Abcam, Cambridge, UK), IL-10 (E-EL-R0016; MyBioSource, Inc.,
San Diego, CA, United States of America), Ki-67 (MBS705024) and
α-SMA (MBS266620; MyBioSource, Inc., San Diego, CA,
United States of America) levels were quantified in liver tissue
with immunoassay kits, according to the manufacturer’s
instructions. Lipid peroxidation was determined by measuring
the formation of malondialdehyde (MDA) with the
thiobarbiturate reaction (Casillas-Ramírez et al., 2023).

Caspase-3 (ab39401; Abcam, Cambridge, UK), ATP
(MBS166244; MyBioSource Inc., San Diego, CA, United States of
America), and lactate (E-BB-K044-S; Elabscience Biotechnology
Co., Ltd., Wuhan, China) levels were measured using
colorimetric assay kits. The total protein concentration in
different tissues was determined using a colorimetric kit and the
Bradford method (5000006; Bio-Rad, Hercules, CA, United States of
America), according to the manufacturer’s instructions.
Biochemical results were adjusted per mg of tissue protein.

2.4 Reverse transcription and quantitative
polymerase chain reaction

Total RNA was isolated from frozen intestinal tissues using
TRIzol Reagent (15596026, Invitrogen, Madrid, Spain), quantified
with a NanoDrop 1,000 spectrophotometre, and reverse-transcribed
using a High-Capacity cDNA Reverse Transcription Kit (4,374,966;
Thermo Fisher Scientific, Life Technologies, Carlsbad, CA,
United States of America). qPCR was performed with TaqMan
Universal PCR Master Mix (4,304,437; Thermo Fisher Scientific,
Life Technologies, Carlsbad, CA, United States of America) using an
ABI PRISM 7900 HT detection system with premade Assays-on-
Demand TaqMan probes (Rn01511602_m1 for VEGFA,
Rn01454585_g1 for VEGFB, and Rn00667869_m1 for β-actin, as
an endogenous control; Thermo Fisher Scientific, Waltham, MA,
United States of America), according to the manufacturer’s protocol.

2.5 Histology and immunohistochemistry

To evaluate the severity of hepatic injury, paraffin-embedded liver
sections were stained with haematoxylin and eosin (H&E). As an
assessment parameter for liver injury, the sinusoidal status was
evaluated, as described by Behrends et al. (2010), and sections were

scored from 0 to 4 for sinusoidal dilatation, sinusoidal congestion,
atrophy, perisinusoidal fibrosis, portal fibrosis, and portal inflammation.

Liver steatosis was evaluated by Oil Red O staining of the liver
tissues in OCT sections. The TUNEL assay kit was used to identify
apoptotic cells (nuclei or apoptotic bodies) using a DNA
fragmentation detection kit (ab206386, Abcam, Cambridge, UK),
and sections were dewaxed according to the manufacturer’s
instructions. Finally, the fibrosis level was assessed by Sirius red
staining to observe collagen I fibres.

Liver sections were observed under an Olympus BX51 System
Microscope (Olympus, Tokyo, Japan).

2.6 Statistics

Statistical analyses were performed using Prism 10.0.2 for
Windows (GraphPad Software, San Diego, California,
United States of America). All results are expressed as mean ±
standard error of the mean (SEM). The results were compared using
one-way analysis of variance (ANOVA) with Tukey’s post hoc test.
The Student’s t-test was performed for comparisons between two
groups. Survival was estimated using the Kaplan-Meier method and
statistically analysed using a log-rank test. Differences were
considered significant at p-values-<0.05.

3 Results

3.1 GH-VEGFB/VEGFA pathway in DBDs
with ALD

First, to evaluate the role of this pathway, we determined the levels
of GH and its effects on VEGFB and VEGFA in liver grafts after BD
before graft retrieval. No significant between-group differences were
observed in any of the protein levels (Figure 1A). Thus, under these
experimental conditions, the exogenously administered GH, VEGFB,
or VEGFA did not reach the liver. Indeed, the hepatic levels of GH in
the BD + GH group were similar to those in the BD group. Similarly,
liver levels of VEGFB and VEGFA after exogenous administration
(BD +VEGFB and BD +VEGFA groups, respectively) were similar to
those in the BD group.

Owing to the importance of the intestine-liver axis, we evaluated
GH, VEGFB, and VEGFA levels in the intestines of DBDs before
graft retrieval. The increase in GH observed in the intestine after GH
administration (BD + GH group) was associated with an increase in
the protein and mRNA expression of VEGFB and VEGFA (Figures
1B,C), indicating that GH administration promoted the intestinal
production of VEGFB and VEGFA. Finally, in contrast to the liver,
increases in VEGFB and VEGFA protein levels were detected in the
intestine after exogenous administration (Figure 1B). Thus, contrary
to what occurred in the liver, all factors (GH, VEGFB, and VEGFA)
are taken up by the intestine (but not by the liver) after their
exogenous administration.

To examine the potential co-regulation between VEGFB and
VEGFA, VEGFB and VEGFA levels were evaluated in the liver and
intestine. VEGFB levels were similar between the BD and BD +
VEGFA groups, and VEGFA levels were similar between the BD and
BD + VEGFB groups (Figures 1A,B).
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3.2 Role of the GH-VEGFB/VEGFA pathway
in DBDs with ALD before graft retrieval

In this study, we assessed the role of GH and its downstream
effectors, VEGFB and VEGFA, in DBDs with ALD and evaluated

their effects on liver damage, inflammation, oxidative stress,
regeneration, cell death, and cell energy metabolism biomarkers
before liver graft retrieval.

A decrease in all liver damage parameters (AST and ALT levels
and damage scores) was detected after administering GH, VEGFB,

FIGURE 1
GH-VEGFB/VEGFA pathway in DBDs with ALD. (A) Liver GH, VEGFB and VEGFA protein levels. (B) Intestine GH, VEGFB and VEGFA protein levels. (C)
Intestine VEGFB and VEGFA relative mRNA expression. ****p ≤ 0.0001; **p ≤ 0.01; *p ≤ 0.05 and ns = no significance.
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or VEGFA (Figure 2A). In addition, the concomitant administration
of recombinant GH and anti-VEGFR1 (an antibody against the
VEGFB receptor) protected ALD livers against the deleterious
effects induced by BD (Figure 2A). However, when we
concomitantly administered GH and inhibited the action of both
receptors VEGFR1 and VEGFR2 (BD + GH + anti-VEGFR1 + anti-
VEGFR2), the hepatic damage results were similar to those of the
BD group.

Inflammation parameters were also analysed (MDA, IL-1β,
and IL-10 levels). MDA levels (an index of oxidative stress)
followed a pattern similar to that of hepatic damage; a
decrease in MDA levels was observed after treatment with
GH, VEGFB, VEGFA, and GH + anti-VEGFR1, whereas the
GH benefits were abolished when both VEGFR1 and
VEGFR2 were inhibited (the BD + GH + anti-VEGFR1 + anti-
VEGFR2 group) (Figure 2B). Inflammation parameters were also
analysed. Considering the potential inflammatory effects of IL-
1β, its levels were also assessed. Despite no significant differences
between the different potential beneficial treatments and the BD
group, a high increase in their liver levels was detected in the BD
group treated with GH, anti-VEGFR1, and anti-VEGFR2 (the BD
+ GH + anti-VEGFR1 + anti-VEGFR2 group), indicating the
strong inflammatory potential of this pathway and a synergism in
the inflammatory response of these modulators (Figure 2B).
Next, we evaluated the potential anti-inflammatory effects of
these pathways. A significant increase in IL-10 (a potent anti-
inflammatory interleukin) was detected in the groups that were
protected against hepatic damage (GH, VEGFB, VEGFA, and GH
+ anti-VEGFR1 groups), whereas hepatic IL-10 levels in the BD +
GH + anti-VEGFR1 + anti-VEGFR2 group were similar to those
in the BD group (Figure 2B).

Subsequently, parameters related to energy metabolism
(ATP and lactate) were analysed in ALD livers from DBDs.
Effective treatments promoted anaerobic glycolysis to increase
ATP. Indeed, high levels of lactate were directly related to high
ATP levels in the liver in the BD + GH, BD + VEGFB, BD +
VEGFA, and BD + GH + anti-VEGFR1 groups, when compared
with the BD group (Figure 2C). However, ATP and lactate levels
were similar in the BD + GH + anti-VEGFR1 + anti-
VEGFR2 and BD groups.

Finally, the apoptotic activity and hepatic regeneration were
evaluated. To determine whether cell death occurred via
apoptosis, the caspase-3 activity was evaluated. No significant
differences were detected between the groups (Figure 2D). To
confirm these data, liver sections stained with the TUNEL assay
kit were evaluated, and no differences in the number of
apoptotic cells were detected between the groups (Figure 2D).
These data suggest that regulation of cell death by apoptosis does
not play a relevant role in such conditions. Concerning the
capacity of the GH-VEGFB/VEGFA axis for hepatic
regeneration, Ki-67 liver levels were analysed. Livers in the
BD + GH, BD + VEGFB, BD + VEGFA, and BD + GH +
anti-VEGFR1 groups had increased Ki-67 levels compared
with the levels in the BD group. Administering GH with anti-
VEGFR1 and anti-VEGFR2 (the BD + GH + anti-VEGFR1 +
anti-VEGFR2 group) resulted in Ki-67 values that were similar
to those in the BD group (Figure 2E).

3.3 Role of GH, VEGFB, and VEGFA in liver
grafts from BD donors with ALD after CI and
reperfusion

Considering the previously obtained data, we assessed the role of
GH, VEGFB, and VEGFA in ALD livers from DBDs after CI and
reperfusion in an ex vivo model and survival studies.

Contrary to the results obtained for liver grafts from DBDs and
ALD, cold ischaemia affected the benefits observed for GH, VEGFB,
and VEGFA in liver grafts with ALD from DBDs before their
retrieval from donors. Indeed, our results indicated that the
effectiveness of either GH or VEGFB before liver retrieval from
donors was not observed when such liver grafts were submitted to
24 h of CI, and similar results were obtained after 24 h of CI followed
by 2 h of normothermic reperfusion. For instance, the AST and ALT
levels in the perfusate of the BD + GH + CI and BD + VEGFB + CI
groups were similar to those in the BD + CI group (Figure 3A).
Similarly, the AST and ALT levels in the perfusates of the BD + GH
+ CI/R and BD + VEGFB + CI/R groups were similar to those in the
BD + CI/R group (Figure 3B). In contrast, the benefits of VEGFA
administration in ALD liver grafts before their retrieval from DBDs
were maintained after 24 h of CI and also after 24 h of CI followed by
2 h of normothermic reperfusion. This was reflected in the reduction
in transaminase levels observed in perfusates obtained after 24 h of
CI or 24 h of CI followed by 2 h of reperfusion (BD + VEGFA + CI
and BD + VEGFA + CI/R groups) when compared to the results of
the BD + CI and BD + CI/R groups, respectively (Figures 3A,B).
These results are in accordance with the histological and
morphological alterations observed in H&E-stained liver sections.
Indeed, a considerable disorganized parenchyma and more
sinusoidal alterations were observed in livers from the BD + CI/
R, BD + GH + CI/R, and BD + VEGFB + CI/R groups, as compared
with those of the BD + VEGFA + CI/R group (Figure 3D). Survival
studies in an in vivo LT model demonstrated the same beneficial
effects of VEGFA as those of GH or VEGFB. Recipients implanted
with an ALD graft subjected to 24 h of CI from DBDs and treated
with VEGFA (BD + VEGFA + LT group) had a survival rate of 67%
at 14 days after surgery, whereas the survival of recipients treated
with VEGFB, GH, or without treatment was reduced (17% for
recipient survival) (Figure 3C).

We also evaluated the inflammatory response in liver grafts after
CI/R injury, and the same results as those obtained for liver damage
after CI/R injury were observed (Figure 4A). High MDA and IL-1β
levels were maintained in grafts from DBDs treated with GH or
VEGFB (BD + GH + CI/R and BD + VEGFB + CI/R groups),
showing oxidative stress and inflammatory activity in those grafts,
and was only diminished in the livers of rats administered VEGFA
(BD + VEGFA + CI/R group), indicating the benefits of VEGFA on
IL-1β levels. Finally, the levels of IL-10 (an IL with anti-
inflammatory properties) were increased only in the livers of the
BD + VEGFA + CI/R group (Figure 4A), indicating the activation of
anti-inflammatory pathways in this group after CI/R.

Regarding metabolic parameters, liver ATP and lactate levels
were analysed (Figure 4B). While lactate levels were unaltered, liver
ATP levels were in concordance with inflammatory or liver damage
parameters after CI/R in ex vivo-perfused livers, whereas the group
with less liver damage (BD + VEGFA + CI/R group) had increased
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FIGURE 2
Relevance of GH-VEGFB/VEGFA axis in liver damage, inflammation, metabolic function cell death and regeneration in DBDs with ALD. (A) AST and
ALT levels in plasma and liver damage scorewith representative photomicrographs of sinusoidal dilatation and congestion (20X) (scale bar corresponds to
100 µm). (B)Hepatic levels of MDA, IL-1β and IL-10. (C)Hepatic levels of ATP and lactate. (D) TUNEL stained sections (20X) to detect apoptotic cells (scale
bar correspond to 100 µm) and caspase-3 liver levels. (E) Regeneration biomarker Ki-67 liver levels. ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01; *p ≤
0.05 and ns = no significance.
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liver ATP levels. This indicated an increase in ATP levels due to the
activation of aerobic metabolism or lower ATP depletion.

Finally, we evaluated apoptotic activity and regeneration after CI/
R. In the grafts of the groups with higher liver damage parameters (BD
+ CI/R, BD + GH + CI/R, and BD + VEGFB + CI/R groups), the
apoptotic activity remained high. This was confirmed by assessing the
caspase-3 activity and TUNEL staining (Figure 4C). Only a decrease
in cell death due to the activation of apoptotic pathways was detected
in the group with less liver damage (BD + VEGFA + CI/R)
(Figure 4C). Regenerative failure was similar between the BD +

CI/R, BD + GH + CI/R, and BD + GH + VEGFB groups, whereas
better regenerative ability (assessed by Ki-67 levels in the liver) was
detected in grafts of the BD + VEGFA + CI/R group, compared to
those of the BD + CI/R group (Figure 4D).

4 Discussion

Herein, we report, for the first time, a new signalling pathway
involved in LT with ALD from DBDs involving GH and VEGFB/

FIGURE 3
Effects of GH-VEGFB/VEGFA axis on liver damage and survival after CI or I/R injury. (A) AST and ALT levels in perfusates after 24 h of CI. (B) AST and
ALT levels in perfusates after 24 h of CI and 2 h of reperfusion. (C) Survival studies of different recipients with ALD-grafts from DBDs. (D) H&E staining of
liver sections after I/R injury at 20X (scale bar correspond to 100 µm). ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01; *p ≤ 0.05 and ns = no significance.
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VEGFA, with specific actions depending on the different stages
involved in LT from DBDs.

Our results indicate insignificant alterations in the
hypothalamic-pituitary axis in DBD. Indeed, BD did not induce
changes in GH levels in either the liver or intestine. GH is involved in
numerous metabolic disturbances and liver pathologies (Fang et al.,
2019; Rufinatscha et al., 2018; Sarmento-Cabral et al., 2021; Tateno
et al., 2011), and according to our results, the administration of GH,
which only reaches the intestine, improves the quality of liver grafts
from DBDs with ALD before graft retrieval because it modulates
VEGFB and VEGFA expression in the intestine. Treatment with
GH, VEGFB, or VEGFA does not affect the liver, but interestingly
protects the liver with ALD from BD-induced damage before liver
retrieval from donors. However, the benefits observed with GH,
VEGA, and VEGFB before liver retrieval from DBDs are different
from those observed when liver grafts are retrieved and subjected to
ex vivo and in vivo models of LT, as explained below.

GH may have a positive role in ALD. Thus, prolonged GH
administration (6 weeks) is a promising approach to reduce fatty
infiltration (Qin and Tian, 2010), and the levels of GH are correlated
with alcohol consumption (Trifunović et al., 2016; Vatsalya et al.,
2012). The same happens with VEGFA and VEGFB in livers from
rodents fed with ethanol (Ceccanti et al., 2012; Costa et al., 2017).
According to our results, the effects of GH when rats with ALD are
subjected to LT from DBDs depends on the stage of the procedure.
Thus, GH exerts benefits in liver grafts from DBDs and in the
presence of ALD only in donors before retrieval of liver grafts from
donors, whereas this protection disappears when such liver grafts are
retrieved from donors and subjected to 24 h of CI followed by either
2 h of normothermic reperfusion (ex vivo model) or in vivo LT.
Thus, this strategy seems to be inappropriate in LT with ALD
subjected to 24 h of CI from DBDs.

To the best of our knowledge, only one study has established a
relationship between GH and VEGFA; in a human cancer cell line,

FIGURE 4
GH-VEGFB/VEGFA pathway importance on inflammatory, metabolic apoptotic and regenerative parameters after I/R injury. (A) Hepatic levels of
MDA, IL-1β and IL-10. (B) Hepatic levels of ATP and lactate. (C) TUNEL stained sections (20X) to detect apoptotic cells or bodies (in brown) (scale bar
correspond to 100 µm) and caspase-3 liver levels. (D) Regeneration biomarker Ki-67 liver levels. ****p ≤ 0.0001, ***p ≤ 0.001; *p ≤ 0.05 ns = no
significance.
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GH may upregulate VEGFA levels (S. Li et al., 2010). However, no
study has reported a relationship between GH and VEGFB.
Therefore, owing to the similarities in the mechanisms of action
and receptors of both growth factors, we hypothesised that GH may
upregulate both VEGFB and VEGFA. The hypothesis was based on
the results of Ran et al., who found that the gastrointestinal tract of
an animal model expresses the growth hormone receptor (GHR)
(Ran et al., 2016), which could explain the action of GH in the
intestine and liver. In addition, a recent study demonstrated the
production of both factors (VEGFB and VEGFA) in the intestine (F.
Zhang et al., 2018). According to the results presented here, the
exogenous administration of GH in DBDs with ALD increased the
intestinal production of VEGFB and VEGFA.

Under PH + IR conditions, VEGFA exacerbated hepatocellular
damage in steatotic livers in an experimental model of genetically
induced obesity (Bujaldon et al., 2019). In other studies, VEGFB has
been described as a modulator of I/R injury in the heart (Kivelä et al.,
2014; Raissadati et al., 2017). According to our results, the
administration of GH induced VEGFB expression in the
intestine, which dampened the hepatic damage in DBDs with
ALD before liver graft retrieval from donors. VEGFA and
VEGFB reduce liver injury in DBDs before graft retrieval from
donors. Nevertheless, when the anti-VEGFR1 antibody was
administered in combination with GH, the beneficial properties
induced by GH in the liver were not reversed. The beneficial effects
of GH were revoked only by the concomitant administration of an
inhibitor of VEGFR2 (the VEGFA receptor). These results are
consistent with the existing literature on the dynamics of the
VEGFR1 and VEGFR2 signalling pathways. Many studies suggest
that VEGFA can bind to both VEGFR1 and VEGFR2 but only exerts
its function through VEGFR2, whereas VEGFR1 would be a
“decoy.” VEGFB binding to its receptor (VEGFR1) displaces
VEGFA to VEGFR2, thereby promoting the action of the second
factor. The potential benefit of VEGFB is its ability to enhance the
action of VEGFA (Boucher et al., 2017; Lal et al., 2018). This seems
to occur in DBDs with ALD before the liver grafts are retrieved from
the donors. Exogenous GH may increase VEGF, VEGFA, and
VEGFB levels. In such cases, VEGFB binds to its receptor
(VEGFR1), potentiating the binding of VEGFA to VEGFR2.
When only VEGFA is administered, it bound to both
VEGFR1 and VEGFR2, thus exerting its effects on VEGFR2.
However, when VEGF-B is administered, it binds to VEGFR1,
allowing endogenous VEGFA to bind to VEGFR2. When GH
and anti-VEGFR1 are administered intravenously, the VEGFA
produced by GH binds to VEGFR2, thereby exerting its function.
Finally, when GH is administered with anti-VEGFR1 and anti-
VEGFR2, neither VEGFA nor VEGFB bind to VEGFR1/2, and
VEGFR2 does not exert survival or proliferation effects. According
to our results, VEGFA and VEGFB may indirectly protect the liver
by exerting their functions in the intestine because their levels
increased in the intestine but not in the liver tissue after their
administration or production. This can be explained by the
intestinal expression of VEGFR1 and VEGFR2 (Wejman et al.,
2013; Zhou et al., 2023). In this case, exogenous GH throughout
the production of endogenous VEGFA and VEGFB in the intestine
or exogenous VEGFA and VEGFB (which are taken up by the
intestine and not by the liver), may exert beneficial effects by
modulating different pathways and producing different mediators

in the intestine, which could be released into the portal circulation
and then taken up by the liver to avoid liver damage produced in
DBDs with ALD. Multiple pathways are modulated by the VEGF
family, including survival, apoptosis and cell death, proliferation,
hypertrophic processes, and permeability or cell migration (Li et al.,
2012; Melincovici et al., 2018; Shen et al., 2018). This hypothesis
should not be discarded, but further investigations (not part of the
current study) are required to address this issue.

According to our results, the effects of GH, VEGFB, and VEGFA
differ when liver grafts are retrieved from DBDs with ALD and
subjected to 24 h of CI and reperfusion in ex vivo and in vivo LT
models. Indeed, changes in the effects of such growth factors have been
observed after CI (before normothermic reperfusion or implantation of
liver grafts in the recipient). Our preliminary results (data not shown)
indicated that neither GH, VEGFB, nor VEGFA protein levels were
altered during CI or CI/R injury, with levels similar to those of the
Cont2 group. These data suggest that CI and reperfusion trigger or
inhibit different signalling pathways that might counteract the benefits
of either GH or VEGFB. Under our conditions, the effects of the
evaluated signalling pathway (e.g., GH-VEGFB/VEGFA)might be very
different depending on the stage of LT in which they are being
evaluated. This is not surprising, because the mechanisms involved
in BD might be completely different from those involved in CI and
reperfusion. Although the aim of this study was not to explain the
reasons for the differential effects of GH and VEGFB depending on the
stage of LT, different hypotheses should be proposed. For instance,
VEGFB, a growth factor derived from the generation of GH in the
intestine by different signalling pathways, may promote NO
production in the liver (Bobic et al., 2014). NO has opposite effects,
depending on the liver type and microenvironment (Carrasco-
Chaumel et al., 2005). According to a previous study, NO might
exert benefits in the presence of low reactive oxygen species (ROS)
concentrations but might exacerbate liver damage in the presence of
high ROS concentrations. According to our results, ROS production
was higher after CI/R than after 3 h of BD in liver grafts, which might
explain the differential role of VEGFB in DBDs before liver retrieval
and after CI/R injury. Moreover, given the results of the current study,
the mechanisms that cause liver damage in DBDs before liver retrieval
and after CI//R injury are different (e.g., apoptosis). Our results show
that the apoptotic activity represented by the caspase-3 assay and
TUNEL staining depends on the different LT stages. In fact, hepatic
cells do not die by apoptosis in liver grafts in DBDs before their
retrieval from donors, and apoptotic activity (high caspase-3 activity
and TUNEL staining) was detected only after CI/R injury. Finally, the
intestine-liver axis in DBD with ALD (where VEGFA and VEGFB are
synthesised by GH in the intestine) is not present when liver grafts are
retrieved from donors and submitted to 24 h of CI and subsequent
reperfusion (in an ex vivo model) or implanted in a recipient (healthy
and without ALD) in which the intestinal characteristics and the
relationship between the intestine and liver might significantly differ.

In conclusion, the results presented in this study demonstrate
the relevance of VEGFB/VEGFA synthesised in the intestine by GH
in LT from BD donors with ALD. GH may reduce the liver damage
caused by BD before graft retrieval through the upregulation of both
VEGFB and VEGFA in the intestine, whereas only VEGFA is
feasible to reduce liver damage in DBDs with ALD after CI/R in
experimental models of ex vivo and in vivo LT (Figure 5). This is of
clinical and scientific interest because it is the first study to explore a
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potential therapy (namely, VEGFA treatment) to reduce the
deleterious effects of BD and those induced by CI/R injury in
liver grafts from DBDs with ALD.
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SUPPLEMENTARY FIGURE S1
Liver histological sections and fibrosis biomarkers for ALD model. (A)
Photographs of histological changes in liver sections from Healthy and ALD
rats of: collagen-I fibers (white arrows)with Sirius Red staining at 10X and 20X
in the amplified image (scale bar of 10X images corresponds to 200 µm and
scale bar of 20X image corresponds to 50 µm); lipid droplets (black arrows)
with Red Oil staining at 20X and 40X in the amplified image (scale bar of 20X
images corresponds to 100 µm and scale bar of 40X image corresponds to
25µm). (B) Liver α-SMAand collagen-I levels. ****p ≤0.0001 and ***p ≤0.001.
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(Extracted and translated from ONT 2023).
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