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Retinal pathologies are major causes of vision impairment and blindness in
humans, and inherited retinal diseases (IRDs), such as retinitis pigmentosa,
Leber congenital amaurosis, and Stargardt disease, greatly contribute to this
problem. In vitro disease modeling can be used for understanding the
development of pathology and for screening therapeutic pharmaceutical
compounds. In the preclinical research phase, in vitro models complement in
vivo models by reducing animal studies, decreasing costs, and shortening
research timelines. Additionally, animal models may not always accurately
replicate the human disease phenotype. This review examines the types of
cells that can be used to create in vitro IRD models, including retina-specific
cell lines, primary retinal cells, induced pluripotent stem cells (iPSCs), and more.
Special attention is given to mesenchymal stem cells (MSCs), which are
characterized by various isolation sources, relative ease of isolation, and
straightforward differentiation. MSCs derived from bone marrow (BM), adipose
tissue (AT), dental tissue (DT), umbilical cord (UC), and other sources can
differentiate into retinal cells, including photoreceptor cells and retinal
pigment epithelial (RPE) cells, dysfunction of which is most commonly
associated with IRDs. Subsequent differentiation of MSCs into retinal cells can
be carried out via various methods: culturing in induction media supplemented
with certain growth factors, co-culturing with retinal cells or in their conditioned
media, or regulating gene expression with viral vector-delivered transcription
factors (TFs) or microRNAs (miRNAs). Compared to the popular iPSCs, for
example, MSC-based models are significantly cheaper and faster to obtain,
making them more feasible for large-scale drug screening. Nevertheless, the
existing differentiation methods need further optimization for this promising
platform to receive the success it deserves.
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1 Introduction

The mammalian retina is a structurally complex compartment of the eye, consisting of
over 60 types of cells with diverse functions (Masland, 2012). The choroid, the retinal
pigment epithelium (RPE), and the Bruch’s membrane comprise the outer blood-retinal
barrier (BRB), which selectively regulates the entry of various substances from the choroidal
blood capillaries to the retinal cells (Nickla andWallman, 2010; Fields et al., 2020). RPE cells
play a crucial role in supporting the function of photoreceptors by participating in the
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transport of nutrients and metabolic waste products from these cells,
phagocytizing their outer segments, and regenerating visual pigment
(Fuhrmann et al., 2014). Their cytoplasm contains numerous
pigment granules, containing melanin, which plays a
photoprotective role (Istrate et al., 2020). Importantly, RPE cells
secrete various growth factors and other proteins essential for the
function of photoreceptors and choroidal blood capillary cells (Kay
et al., 2013), which include immunosuppressive molecules that
provide immune privilege to the eye (Ishida et al., 2003).

In the retina itself, three layers of cells can be distinguished: the
outer nuclear layer (ONL), the inner nuclear layer (INL), and the
ganglion cell layer of the retina (GCL). These cell layers are separated
by the outer (OPL) and the inner (IPL) synaptic (plexiform) layers
(Kolb et al., 2001). The ONL comprises photoreceptor cells, light-
sensitive cells responsible for the conversion of light signals into
electrochemical impulses. The two types of photoreceptors include
rods and cones. Rod photoreceptors contain the light-sensitive
pigment rhodopsin and are responsible for vision under dim
illumination, whereas cone photoreceptors contain one of three
types of opsins (red, green, and blue) as pigments and provide high-
resolution daytime color vision (Salesse, 2017; Schmidt et al., 2019;
Lamb, 2022). The electrochemical signal is transmitted from
photoreceptors to bipolar cells, other retinal nerve cells located in
the INL (Euler et al., 2014), and then to retinal ganglion cells (RGC)
of GCL, which then direct the signal to the brain through axons
forming the optic nerve (Sanes and Masland, 2015). The

transmission of signals from photoreceptors to bipolar cells is
modulated by horizontal cells in the OPL (Poché and Reese,
2009) and from bipolar cells to ganglion cells by amacrine cells
in the IPL (Zhang C. and McCall, 2012). In addition, mammalian
retinas also contain glial cells of three main types: Müller cells,
astrocytes, and microglia, which provide structural and functional
support to retinal neurons (Vecino et al., 2016). A schematic
presentation of the retina showing the location of the described
cell types is shown in Figure 1A.

The degeneration of the major types of retinal cells results in the
loss of their functions and disruption of the structural integrity of the
retina, leading to serious visual impairment or, in the absence of
treatment, complete blindness. Retinal diseases can be classified into
inflammatory, degenerative, vascular, and hereditary conditions.
IRDs, genetically and phenotypically heterogeneous conditions
associated with mutations in one or more genes, most commonly
lead to the degeneration of photoreceptor and RPE cells. Currently,
about 290 genes are known to contain mutations that result in the
disruption of development, loss of function, or death of these cells
(Retinal Information Network, 2024) (Figure 1B). The expression of
mutant proteins negatively impacts visual cycle pathways,
phototransduction, and the maintenance of retinal cell viability
(Manley et al., 2023). Studies indicate that 36% of the global
population (2.7 billion individuals) are healthy carriers of at least
one mutation associated with autosomal recessive IRDs (AR-IRDs)
(Hanany et al., 2020). Mutations leading to autosomal dominant

FIGURE 1
Retinal structure and IRD-associated genes expressed in retinal cells. (A) Structure of the retina showingmajor cells and layers. RPE - retinal pigment
epithelium; RGCs - retinal ganglion cells; ONL - outer nuclear layer; OPL - outer plexiform layer; INL - inner nuclear layer; IPL - inner plexiform layer; GCL
- ganglion cell layer. Genes specific to photoreceptors, RPE, and RGCs are indicated. (B) IRD-associated genes by disease category. The data for the
diagram was obtained from RetNet (Retinal Information Network, 2024). While different mutations in the same gene may be associated with
different diseases, each identified gene is counted only once for the first-reported disease (usually the most common disease). The total number of
identified genes and themost commonly disease-associated genes are listed by the disease category. The outer circle of the diagram reflects the number
of genes associated with different types of inheritance: AD - autosomal dominant; AR - autosomal recessive; XL - X-linked; MT - mitochondrial. *-
diseases for which XL-forms are also identified.
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IRDs (AD-IRDs) are typically less common, tend to be less severe in
phenotype, and manifest at a later age (Hanany and Sharon, 2019).
In addition, rare X-linked (XL-IRDs) andmitochondrial (MT-IRDs)
IRDs have also been identified (De Silva et al., 2021; Zeviani and
Carelli, 2021).

Diseases associated with the degeneration of photoreceptors are
among the most common within IRDs and are usually characterized
by the primary loss of one type of photoreceptor cell - rods or cones -
and the secondary loss of the other (rod-cone and cone-rod
dystrophies). Retinitis pigmentosa (RP), for example, falls under
the category of rod-cone dystrophy, marked by the loss of
photoreceptor cells and the appearance of pigment deposits on
the retina (Verbakel et al., 2018). Most forms of RP are inherited
in autosomal dominant (AD-RP), autosomal recessive (AR-RP), and
X-linked (XL-RP) manners, with XL-RP considered the most severe
form. Due to the diversity of inheritance patterns, the disease
exhibits wide heterogeneity: over 100 genes are associated with
RP, yet in half of all cases, the genetic etiology remains
unknown. AD-RP is most commonly linked to mutations in the
rhodopsin (26.5% of all cases), AR-RP to mutations in the USH2A
(8%–9% of all cases), and XL-RP to mutations in the RPGR and RP2
(85%–95% of cases) genes (Bhardwaj et al., 2022). Syndromic forms
of RP, such as Usher, Bardet-Biedl, and Senior-Loken syndromes,
characterized by the presence of concurrent non-ocular conditions,
are also known (Liu et al., 2010).

An illustrative example of cone-rod dystrophy is Leber
congenital amaurosis (LCA), a severe form of retinal dystrophy
with early onset, primarily inherited in an autosomal recessive
manner. While mutations in about 30 genes were identified as
the primary cause of LCA, most commonly (with a frequency of
up to 10% or more), this condition is linked to mutations in the
GUCY2D, RPE65, CRB1, CEP290, and RDH12 genes (Huang C. H.
et al., 2021).

Inherited macular degenerations comprise a significant group of
IRDs (Kelly and Maumenee, 1999), with Stargardt disease (SD)
being the most prevalent. SD, characterized by gradual central vision
loss and RPE cell degeneration associated with lipofuscin
accumulation, is most often inherited in an autosomal recessive
manner and is caused by mutations in the ABCA4 gene (Huang D.
et al., 2022). This group also includes diseases such as Best
vitelliform macular dystrophy (BVMD) and North Carolina
macular dystrophy (NCMD), typically inherited in an autosomal
dominant manner (Tsang and Sharma, 2018a; 2018b). Other
examples of IRDs include choroideremia (Sarkar and Moosajee,
2022), X-linked retinoschisis (XLRS) (Ku et al., 2023), Fundus
albipunctatus (Yamamoto et al., 1999), and Malattia Leventinese
(ML) disease (Vaclavik, 2020), among many others. Often, different
mutations within the same gene lead to the development of
phenotypically diverse retinal diseases. Interestingly, some
mutations in certain genes lead not only to visual impairment,
but also to dysfunction in other organs. For example, Batten disease,
also known as neuronal ceroid lipofuscinoses, constitutes a family of
devastating lysosomal storage disorders that lead to deterioration of
vision, cognitive and motor functions, and premature death
(Johnson et al., 2019). And finally, multifactorial retinal diseases
such as age-related macular degeneration (AMD), influenced by
genetic predisposition among other factors, also exist (Heesterbeek
et al., 2020).

The identification of IRD-associated mutations facilitated the
development of in vivo animal models for studying disease
pathogenesis and testing new pharmaceutical treatments. The
most relevant in vivo IRD models are those involving non-
human primates (NHPs) because their retinas are anatomically
and physiologically similar to those of humans. However,
developing these models is a complex and expensive task (Seah
et al., 2022). While other in vivo IRD models such as cats, dogs, and
pigs are known (Moshiri, 2021), rodent models (typically mice) are
used more frequently due to their small size, short lifespan, and cost-
effectiveness (Dalke and Graw, 2005; Collin et al., 2020). However,
mouse models often fail to mimic human retinal diseases due to the
substantial difference between mouse and human retinas. The
mouse retina is thinner and lacks a cone-rich region with high
visual acuity equivalent to the human macula. Additionally, mouse
cones express only two types of opsins, sometimes simultaneously
(Neitz M. and Neitz J., 2001; Volland et al., 2015). For instance,
mutations in retinol dehydrogenase (RDH) genes in humans lead to
severe retinal dystrophies: RDH5 is associated with Fundus
albipunctatus (Yamamoto et al., 1999), RDH8 with SD (Zampatti
et al., 2023), and RDH12 with LCA type 13 or RP (Sarkar and
Moosajee, 2019). However, mice with knockouts of these genes
typically exhibit a mild disease phenotype without pronounced
retinal degeneration, manifesting primarily as delayed adaptation
to darkness (Kurth et al., 2007; Maeda et al., 2007). The exact reason
why these mice do not develop the pathological phenotype observed
in humans is unknown, but it is hypothesized that additional RDHs
in rodents may compensate for the lost enzymes. Similarly, most
mouse models with Usher syndrome mutations demonstrate
hearing loss but not visual impairment (Géléoc and El-Amraoui,
2020; Stemerdink et al., 2022), possibly due to the underdeveloped
photoreceptor periciliary membrane and the absence of the calyceal
structure in mouse photoreceptor outer segments compared to
humans (Sahly et al., 2012).

Due to the above-mentioned limitations of in vivo models, the
major one of which is the inaccurate presentation of the disease
phenotype, there is an obvious need for effective in vitro IRDmodels
that can be used to study the healthy physiology of retinal cells, the
IRD pathology, and to test various drugs. The in vitro models are
especially important in the early stages of preclinical research for
rapid and routine screening of therapeutic molecules and have a
great advantage as they reduce the number of animal experiments,
making research more ethically acceptable, cost-effective, and fast.

There are two main types of retinal disease models: two-
dimensional (2D) and three-dimensional (3D) (Alfonsetti et al.,
2021; Schnichels et al., 2021; Zhu Y. et al., 2022). 2D cultures
typically consist of a monolayer of cells, whereas 3D cultures are
multilayered. Although 2D cultures cannot replicate the tissue
structure and cell interactions inherent to tissues, they are widely
used in research due to their ease of maintenance, low cost, high
reproducibility, and suitability for long-term and large-scale
experiments. Emerging 3D cultures, known as organoids, are
multilayered and can reproduce some in vivo cell interactions.
However, most current retinal organoids (ROs) cannot accurately
replicate the organ morphology, and their production is expensive,
time-consuming, and characterized by insufficient reproducibility
due to significant heterogeneity (Jensen and Teng, 2020).
Nonetheless, ROs technology holds great promise for modeling
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retinal diseases (Cheng and Kuehn, 2023; Liang et al., 2023;
Kurzawa-Akanbi et al., 2024).

The most promising approach to creating in vitro IRD models
relies on stem cells of various origins (Achberger et al., 2019). Special
attention is given to pluripotent stem cells (PSCs), iPSCs, and
embryonic stem cells (ESCs) due to their ability to form
organoid 3D retinal structures. However, more accessible adult
stem cells, particularly MSCs, are relevant for creating 2D retinal
models due to their numerous sources, relative cost-effectiveness,
and ease of differentiation control. MSCs can potentially serve as a
source for various in vitromodels due to their ability to differentiate
into multiple cell types: chondrocytes, osteoblasts, adipocytes,
hepatocytes, cardiomyocytes, neurons, and more (Afflerbach
et al., 2020). For example, MSCs differentiated into hepatocyte-
like cells can be used to assess hepatotoxicity (Cipriano et al., 2017);
MSCs differentiated into motor neurons, astrocytes, and
oligodendrocytes can be useful for modeling neurodegenerative
brain diseases (Brodie and Slavin, 2013); and MSCs differentiated
into lung epithelial cells can be used to create 3D lung structures via
bioprinting (da Rosa et al., 2023). Currently, MSCs are widely used
in cell replacement therapy for retinal diseases (Adak et al., 2021),
but their potential for creating retinal disease cell models remains
underappreciated.

Successful in vitro IRD modeling certainly remains an
unresolved problem, and it is important to consider various
approaches balancing their advantages and disadvantages.
Therefore, the present review focuses on the following: i) various
cell types used for in vitro IRD modeling: immortalized cell lines,
primary cells, multipotent stem cells, iPSCs, and MSCs; ii) the
various features of MSCs, such as multiple isolation sources and
ease of differentiation, among others, that make these cells so useful
for IRD modeling; and iii) examples of clinical trials using MSCs for
the treatment of retinal diseases.

2 Types of cells used for in vitro
IRD modeling

Immortalized cell lines, primary retinal cells, somatic cells,
MSCs, and PSCs reprogrammed or differentiated into cells
similar to retinal cells can all be used for in vitro modeling of
IRDs with various degrees of success (Figure 2).

2.1 Immortalized cell lines

Cell immortalization can be achieved by preventing replicative
senescence, which occurs due to the disruption of cell cycle
checkpoints (such as p53, p16, pRb, etc.), the regulation of
telomerase expression, or the activation of certain oncogenes.
Immortalized cell lines can be generated via various methods:
deriving lines from primary tumor cells, transducing non-tumor
cells with viral vectors delivering oncogenic viral genes (such as
SV40, HPV, or EBV), enforcing the expression of key immortality
proteins (such as telomerase), and more (Yeager and Reddel, 1999).
Immortalized cell lines can divide indefinitely, are homogeneous,
relatively inexpensive, accessible, and easy to sustain. The primary
drawback of these cell lines is that they often significantly differ in
function and morphology from their original in vivo counterparts
due to genetic and epigenetic alterations that occur during
immortalization, leading to changes in cellular metabolism
(Maqsood et al., 2013). Consequently, creating clinically relevant
in vitro disease models based on these cells can be rather challenging.
Nevertheless, they are still widely used for studying healthy
physiology and pathological processes, as well as initial
drug screening.

Since IRDs are primarily associated with dysfunctions in
photoreceptor and RPE cells, photoreceptor-like and RPE-like

FIGURE 2
Cell types used in the development of in vitro IRD models. MSCs - mesenchymal stem cells; PSCs - pluripotent stem cells; ESCs–embryonic stem
cells; iPSCs–induced pluripotent stem cells. 2D or 3D models can be obtained based on various cell types. *- applicable when not used in combination
with organ-on-a-chip and bioprinting technologies.
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cell lines are most important for disease modeling. The 661W cell
line, derived from a retinal tumor in a transgenic mouse line
expressing the SV40 large T-antigen under the control of the
interphotoreceptor retinoid-binding protein (IRBP) promoter,
closely resembles photoreceptor cells. These cells express markers
of cone photoreceptors (blue and green opsins, cone transducin, and
cone arrestin) and have a neuronal cell-like morphology but lack
structures analogous to photoreceptor inner and outer segments
(Tan et al., 2004). Later studies demonstrated that, in addition to
cone-specific proteins, such as phosphodiesterase PDE6H, 661W
cells express certain rod-specific proteins, such as rod
phosphodiesterase PDE6B, but do not express rhodopsin (Mencl
et al., 2018). Currently, the 661W cell line is widely used for studying
macular degenerations (Kuse et al., 2017; Terao et al., 2019; Song
et al., 2020; Wu et al., 2021). Additionally, this cell line was shown to
form long cilia similar to those in cone photoreceptor outer
segments, making it useful for studying retinal ciliopathies, which
include certain forms of RP and LCA (Wheway et al., 2019). In a
recent study, increased expression of rod-specific genes was achieved
in the 661W cells stably expressing the neural retinal leucine zipper
(NRL) transcription factor. Using the resultant 661W-A11 cell line,
an in vitromodel of RP was created by inhibiting phosphodiesterase
6 (PDE6), and several neuroprotective drugs were subsequently
tested using this model (Huang L. et al., 2021). Other well-known
photoreceptor-like cell lines include the Y79 and WERI-RB1 cell
lines derived from human retinoblastoma (Reid et al., 1974; McFall
et al., 1977). The Y79 and WERI-RB1 cells originate from primitive
multipotent retinoblasts; hence, they can partially differentiate into
RPE cells as well as cells of neuronal or glial nature (Kyritsis et al.,
1986). They express markers of various retinal cell types, including
some markers of cone and rod photoreceptors (Bogenmann et al.,
1988; Di Polo and Farber, 1995; Cassidy et al., 2012). Although the
Y79 and WERI-RB1 cell lines are predominantly used for modeling
retinal tumors in vitro, there are instances of their use in studying
XLRS (Kitamura et al., 2011; Plössl et al., 2017).

The ARPE-19 cell line is a widely used RPE-like cell line derived
from a primary culture of human RPE cells and initially
characterized by pigmentation, expression of RPE-specific
markers CRALBP and RPE65, and the ability to form polarized
epithelial monolayers on porous filter substrates (Dunn et al., 1996).
However, over time, this cell line changed, losing pigmentation and
showing increased morphological heterogeneity depending on the
maintenance conditions (Luo et al., 2006). Furthermore, the ARPE-
19 cell line was not originally reported to be immortalized; the cells
exhibited a tendency to senesce in culture (Dunn et al., 1996);
however, later studies revealed that ARPE-19 subcultures contained
subpopulations of both non-immortalized and immortalized cells
(Kozlowski, 2015). For these reasons, there is currently a
reevaluation of the suitability of ARPE-19 cells for basic,
preclinical, and translational research (Pfeffer and Fliesler, 2022).
Nonetheless, the ARPE-19 cell line continues to be actively used as
an alternative to primary RPE cells to study the pathogenesis and
drug testing for the treatment of various retinal diseases, including
RP (Jiang et al., 2014; Hong et al., 2021), LCA, retinal ciliopathies
(van Wijk et al., 2009; Nichols et al., 2010; Hidalgo-de-Quintana
et al., 2015), and macular degenerations (Liao et al., 2019; Moine
et al., 2021). Additionally, research is being conducted on culture
conditions in which ARPE-19 cells can partially restore the

functional and morphological phenotype characteristic of primary
RPE cells. For instance, culturing in DMEM with the addition of
pyruvate and glucose induces ARPE-19 cells to acquire
pigmentation and express messenger RNAs (mRNAs),
microRNAs (miRNAs), and certain proteins specific to RPE
(RPE65, CRALBP, RDH5, RDH10, miR-204/211, etc.) (Ahmado
et al., 2011; Samuel et al., 2017). Improved differentiation of ARPE-
19 in a medium supplemented with nicotinamide (MEM-Nic) was
also reported: cells acquired a cobblestone morphology and apical
microvilli and expressed RPE-specific genes RPE65, BEST1, OCLN,
MERTK, and ITGB5 (Hazim et al., 2019). Another study reported
the creation of a pigmented ARPE-19mel cell line from ARPE-19
cells that spontaneously phagocytosed melanosomes isolated from
pig RPE (Hellinen et al., 2019).

Another well-known RPE-like cell line, hTERT RPE-1, was
created by immortalizing human RPE cells with human
telomerase hTERT. The hTERT RPE-1 cells are capable of
unlimited division but are not oncogenic (Jiang et al., 1999). This
cell line is used to study retinal ciliopathies (Spalluto et al., 2013;
Gómez et al., 2022), the interaction of RPE with Bruch’s membrane,
and oxidative stress (Choudhury et al., 2021). For example, this cell
line was used to test therapy for AD-RP caused by mutations in the
NR2E3 gene based on antisense oligonucleotides (Naessens
et al., 2019).

In addition to the cell lines mentioned above, non-retinal-
specific cell lines, such as HEK293 (a cell line derived from
human embryonic kidneys) and COS (a cell line derived from
the kidney tissue of the African green monkey), can also be used
for in vitro IRDmodeling (Wang G. et al., 2009; Gopalakrishna et al.,
2016; Sarkar et al., 2021, etc.).

2.2 Primary cells

Primary cell cultures of photoreceptors and RPE, isolated from
the retinas of mice, pigs, or humans, exhibit the greatest similarity to
in vivo retinal cells in terms of their function and morphology.
However, obtaining such cultures is problematic and labor-intensive
due to the small amount of starting material, low viability, and rapid
dedifferentiation of cells post-isolation (Michelis et al., 2023).
Creating in vitro models based on primary cells is further
complicated by the irreproducibility of the isolation sources.
Moreover, there is an added ethical issue with obtaining retinal
cells from animals and humans due to the invasiveness of
this procedure.

The use of primary photoreceptor cultures is limited by the short
lifespan of isolated cells (a few days). Additionally, during retinal
tissue dissociation (e.g., via enzymatic digestion with papain), the
structural integrity of photoreceptor cells is generally compromised
and their outer and inner segments and ribbon synapses are lost
(Yang et al., 2001). Enhanced survival of primary photoreceptor cells
can be achieved via treatment with neurotrophic factors such as
basic fibroblast growth factor (FGF2) and epidermal growth factor
(EGF) (Fontaine et al., 1998; Traverso et al., 2003; Forouzanfar et al.,
2020). Furthermore, cultivating photoreceptor cells in media
conditioned by retinal Müller glial cells, which secrete glial cell
line-derived neurotrophic factor (GDNF) (Del Río et al., 2011),
insulin-like growth factor-binding protein (IGFBP5), and
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connective tissue growth factor (CTGF) (Hauck et al., 2008), also
promotes cell longevity.

The high purity of photoreceptor populations essential for both
cell therapy and disease modeling can be achieved by fluorescence-
activated cell sorting (FACS) (Lakowski et al., 2018), magnetic-
activated cell sorting (MACS) (Eberle et al., 2011), and real-time
deformability cytometry (RT-DC) (Santos-Ferreira et al., 2019). For
instance, rod cultures are often isolated with the help of antibodies
against CD73, a surface marker of common cone/rod precursors and
mature rod cells (Koso et al., 2009). Additional methods help isolate
specific photoreceptor types, such as cone-only or rod-only cultures;
for example, cone cultures can be isolated using the ability of these
cells to specifically bind to peanut agglutinin lectin (PNA) (Balse
et al., 2005; Skaper, 2012).

Primary RPE cells are also challenging to isolate: extraction from
their native environment leads to loss of pigmentation,
dedifferentiation, and the acquisition of a mesenchymal
phenotype (Klettner, 2020). However, numerous protocols have
been developed to mitigate these issues to varying degrees of
success (Fronk and Vargis, 2016). For example, since the
epithelial-mesenchymal transition (EMT) of RPE cells is triggered
by the loss of tight intercellular junctions, culturing human RPE as
fragments of the cell layer isolated from the eyes has been proposed
(Blenkinsop et al., 2013). Additionally, it was reported that
incubation in media with increased calcium content or with the
Rac1 inhibitor, a regulatory factor associated with cell migration,
promotes the formation of tight junctions and uniform maturation
of human RPE cells (McKay and Burke, 1994; Rak et al., 2006; Sonoi
et al., 2016). In another study, EMT in mouse RPE cells was
prevented by the addition of Y27632 and Repsox, inhibitors of
Rho-kinase and TGFβR-1/ALK5, respectively (Shen et al., 2017).
Recent research focused on the impact of various coatings and
carrier materials on primary RPE cell proliferation, differentiation,
and function (Tichotová et al., 2022; Dörschmann et al., 2022). At
present, cells are most frequently cultured on Transwell membranes
(Fernandez-Godino et al., 2016; Hood et al., 2022). For example,
primary porcine (Pilgrim et al., 2017) and human (Rabin et al., 2011)
RPE cells cultured on Transwell membranes have been used to study
subretinal deposit formation in early AMD. In addition, primary
RPE cells can be cultured on materials that mimic Bruch’s
membrane, such as collagen, fibronectin, Matrigel, and others;
this approach enhances their functionality as an in vitro model of
AMD and other retinal diseases (Murphy et al., 2020).

2.3 Stem cells

Multipotent and pluripotent stem cells are undifferentiated cells
capable of self-renewal and differentiation into specific cell types.
Multipotent cells can differentiate into a limited number of cell
types, typically those of a particular tissue, while pluripotent cells
possess a greater differentiation potential and can differentiate into
all cell types of an adult organism (Tian et al., 2023). In vitro IRD
models rely on bothmultipotent and pluripotent stem cells and their
ability to differentiate into photoreceptor or RPE cells (Achberger
et al., 2019). Several strategies for controlled differentiation into
retinal cells have been developed. The most common approach
involves culturing cells in media containing various growth factors

and compounds responsible for activation or inhibition of specific
cellular signaling pathways (Huang Y. et al., 2018; Kadkhodaeian
et al., 2019b; Afanasyeva et al., 2021, among others). Another
method of differentiation relies on co-culturing with retinal cells
(usually primary cells or RPE cell lines) that secrete factors
promoting differentiation into the media (Duan et al., 2013;
Zhang Y. et al., 2017, among others). Additionally, the expression
of transcription factors in differentiating cells can be achieved by
either viral transduction or transfection of cells with antisense
miRNAs to mature miRNAs, which inhibit genes relevant to
retinal development (Yan et al., 2013; Choi S. W. et al., 2016;
Zhu X. et al., 2022).

2.3.1 Multipotent stem cells
Multipotent stem cells can differentiate into specific types of

retinal cells and include such cells as fetal neural lineage stem cells
(e.g., retinal progenitor cells), adult neural lineage stem cells (e.g.,
retinal cells capable of differentiation), and adult non-neural lineage
stem cells (e.g., mesenchymal stem cells) (Canto-Soler et al., 2016).
Compared to adult stem cells, fetal stem cells exhibit higher self-
renewal and differentiation capacities; however, their use is
associated with ethical concerns. Consequently, fetal neural stem
cells are rarely used.

Retinal cells capable of differentiation include retinal ciliary
epithelial stem cells, Müller glial cells, and RPE stem cells (Jeon and
Oh, 2015). Retinal ciliary epithelial stem cells (CESC) are a small
population of cells in the human eye that demonstrate proliferation,
self-renewal capacity, and multipotency after isolation (Coles et al.,
2004). A number of studies confirmed that CESCs are capable of
differentiating into retinal ganglion cells and rod photoreceptors
(Das A. V. et al., 2005; Ballios et al., 2012; Del Debbio et al., 2013).
However, over time, the differentiation potential of these cells and
their stemness have been questioned (Frøen et al., 2013). Müller glial
cells are not typical stem cells but have significant potential to
differentiate into retinal cells (Gao et al., 2021), retinal ganglion cells,
and rod photoreceptors (Giannelli et al., 2011; Singhal et al., 2012;
Zeng et al., 2023). RPE stem cells (RPESC), a subpopulation of RPE
cells, are capable of self-renewal, proliferation, dedifferentiation with
loss of RPE markers, and differentiation into retinal nerve cells and
cells of the mesenchymal lineage under certain conditions (Salero
et al., 2012; Saini et al., 2016). RPESCs are considered a source of
RPE cells with characteristics of native RPE for cell replacement
therapy (Blenkinsop et al., 2015). In addition, RPE cells are
amenable to reprogramming into photoreceptor cells induced by
overexpression of NeuroD, Ngn1, and Ngn3 (neurogenin 1 and 3)
proteins (Yan et al., 2013). In addition to the above-mentioned cells
of the retina, the human eye contains other stem cells, some of which
are capable of differentiating into retinal cells due to the common
ancestry. And finally, chick and pig iris stroma and pig iris pigment
epithelial cells also have the capacity to differentiate into neuronal
and photoreceptor-like cells in vitro (Matsushita et al., 2014; Royall
et al., 2017). At present, the described cell types are more commonly
used in regenerative medicine applications than in IRD modeling
(Xiao et al., 2024).

2.3.2 Pluripotent stem cells
Pluripotent stem cells include ESCs and iPSCs derived by

reprogramming adult somatic cells such as fibroblasts,
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keratinocytes, and peripheral blood mononuclear cells (PBMCs).
Unlike multipotent cells, PSCs can be differentiated into both
individual retinal cell types and ROs containing all major retinal
cell types and mimic the structure of the retina in vivo (Afanasyeva
et al., 2021). For example, 2D and 3D iPSC-derived in vitro models
already exist for such diseases as RP, LCA, SD, BVMD, and
choroideremia (Seah et al., 2024). ROs hold great promise for
studying retinogenesis and healthy retinal physiology, modeling
retinal diseases in vitro, and for cell replacement therapy (Cheng
and Kuehn, 2023; Liang et al., 2023; Kurzawa-Akanbi et al., 2024).
There are various protocols for creating ROs; they rely on different
cell sources, reprogramming approaches, and differentiation
methods. These protocols, as well as other features of organoids
and their characteristics, have been described in detail in a number
of reviews. In recent years, the technology for generating ROs has
been actively combined with the latest organ-on-chip and 3D
bioprinting technologies, which is expected to enhance the
functionality of organoids and advance their use in the
aforementioned fields (Zhao and Yan, 2024). However, to date,
the production of ROs has been characterized by a number of
difficulties: high costs, long cultivation time to achieve
differentiation into mature and functional photoreceptors, low
differentiation yield, and the high heterogeneity of organoid
cultures obtained under different conditions (Li X. et al., 2021).
The use of PSCs is also associated with a number of difficulties. For
instance, the use of ESCs is characterized by ethical problems and, as
a consequence, low availability (Volarevic et al., 2018), while iPSCs
are genetically unstable and are known for epigenetic changes, which
limits their application (Kim K. et al., 2010; Polo et al., 2010;
Yoshihara et al., 2019). These factors create a risk of oncogenesis
and make it difficult to control the directed differentiation of iPSCs.
Despite this, the development of in vitro models of retinal diseases
based on PSCs, in particular iPSCs, is a promising direction, since
ROs derived from these cells reproduce in vivo conditions most
reliably among existing cellular models. Still, iPSCs are not able to
fully replace the existing models due to laborious protocols, the high
cost of obtaining them, the low yield of long-term differentiation, the
high heterogeneity of the obtained structures, and ethical and
practical problems with cell sources.

2.4 Somatic cells

It is also noteworthy that certain somatic cells can be directly
reprogrammed into retinal cells with varying degrees of efficiency.
For instance, iris pigment epithelial cells, fibroblasts, and human
PBMCs have all been reprogrammed into photoreceptor-like retinal
cells (Seko et al., 2012; Seko et al., 2014; Komuta et al., 2016). This
reprogramming was achieved by retrovirus- or Sendai virus-
mediated delivery of transcription factors CRX, RX, NEUROD,
and OTX2 in various combinations. Furthermore, to create an
in vitro model of a type of RP, fibroblasts derived from patients
with mutations in the EYS gene were isolated and transduced with
the aforementioned transcription factors using a retroviral vector
(Seko et al., 2018; Rai et al., 2022). Another study reported
chemically induced reprogramming of fibroblasts into rod-like
photoreceptor cells using VCRF, a combination of valproic acid,
CHIR99021 (a GSK3 inhibitor), repsox, and forskolin; STR, a

combination of Sonic hedgehog (Shh), taurine, and retinoic acid;
and IWR1 (a Wnt/β-catenin pathway inhibitor) (Mahato et al.,
2020). Additionally, human fibroblasts can be reprogrammed into
stable RPE-like cells via lentivirus-delivered transcription factors
MITF, OTX2, LIN28, MYC, and CRX (Woogeng et al., 2022).

Overall, direct reprogramming of somatic cells is a simpler and
cheaper method for generating retinal cells compared to the stem
cell-derived approaches. However, this method has a major
drawback: significantly reduced differentiation efficiency, as
evidenced by the low expression levels of retinal cell markers and
morphological discrepancies.

3Mesenchymal stem cells as a potential
optimal source for creating in vitro
models of IRDs

3.1 Characteristics of MSCs

Mesenchymal stem cells are adult multipotent stem cells with
fibroblast-like morphology, high self-renewal capacity, and
multilineage differentiation potential. The International Society for
Cellular Therapy (ISCT) formulated minimal criteria for human
MSCs: i) the cells must be capable of adhering to plastic surfaces; ii)
they must express the surface markers CD105, CD73, and CD90 while
lacking expression of hematopoietic markers CD45, CD34, CD14 or
CD11b, CD79a or CD19, andHLA-DR; and iii) theymust be capable of
differentiation into osteoblasts, adipocytes, and chondrocytes in vitro
(Dominici et al., 2006) (Figure 3). It is important to note that ISCT
criteria apply only to MSCs cultured in vitro and may not fully reflect
the properties of MSCs in vivo (McNiece, 2007). Furthermore, MSCs
isolated according to these criteria often represent a phenotypically
heterogeneous population. Consequently, additional cell surface
markers, such as CD271, CD106, and CD146, are sometimes used
to isolate subpopulations of MSCs with high proliferative capacity and
greatermultilineage differentiation potential (Mo et al., 2016). The exact
characteristics of MSCs (including the ability to differentiate into
multiple lineages) vary depending on the isolation source, donor
age, isolation method, and composition of the cell culture medium
(Mushahary et al., 2018; Andrzejewska et al., 2019). Moreover, MSCs
obtained from donors of the same age may also differ in their
proliferative and differentiation potential (Li J. et al., 2023).

Additionally, MSCs possess the ability to secrete neurotrophic,
immunosuppressive, and anti-angiogenic factors, which enhances
their application in cell replacement therapies for various diseases,
including degenerative retinal diseases (Adak et al., 2021).

3.2 Sources of MSCs

Bone marrow-derived MSCs (BMSCs) and adipose-derived
stem cells (ADSCs) are the most commonly used among adult
MSC sources. BMSCs were among the first described MSCs
(Friedenstein et al., 1987) and are still considered a promising
cell source due to their high colony-forming potential and
multilineage differentiation capacity in vitro (Chu et al., 2020;
Purwaningrum et al., 2021). However, bone marrow aspiration is
an invasive procedure associated with significant pain, which is a
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considerable drawback of this method. ADSCs have somewhat
similar morphology to BMSCs, comparable proliferative ability,
and high differentiation potential (Strioga et al., 2012; Bunnell,
2021). Moreover, ADSCs are typically obtained from biological
material collected through the less-invasive procedure of
liposuction, making them more accessible than BMSCs. MSCs
derived from dental tissues, such as dental pulp stem cells
(DPSCs), stem cells from human exfoliated deciduous teeth
(SHED), and periodontal ligament stem cells (PDLSCs), can be
used for neuronal differentiation (Aydin and Şahin, 2019; Sramkó
et al., 2023). Teeth can be obtained without ethical concerns as they
are considered biological waste in dentistry (Das and Sloan, 2023).
Among neonatal sources, the umbilical cord is particularly popular:
MSCs can be isolated from the whole umbilical cord (UC-MSCs),
Wharton’s jelly (WJ-MSCs), or umbilical cord blood (UCB-MSCs)
(Mennan et al., 2013; Nagamura-Inoue and He, 2014). The umbilical
cord is considered medical waste, making it an accessible source that
does not require invasive procedures for MSC isolation (Das and
Sloan, 2023). Additionally, umbilical cord MSCs have further

advantages: an increased proliferative potential and a higher
number of cell passages in vitro before reaching senescence
compared to adult MSCs (Hass et al., 2011). It is also worth
noting that umbilical cord tissues are richer sources of MSCs
compared to umbilical cord blood (Jin et al., 2013), and cells
isolated from the whole umbilical cord are easier to obtain,
proliferate faster, and are more durable in culture than those
from Wharton’s jelly (Mennan et al., 2016).

Overall, the choice of MSC source depends on the intended
application, immunomodulatory properties, ability to secrete
specific factors, proliferative capacity, and differentiation potential
in certain directions.

3.3 Differentiation of MSCs into osteogenic,
adipogenic, and chondrogenic lineages

MSCs are capable of differentiating into mesodermal lineage
cells, and the characterization of isolated MSCs requires

FIGURE 3
MSCs as a potential source of retinal cells. MSCs can be isolated from various sources based on phenotyping markers. Most often used:
BMSCs–bone marrow stem cells, ADSCs–adipose-derived stem cells, UC-MSCs–umbilical cord MSCs, WJ-MSCs–Wharton’s jelly MSCs, DPSCs–dental
pulp stem cells; PDLSCs–periodontal ligament stem cells, etc. These cells are capable of self-renewal and differentiation in three directions: osteogenic,
adipogenic, and chondrogenic. Under certain conditions, they are able to differentiate into retinal pigment epithelial (RPE) cells, photoreceptors, and
retinal ganglion cells (RGCs).

Frontiers in Cell and Developmental Biology frontiersin.org08

Dodina et al. 10.3389/fcell.2024.1455140

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1455140


confirmation of their ability to differentiate into osteoblasts,
adipocytes, and chondrocytes in vitro.

Osteogenic differentiation is commonly initiated in a medium
supplemented with dexamethasone, β-glycerophosphate, and
ascorbic acid (Pittenger et al., 1999). The success of
differentiation is assessed by the increased levels of expression of
alkaline phosphatase and the formation of calcium deposits, which
can be visualized with the help of specific stains such as Alizarin Red
S (Ciuffreda et al., 2016).

Adipogenic differentiation is typically induced in a medium
containing dexamethasone, insulin, indomethacin, ascorbic acid,
and other compounds (Rosen and MacDougald, 2006; Scott et al.,
2011). Confirmation of adipogenic differentiation is carried out by
staining lipid droplets with specific dyes, such as Oil Red O
(Ciuffreda et al., 2016).

Chondrogenic differentiation is carried out in media
supplemented with dexamethasone, ITS (insulin-transferrin-
selenium), ascorbic acid, pyruvate, TGF-β1, and other
compounds (Solchaga et al., 2011; Narcisi et al., 2021). The
differentiation results in the formation of cell spheres that
express type II collagen, which can also be stained with dyes
such as Alcian Blue (Ciuffreda et al., 2016).

Additionally, the ability of MSCs to differentiate into these
lineages can be confirmed by assessing the expression levels of
genes specific to osteocytes, adipocytes, and chondrocytes.

3.4 Differentiation of MSCs into retinal cells

Under specific conditions, MSCs can differentiate into cells of
ectodermal (e.g., neurons, epithelial cells) or endodermal (e.g.,
hepatocytes) origin (Sierra-Sánchez et al., 2018; Hernández et al.,
2020; Afshari et al., 2020). The ability of various MSCs to efficiently
differentiate into retinal cells in vitro can be utilized in both cell
therapy and the development of cellular models for retinal diseases.

As previously mentioned, several strategies exist for
differentiating stem cells into retinal cells in vitro. These
strategies aim to mimic the in vivo conditions of retinal
maturation at different stages by activating or inhibiting specific
cellular signaling pathways. The differentiation factors can be either
added to the culture medium or are secreted by retinal cells during
co-culture. Additionally, some differentiation protocols rely on
regulation of the expression of certain genes involved in this
process. Supplementary Table S1 provides detailed data on
existing methods of differentiation of MSCs into retinal cells.

3.4.1 Differentiation in induction media
Currently, the differentiation of MSCs into retinal neurons

(including photoreceptors) often relies on the neural
differentiation induction NDI cocktail, which includes Noggin (a
bone morphogenetic protein BMP pathway inhibitor), Dickkopf-1
(a Wnt/β-catenin pathway inhibitor), and IGF1 (insulin-like growth
factor 1). Noggin inhibits the BMP pathway, promoting neural tube
patterning and the differentiation of cells into retinal neurons
(McMahon et al., 1998; Lan et al., 2009; Tao et al., 2010).
Inhibition of the Wnt/β-catenin pathway via Dickkopf-1 (Dkk-1)
promotes the differentiation of retinal progenitor cells into retinal
neurons (Das A. V. et al., 2008). IGF1 is crucial for anterior neural

system development and supports the maturation of retinal
progenitor cells into photoreceptor cells (Pera et al., 2001; Wang
Y. et al., 2018; Zerti et al., 2021).

Enhancing differentiation efficiency can also involve inhibition
of the Notch1 pathway, for example, with DAPT (N-[N-(3, 5-
diflurophenylacetate)-L-alanyl]-(S)-phenylglycine t-butyl ester), a
γ-secretase inhibitor. Active Notch1 signaling is associated with
the proliferation of retinal progenitor cells, while its inhibition
promotes their differentiation into photoreceptors (Jadhav et al.,
2006; Mills and Goldman, 2017). Other compounds, such as Shh,
triiodothyronine (T3), trans-retinoic acid, and taurine, are also used
for induction of retinal neuron differentiation. Shh plays a role in
neuroretina development and visual field formation, promoting the
differentiation of retinal progenitors into rod photoreceptors
(Levine et al., 1997). T3 determines cone subtypes by suppressing
the formation of S-cones and inducing the formation of L/M-cones
(Eldred et al., 2018). Trans-retinoic acid and taurine stimulate rod
photoreceptor development (Altshuler et al., 1993; Kelley et al.,
1994; Khanna et al., 2006; Khalili et al., 2018).

Differentiation is often carried out in DMEM/F12-based media
supplemented with B27 and N2 for cultivating neuronal cells, ITS,
and neurotrophic factors such as FGF2, EGF, BDNF (brain-derived
neurotrophic factor), CNTF (ciliary neurotrophic factor), NGF
(nerve growth factor), and others. The most common protocol
involves culturing MSCs under ultra-low adherence conditions to
differentiate neurons, followed by culturing the resulting
neurospheres under adhesive conditions (see protocols in
Supplementary Table S1).

Human PDLSCs were differentiated into retinal cells via the
formation of neurospheres under low-attachment conditions,
followed by adherent culture in media containing B27, N2,
Noggin, and Dkk-1. The differentiated cells exhibited increased
expression of retinal progenitor (LHX2, DCX, CHX10, RX,
SOX2, OTX2) and photoreceptor (NRL, RHO) genes (Huang L.
et al., 2013). Later, PDLSCs were differentiated into RGC using a
modified protocol that included IGF1, FGF2, ITS, BDNF, CNTF,
NGF, and Shh in the medium. As a result, the cells expressed
markers of retinal progenitors (PAX6, CHX10) and retinal ganglion
and neuronal cells (TUBB3, MAP2, TAU, NEUROD1, SIX3,
ATOH7, and POU4F2) (Ng et al., 2015).

Following a similar protocol, differentiated ADSCs exhibited
expression of marker genes for retinal progenitor cells (PAX6 and
NES), photoreceptors and their precursors (CRX, NRL, RHO, and
RCVRN), and RGC (ATOH7, TUBB3, and POU4F2). Additionally,
the impact of the Notch1 pathway on ADSC differentiation was
investigated: activation of the pathway with JAG1 enhanced the
expression of retinal progenitor markers, while inhibition with
DAPT led to increased expression of RGC genes (Huang Y.
et al., 2018). In a subsequent study, ADSC differentiation into
photoreceptors and RGC was compared under adherent and
non-adherent conditions. It was found that ultra-low attachment
conditions could facilitate differentiation into the retinal lineage;
however, the combination of the NDI differentiation cocktail and
non-adherent culture conditions did not enhance differentiation
efficiency (Ling et al., 2023).

Rat DPSCs were differentiated into RGC in a medium
containing N2, heparin, FGF2, and Shh in both 2D and 3D
cultures within fibrin hydrogel, mimicking the mechanical
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properties of the developing retina. Enhanced expression of retinal
neuronal and ganglion cell markers (PAX6, ATOH7, MAP2,
POU4F2, and GFAP) was observed in the 3D culture compared
to the 2D culture (Roozafzoon et al., 2015). In another study, SHED
were successfully differentiated into retinal photoreceptor cells in a
medium containing the NDI differentiation cocktail, along with B27,
N2, ITS, FGF2, Shh, T3, and trans-retinoic acid. Differentiated cells
demonstrated expression of neuronal markers (NEUROD1, ASCL1,
TAU, GluR2, OTX2, and AIPL1), retinal progenitor markers (PAX6,
RX, and CHX10), photoreceptor precursor markers (RCVRN, CRX,
and NRL), and photoreceptor markers (RHO and OPN1SW) at
different stages (Li X. et al., 2019).

Additionally, differentiation of MSCs derived from human
olfactory mucosa (OM-MSCs) into retinal photoreceptor cells in
the presence of EGF, taurine, and retinoic acid in the medium was
confirmed by the expression of the rod photoreceptor marker RHO
(Lu et al., 2017). Taurine was also used to induce the differentiation
of conjunctiva mesenchymal stem cells (CJMSCs) cultured on poly-
l-lactic acid (PLLA) nanofibrous scaffolds, which led to their
differentiation into photoreceptor-like cells and the expression of
rod photoreceptor markers (CRX, RCVRN, and RHO). Moreover,
the expression of these genes was higher in cells cultured on
randomly-oriented scaffold nanofibers than on aligned scaffold
nanofibers (Nadri et al., 2013). Later, the same authors
demonstrated the differentiation of CJMSCs into photoreceptor-
like cells on scaffolds made of polycaprolactone (PCL) and
polyethylene glycol (PEG) with the addition of taurine; the
resulting cells expressed some photoreceptor markers (RCVRN,
RHO) (Nadri et al., 2017).

Differentiation of stem cells into RPE cells can also be
achieved in media containing inhibitors of the BMP and Wnt/
β-catenin signaling pathways. The efficiency of differentiation
into RPE cells can be increased by the addition of nicotinamide,
activin A, and other compounds to the medium (Idelson et al.,
2009; Hazim et al., 2019). Media is supplemented with EGF,
FGF2, ITS, and similar factors for the maintainance of
differentiating cells (see protocols in Supplementary Table S1).
For example, rat BMSCs were differentiated into pigmented
spheres capable of forming monolayers of RPE-like cells with
phagocytic activity towards photoreceptor outer segments (POS).
The differentiation medium contained EGF, FGF2, insulin, T3,
putrescine, selenium, and linoleic acids. Initially, neurospheres
expressed stem cell markers (OCT4, SOX2, NANOG) and neural
stem cell marker (NES). Subsequently, pigmented spheres
expressed retinal progenitor marker OTX2 required for RPE
specification and RPE markers RPE65 and CRALBP
(Kadkhodaeian et al., 2019b). In another study by these
authors, ADSCs were differentiated into RPE cells in
induction medium containing insulin, T3, and EGF. After
80 days of differentiation, cells expressed RPE markers
(RPE65 and CRALBP) and exhibited epithelial morphology
(Kadkhodaeian et al., 2019a).

3.4.2 Differentiation in conditioned media or via
co-culture with retinal cells

Differentiation of MSCs into RPE cells is frequently performed
using conditionedmedia or by co-culturingMSCs with primary RPE
cells or RPE cell lines, such as ARPE-19, due to the simplicity and

relative cost-effectiveness of this approach (see protocols in
Supplementary Table S1).

For example, human ADSCs were differentiated into RPE-like
cells in media conditioned by primary porcine or human RPE cells
and/or containing vasoactive intestinal peptide (VIP). Following
differentiation, these cells expressed RPE markers (bestrophin,
RPE65, and CK8/18) and produced melanin pigment in response
to hormonal stimulation by melanocyte-stimulating hormone.
Interestingly, the combined use of conditioned media and VIP
did not enhance the differentiation (Vossmerbaeumer et al.,
2009). In another study, ADSCs were cultured in ARPE-19-
conditioned media, resulting in cells expressing RPE markers
(bestrophin, RPE65, and CK8) and exhibiting increased
proliferative and migratory capabilities (Zhang Y. et al., 2017).

Additionally, RPE-like cells were generated by co-culturing
human BMSCs with porcine RPE cells in a Transwell system.
The differentiated cells expressed markers of RPE and their
progenitors (MITF, OTX2, bestrophin, tyrosinase, PMEL17,
RPE65, ZO-1, PEDF, and CRALBP), displayed the presence of
pigmented granules, phagocytosed POS, and secreted BDNF and
GDNF (Duan et al., 2013). Similarly, co-culturing ARPE-19 cells
with WJ-MSC in a Transwell system resulted in expression of RPE-
specific markers (MITF, OTX2, RPE65, PEDF, PMEL17, CRALBP,
and ZO-1), phagocytic ability, and secretion of BDNF and GDNF
(Chang et al., 2022).

Co-cultivation can be achieved without the use of Transwell
systems when MSCs are co-cultured together with UV-inactivated
RPE cells. For instance, rabbit BMSCs were differentiated into RPE-
like cells via co-cultivation with UV-inactivated ARPE-19 cells in a
gellan gum-based hydrogel supplemented with B27. The
differentiated cells expressed RPE-specific markers (RPE65, NPR-
A, and CRALBP) (Choi M. J. et al., 2019).

In addition to differentiation into RPE-like cells, the co-
cultivation approach with RPE cells can be used for
differentiation into photoreceptor-like cells. For example, BMSCs
were initially cultured in a neurogenic differentiation medium
containing FGF2, EGF, ITS, and other compounds, followed by
incubation in a medium with UV-inactivated human RPE cells.
Neurospheres obtained from neurogenic differentiation expressed
the marker of neural precursor cells, NES, while photoreceptor-like
cells obtained from further differentiation expressed markers
associated with photoreceptors (PKC and opsins) (Chiou
et al., 2005).

3.4.3 Differentiation via regulation of gene
expression

Regulation of specific gene expression in cells is often achieved
by retroviral and lentiviral transduction, which offers the advantage
of long-term and stable gene expression (see protocols in
Supplementary Table S1). For instance, in ADSCs, the
transcription factor PAX6 (5a) was stably expressed post-
lentiviral transduction, followed by culturing the transduced cells
in a fibronectin-containing medium. As a result, the cells expressed
markers of retinal precursor cells (PAX6, CHX10), RPE markers
(RPE65, CRALBP, CK8/18), and photoreceptor cells and their
precursors (CRX, NRL, RCVRN, and RHO) (Rezanejad et al.,
2014). In another study, UC-MSCs were differentiated through
retroviral delivery of transcription factors CRX, NR2E1, C-MYC,

Frontiers in Cell and Developmental Biology frontiersin.org10

Dodina et al. 10.3389/fcell.2024.1455140

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1455140


LHX2, and SIX6. The resulting RPE-like cells expressed RPE
markers (RPE65, MERTK, TYRP1, CRALBP, PEDF, and ZO-1),
exhibited phagocytic ability towards POS, and possessed
characteristics similar to those of RPE cells derived from iPSCs
(Zhu X. et al., 2022).

Another method of regulation of gene expression involves the
use of anti-sense miRNAs to mature miRNAs for inhibition of
their expression via RNA interference (see protocols in
Supplementary Table S1). miRNAs in cells regulate gene
expression by binding to target mRNAs, leading to their
degradation or inhibition of translation. A single miRNA can
target the expression of multiple genes. MiRNAs play a crucial
role in the differentiation process and maintenance of the
undifferentiated state (Guo et al., 2011). Several studies
describe the differentiation of human amniotic epithelial SCs
(AESCs) and UCB-MSCs by inhibiting cell miRNAs. For
example, inhibition of miRNA410, targeting OTX2 and
RPE65 genes, promoted the differentiation of cells into RPE-
like cells expressing RPE markers (MITF, RPE65, bestrophin,
EMMPRIN, etc.) and exhibiting phagocytic activity (Choi S. W.
et al., 2015; Choi S. W. et al., 2017). Inhibition of miRNA203,

targeting DKK1, CRX, NRL, NEUROD1, and RORβ genes, led to
differentiation into photoreceptor-like cells expressing markers
of rod and cone photoreceptors and their precursors (THRB,
NR2E3, NRL, OPN1MW, etc.) (Choi S. W. et al., 2016).

Some studies also described CJMSCs transduced with lentivirus
delivering let-7a miRNA, which is normally expressed in neural
stem cells during retinal retinogenesis. CJMSCs overexpressing let-
7a miRNA differentiated into photoreceptor-like cells and expressed
rod photoreceptor markers (RCVRN, RHO) (Ranjbarnejad et al.,
2019). In addition, CJMSCs were transduced with lentiviruses
delivering miRNA-9, which also plays a role in retinal
development. In one study, CJMSCs overexpressing miRNA-9
were cultured on a silk fibroin-poly-L-lactic acid (SF-PLLA)
scaffold and differentiated into photoreceptor-like cells expressing
rod photoreceptor markers (RCVRN, RHO) (Rahmani et al., 2020).
In another study, CJMSCs overexpressing miRNA-9 were cultured
on the scaffold obtained by polymerization of silk fibroin and
reduced graphene oxide nanoparticles (SF-rGo) and electrically
induced to differentiate. The resulting cells expressed
photoreceptor markers (PRPH, RCVRN, and RHO) (Naderi and
Nadri, 2022).

FIGURE 4
MSCs for in vitro modeling of healthy retinal physiology, or IRDs, and in cell therapy of degenerative retinal diseases. Functional retinal cells can be
obtained from theMSCs of a healthy donor and are suitable for studying healthy physiology. Similar to retinal cells obtained from IRD patient MSCs, gene-
edited MSCs from healthy donors can be used to study IRD pathology or for drug testing.
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3.5 Genetic engineering of MSCs

The development of in vitro IRD models relies on the ability to
genetically edit cells in order to introduce disease-causing
pathogenic mutations. It is advisable to use the so-called gene-
cell approach, which involves the initial genetic editing of cells
followed by their differentiation into retinal cells using the methods
described above. This step is necessary if the initial MSCs are isolated
from a healthy donor rather than from an IRD donor (Figure 4). In
the latter case, after differentiation into retinal cells, MSCs obtained
from an IRD patient will be able to reproduce the corresponding
genetic and cellular context of the disease without additional
manipulations, which can be particularly useful for studying the
pathological processes underlying it.

Gene knockout, often relying on CRISPR/Cas9 technology, is
performed to reproduce the pathological state of cells resulting from
mutations in specific genes and, consequently, the disruption of the
function of specific proteins (Nie and Hashino, 2017). Compared to
other gene engineering technologies such as zinc finger nucleases
(ZFNs) and transcription activator-like effector nucleases
(TALENs), CRISPR/Cas9 technology is more cost-effective,
straightforward, efficient, and can be applied to editing multiple
gene targets (Boti et al., 2023). This approach involves the synthesis
of complementary guide RNA (gRNA) targeting a specific DNA
locus to direct the Cas9 endonuclease for double-strand DNA
cleavage (Ran et al., 2013). Reparation of such a break can occur
via non-homologous end joining (NHEJ) or homology-directed
repair (HDR). NHEJ leads to gene knockout due to the deletion
and reading frame shift of the target DNA sequence. For HDR to
occur, the presence of a homologous sequence is required, resulting
in either the correction of the existing gene sequence or the insertion
of the gene of interest. Often, during HDR, the green fluorescent
protein (GFP) gene is inserted as a reporter for knockout cell
selection (Ebrahim et al., 2020).

Gene editing of MSCs can be applied not only to the
development of in vitro models but also to enhancing the
therapeutic potential of MSCs in regenerative medicine by
altering the secretion of various cytokines, growth factors, and
other compounds in order to improve stemness characteristics,
aging, migration, proliferation, anti-inflammatory properties,
etc. (Damasceno et al., 2020; Hazrati et al., 2022). Viral (retro-
, lenti-, and adeno-associated viral vectors) and non-viral
(electroporation, microinjection, the use of chemical carriers,
etc.) gene delivery systems are actively employed for these
purposes (Ebrahim et al., 2020). The choice of gene delivery
method for MSC modification depends on the properties of
MSCs isolated from a specific source and the ultimate goals of
application. Generally, viral vectors are considered the most
promising gene delivery methods for MSCs as they are
efficient and capable of ensuring long-term gene expression.

In some cases, genetic editing of MSCs is carried out to enhance
their differentiation potential in a specific direction. For example,
expression of the erythropoietin (EPO) gene delivered by lentiviral
vector intoWJ-MSCs led to more efficient differentiation of the cells
into rod photoreceptors in the presence of taurine compared to non-
transduced cells (Ding et al., 2019). Studies modifying MSCs to
enhance osteogenic potential (Freitas et al., 2021) and chondrogenic
potential (Kim H. J. et al., 2022) have also been published.

3.6 Use of MSCs in clinical trials

Currently, the use of MSCs in cell therapy for degenerative
retinal diseases is quite promising. Their therapeutic effect can be
attributed to three main properties: a paracrine protective effect on
retinal cells, immunosuppressive properties, and the ability to
differentiate into retinal cells in the appropriate cellular
environment. However, the effect of MSC-based therapy is
largely associated with neuroprotection of retinal cells and
suppression of the inflammatory response, which helps slow or
halt the progression of retinal degeneration (Chen et al., 2022). In
addition, MSCs exhibit pro- or anti-angiogenic properties
depending on the tissue microenvironment. The anti-angiogenic
properties of MSCs are beneficial for the treatment of retinal diseases
with pathological angiogenesis, such as AMD, diabetic retinopathy,
and others. At the same time, their pro-angiogenic properties, useful
in the restoration of ischemic damage of the retina, can contribute to
the progression of these diseases (Adak et al., 2021).

There are currently 20 clinical trials registered on
ClinicalTrials.gov, 2024 (Table 1) in which MSCs or their
derivatives are tested for therapeutic intervention in various
retinal degenerative conditions. Most of these studies are in
phase I or phase I/II clinical trials (Figure 5A). Several studies,
such as NCT04224207 and NCT05800301, have already completed
phase III trials. RP therapy with WJ-MSCs alone or in combination
with retinal electromagnetic stimulation (rEMS) was found to be
effective and safe (Özmert and Arslan, 2020a; Özmert and Arslan,
2020b; Özmert and Arslan, 2023). There are a total of 7 completed
clinical studies (Figure 5B), which further supports the safety of
MSCs for various therapeutic approaches as well as the efficacy
required to complete a clinical study (Mangunsong et al., 2019;
Tuekprakhon et al., 2021; Vilela et al., 2021; Özkan et al., 2023).
However, one study (NCT02024269) was withdrawn due to the
observed severe loss of vision (associated with retinal detachment,
intraretinal hemorrhage, etc.) in patients following intravitreal
injection of autologous ADSCs (Kuriyan et al., 2017).

The largest number of MSC-based clinical studies aiming at
treating retinal degenerative conditions have been reported in
Turkey, the United States, and Indonesia (Figure 5C). At the
same time, the largest studies in terms of patient cohorts are
being conducted in the United States: the target number of
participants in the Stem Cell Ophthalmology Treatment Study
(SCOTS) and SCOTS2 is 300 and 500 patients, respectively
(NCT01920867 and NCT03011541). Patients involved in SCOTS
and SCOTS2may have a wide range of retinal or optic nerve damage
conditions: RP, SD, AMD and other macular degenerations,
glaucoma, optic atrophy, etc. (Weiss et al., 2015a; Weiss et al.,
2015b; Weiss et al., 2016a; Weiss et al., 2016b; Weiss et al., 2017;
Weiss and Levy, 2018; Weiss and Levy, 2019a; Weiss and Levy,
2019b; Weiss and Levy, 2021). However, many other studies tend to
enroll patients with a specific retinal degenerative condition such as
RP, AMD, or glaucoma, with RP being the condition of interest in
more than half of the known studies (Figure 5D).

BM and UC (including WJ) are most often used as a source of
cells for therapy, and AT-derived MSCs are much less commonly
used (Figure 5E). Autologous BMSCs and ADSCs, or allogeneic UC-
MSCs and WJ-MSCs, are typically used for administration to the
patient. One study (NCT05712148) uses spheroidal UC-MSCs
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TABLE 1 MSCs in clinical trials.

ClinicalTrials.gov
ID of study

Phase Status Condition MSCs
type

Route of
administration

Start and
actual/

expected
completion

dates

Country

NCT01531348 I Completed
(Tuekprakhon et al.,

2021)

RP BMSCs Intravitreal 2012–2020 THA

NCT02016508 I/II Unknown AMD BMSCs Intravitreal 2013–2015 EGY

NCT02330978 I Completed (Vilela
et al., 2021)

Glaucoma BMSCs Intravitreal 2014–2016 BRA

NCT02280135 I Completed RP BMSCs Intravitreal 2014–2017 ESP

NCT01920867 NA Unknown (Weiss
et al., 2015a; Weiss
et al., 2016b; Weiss
et al., 2017; Weiss
et al., 2015b; Weiss
et al., 2016a; Weiss
and Levy, 2018;
Weiss and Levy,
2019a; Weiss and
Levy, 2019b; Weiss
and Levy, 2021)

RP, SD and other
macular

degenerations,
glaucoma, optic
atrophy, etc.

BMSCs Retrobulbar, subtenon,
intravitreal, intraocular,

and intravenous
(different combinations)

2012–2020 USA

NCT03011541 NA Recruiting RP, SD, AMD and
other macular
degenerations,
glaucoma, optic
atrophy, vision
loss night, etc.

BMSCs Retrobulbar, subtenon,
intravitreal, intraocular,

and intravenous
(different combinations)

2016–2026 USA, UAE

NCT03772938 I Unknown RP, SD,
BVMD, AMD

BMSCs Intravitreal 2018–2020 POL

NCT06242379 I/II Recruiting RP BMSC-
derived EVs

Intravitreal 2024–2026 THA

NCT02024269 NA Withdrawn
(Kuriyan et al.,

2017)

AMD ADSCs Intravitreal 2013–2017 USA

NCT02144103 I/II Unknown Glaucoma ADSCs Subtenon 2014–2019 RU

NCT04315025 I/II Completed
(Mangunsong et al.,

2019)

RP UC-MSCs
or/and CM

Peribulbar 2018–2019 IDN

NCT05786287 Observational Enrolling by
invitation

RP UC-MSCs
or/and CM

Peribulbar 2023–2025 IDN

NCT05909488 I/II Recruiting RP UC-MSCs
and CM

Peribulbar 2023–2025 IDN

NCT04763369 II Unknown RP UC-MSCs Subtenon or
suprachoroidal

2021–2022 PAK

NCT05147701 I Recruiting RP, macular
degenerations,
glaucoma, optic
atrophy, etc.

UC-MSCs Subtenon and
intravenous

2022–2026 ATG,
ARG, MEX

NCT05712148 I/II Completed (Özkan
et al., 2023)

RP Spheroidal
UC-MSCs
in fibrin
matrix

Suprachoroidal 2019–2022 TUR

NCT03437759 Early I Unknown (Zhang
X. et al., 2018)

Idiopathic
macular hole

UC-MSC-
derived EVs

Intravitreal 2017–2021 CHN

(Continued on following page)
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embedded in a matrix and implanted via the suprachoroidal route
(Özkan et al., 2023). Also, some studies (NCT06242379,
NCT03437759, and NCT05413148) test the effects of
extracellular vesicles (EVs) isolated from BMSCs, UC-MSCs, or
WJ-MSCs instead of intact cells and deliver various functional
therapeutic molecules (Zhang X. et al., 2018). In other studies
(NCT04315025 and NCT05786287), the cell-free approach is
implemented by injecting the patient with MSC-conditioned
medium (CM) containing various factors (Mangunsong et al.,
2019). The introduction of cells into the human eye is also
carried out in various ways: intravitreal and subtenon injections
are the most common; suprachoroidal, peribulbar, retrobulbar, and

intravenous injections are less commonly used (and sometimes in
various combinations, such as in SCOTS and SCOTS2) (Figure 5F).

Thus, MSCs are promising candidates for cell therapy of retinal
degenerative diseases, including IRD, due to, among other things,
their ability to differentiate into retinal cells.

4 Discussion

Most IRDs are caused by the dysfunction of a single gene, with
different mutations in the same gene leading to distinct disease
phenotypes. Currently, gene therapy treatments for these disorders

TABLE 1 (Continued) MSCs in clinical trials.

ClinicalTrials.gov
ID of study

Phase Status Condition MSCs
type

Route of
administration

Start and
actual/

expected
completion

dates

Country

NCT04224207 III Completed (Özmert
and Arslan, 2020a;

2020b)

RP WJ-MSCs Subtenon 2019–2020 TUR

NCT05800301 III Completed (Özmert
and Arslan, 2023)

RP WJ-MSCs Subtenon + rEMS 2019–2022 TUR

NCT05413148 II/III Recruiting RP WJ-MSCs
and WJ-
MSC-

derived EVs

Subtenon 2022–2023 TUR

FIGURE 5
MSC-based clinical trials for retinal degenerative conditions (valid for June 2024). (A) Clinical trials by study phase. NA - not applicable. (B) Study
status. (C) Country of study. The largest number of studies are located in Turkey, the United States, and Indonesia. (D) Clinical trials by the condition at
which the therapy is aimed. (E) Clinical studies by MSC source. (F) Route of administration.
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are being actively developed worldwide and employ strategies for
both whole gene replacement and correction of point mutations
(Schneider et al., 2022; Hansen et al., 2023). The FDA approval in
2017 of Luxturna, the first and only IRD gene therapy aimed at
treating LCA2 caused by mutations in the RPE65 gene, inspired
researchers’ enthusiasm for developing treatments for other IRDs.
Thus, there is a great need for effective modeling of IRD pathology
and the testing of therapeutic agents. The biggest advantage of
in vitro models stems from the fact that in vivo models for these
purposes are costly and time-consuming. Moreover, there are often
cases where animal models inaccurately reproduce the human
disease phenotype due to anatomical and physiological
differences (Slijkerman et al., 2015). In contrast, in vitro cell-
based models save time and money, are relatively easy to use,
and replicate physiological processes with varying degrees of
fidelity. The application of such models in the early stages of
preclinical drug development contributes to reducing animal
studies in accordance with the principles of the 3Rs: replacement,
reduction, and refinement of animal use for research purposes
(Russell and Burch, 1959).

This review examined the various types of cells that can be used
to create in vitro IRD models. The simplest approach involves the
use of immortalized cell lines, while the most complex entails the
creation of organoid cultures based on iPSCs. Each approach has its
advantages and disadvantages. The better a model reproduces the in
vivo state of cells (the higher its clinical relevance), the more
laborious and costly its generation becomes, making the use of
such models in large-scale experiments economically impractical.
Therefore, there is currently no perfect cell source for creating
in vitro models, and the final choice depends on the modeling
goals. Yet, the mesenchymal stem cells discussed in this review more
deeply are a promising cell source for developing in vitro models
because they can differentiate into retinal cells, such as RPE cells,
photoreceptor cells, and RGCs, and can be used both for modeling
retinal diseases and for regenerative medicine purposes.

Significant advantages of creating in vitro IRD models based on
MSCs include their accessibility, relative simplicity of isolation from
various sources, ease of expansion and manipulation, and the ability
to control their differentiation. If MSCs are isolated from a healthy
donor that does not carry the IRD mutation, genetic editing and
knockout of genes responsible for disease progression allow for the
reproduction of pathological phenotypes. As discussed above,
differentiation of MSCs into retinal cells can be achieved through
various methods: culturing in induction media, culturing in
conditioned media, co-culture with retinal cells, and regulation of
gene expression via miRNAs or viral vectors.

Following differentiation, retinal cells are characterized by the
expression of mature and immature markers. For example,
commonly identified markers include RCVRN, RHO, and opsins
for photoreceptor cells, and RPE65, CRALBP, and bestrophin for
RPE cells. The morphology of MSCs differentiated into
photoreceptor-like cells is typically described as neuron-like, with
no characteristic outer and inner segments of photoreceptors usually
observed. The ability of these cells to exert neuronal excitability is
evaluated by their calcium response to glutamate or high potassium
ion concentrations, while RPE-like cells are tested for their ability to
phagocytose the outer segments of photoreceptors and secrete the
neurotrophic factors BDNF and GDNF. The latter cells usually

exhibit cobblestone-like morphology but often do not acquire cell
pigmentation. Overall, MSC-derived retinal cells lack structural
resemblance to in vivo cells. Moreover, these cells often
demonstrate simultaneous expression of markers characteristic of
various retinal cell types rather than just the target ones. Therefore,
existing differentiation protocols are imperfect and require further
optimization of conditions to increase the yield of target cells with a
higher degree of relevance to in vivo cells and reduce the yield of cells
with mixed marker expression. Thus, MSCs differentiated into
retinal cells are characterized by an inconsistent retinal
phenotype, so the quality and functionality of these cells may not
fully replicate the characteristics of native retinal tissue.

The differentiation process of MSCs into retinal cells typically
takes 14–28 days, depending on the chosen strategy, which is
significantly less than the time required for the differentiation of
3D retinal organoids from iPSCs (up to 180 days for the expression
of mature retinal neuron markers) (Afanasyeva et al., 2021). At the
same time, iPSCs differentiated into retinal cells over a long period
of time have a greater structural similarity to retinal cells than
differentiated MSCs. This is due to the significantly restricted
plasticity of MSCs compared to iPSCs, which does not allow
them to fully differentiate into specific retinal cell types, such as
photoreceptors, which are critical in IRD studies. Other significant
disadvantages of MSCs include limited proliferation capacity, which
reduces the lifespan of cells in culture; source- and donor-dependent
variability, which may affect the reproducibility of studies; loss of
important MSC markers in long-term cultures; and a significant
decrease of their multilineage differentiation abilities. As a result,
problems may arise in the use of MSCs in long-term studies and
large-scale applications. Moreover, unlike iPSCs, MSCs can only be
used to create 2D cell models of specific types of retinal cells due to
their multipotency and inability to form self-organizing,
multilayered structures (ROs). In these aspects, MSCs are
undoubtedly inferior to iPSCs as a source of cells for in vitro
IRD modeling. However, the highlighted advantages of MSCs
(available sources for isolation, easier control of differentiation,
etc.) more than compensate for the disadvantages. As a result,
MSCs can be used to model IRD in vitro, being cheaper than
iPSCs and more relevant than immortalized cell lines.

Individual retinal cell types can be isolated from heterogeneous
populations of cells obtained during differentiation, for example,
using flow cytometry. To mimic physiological conditions and,
consequently, overcome some of the limitations of 2D cultures,
the described technology for creating MSC-based in vitro models
can be combined with modern “organ-on-a-chip” (microfluidics) or
3D bioprinting technologies. The “organ-on-a-chip” technology
allows IRD modeling in a dynamic perfusion system, simulating
complex microphysiological conditions and enabling control over
the biomechanical properties of the cellular environment
(Upadhyay et al., 2022; Nithin et al., 2023). Currently, this
technology is successfully used in combination with iPSC-derived
ROs to provide perfusion resembling blood flow in the retinal
vasculature (Achberger et al., 2019). The 3D bioprinting
technology can be used to create 3D structures from individual
cell types, which also finds application in modeling retinal
physiology and diseases (Kravchenko et al., 2023).

Clearly, the use of MSCs differentiated into retinal cells is not the
only possible approach for in vitro IRD modeling, and, like others,
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this method has its advantages and disadvantages. However, while
more relevant clinical models are being established, in vitro IRD
modeling relying on MSCs is a very useful, economic, and
promising platform.

5 Conclusion

At present, the unique properties of MSCs make them very
desirable for regenerative therapy and in vitro modeling of
degenerative retinal disorders, including IRDs. Such in vitro
models can be used both to study IRD pathology and for drug
testing. Compared to the popular pluripotent stem cells (ESCs and
iPSCs), MSC isolation and subsequent differentiation into retinal
cells do not come with significant ethical and practical restrictions.
Moreover, the establishment of MSC-based in vitro models is
cheaper and faster, which makes them a good alternative source
for large-scale experiments, such as drug screening. Nevertheless,
the technology for differentiating MSCs into retinal cells needs to be
improved in the future in order to increase the yield and
functionality of differentiated cells.
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Glossary
IRD inherited retinal disease

MSCs mesenchymal stem cells

iPSCs induced pluripotent stem cells

BM bone marrow

AT adipose tissue

DT dental tissue

UC umbilical cord

RPE retinal pigment epithelium

BRB blood-retinal barrier

ONL outer nuclear layer

INL inner nuclear layer

GCL ganglion cell layer

OPL outer plexiform layer

IPL inner plexiform layer

RGCs retinal ganglion cells

AR autosomal recessive

AD autosomal dominant

XL X-linked

MT mitochondrial

RP Retinitis pigmentosa

LCA Leber congenital amaurosis

SD Stargardt disease

BVMD Best vitelliform macular dystrophy

NCMD North Carolina macular dystrophy

XLRS X-linked retinoschisis

ML Malattia Leventinese

AMD age-related macular degeneration

NHP non-human primate

RDH retinol dehydrogenase

ROs retinal organoids

PSCs pluripotent stem cells

ESCs embryonic stem cells

NRL neural retinal leucine zipper transcription factor

PDE6 phosphodiesterase 6

FGF2 basic fibroblast growth factor

EGF epidermal growth factor

GDNF glial cell line-derived neurotrophic factor

IGFBP5 insulin-like growth factor-binding protein 5

CTGF connective tissue growth factor

FACS fluorescence-activated cell sorting

MACS magnetic-activated cell sorting

RT-DC real-time deformability cytometry

PNA peanut agglutinin lectin

EMT epithelial-mesenchymal transition

CESC retinal ciliary epithelial stem cells

RPESC RPE stem cells

PBMCs peripheral blood mononuclear cells

Shh Sonic hedgehog

ISCT International Society for Cellular Therapy

BMSCs bone marrow-derived mesenchymal stem cell

ADSCs adipose-derived stem cells

DPSCs dental pulp stem cells

SHEDs stem cells from human exfoliated deciduous teeth

PDLSCs periodontal ligament stem cells

UC-MSCs umbilical cord mesenchymal stem cells

WJ-MSCs Wharton’s jelly mesenchymal stem cells

UCB-MSCs umbilical cord blood mesenchymal stem cells

ITS insulin-transferrin-selenium

IGF1 insulin-like growth factor 1

Dkk-1 Dickkopf-1

T3 triiodothyronine

BDNF brain-derived neurotrophic factor

CNTF ciliary neurotrophic factor

NGF nerve growth factor

OM-MSCs mesenchymal stem cells derived from olfactory mucosa

CJMSCs conjunctiva mesenchymal stem cells

PLLA poly-l-lactic acid

PCL polycaprolactone

PEG polyethylene glycol

VIP vasoactive intestinal peptide

POS photoreceptor outer segment

miRNA microRNA

mRNA messenger RNA

IM induction medium

MSH melanocyte-stimulating hormone

TF transcription factor

ZFN zinc finger nuclease

TALEN transcription activator-like effector nuclease

gRNA guide RNA

NHEJ non-homologous end joining

HDR homology-directed repair

GFP green fluorescent protein

EPO erythropoietin

rEMS retinal electromagnetic stimulation
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SCOTS Stem Cell Ophthalmology Treatment Study

EVs extracellular vesicles

CM conditioned medium
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