
Integrating oxidative-stress
biomarkers into a precision
oncology risk-stratificationmodel
for bladder cancer prognosis and
therapy

Jianxu Huang1,2, Dewang Zhou2,3, Weihan Luo1, Yujun Liu4,
Haoxiang Zheng2 and Yongqiang Wang2*
1Shantou University Medical College, Shantou University, Shantou, China, 2Department of Experiment &
Research, South China Hospital, Medical School, Shenzhen University, Shenzhen, China, 3Kobilka
Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong,
Shenzhen, Guangdong, China, 4Medical School, Anhui University of Science and Technology, Huainan,
China

Introduction: Bladder cancer is a common malignant tumor with significant
heterogeneity, making personalized risk stratification crucial for optimizing
treatment and prognosis. This study aimed to develop a prognostic model
based on oxidative stress-related genes to guide risk assessment in bladder cancer.

Methods: Differentially expressed oxidative stress-related genes were identified
using the GEO database. Functional enrichment and survival analyses were
performed on these genes. A risk-scoring model was built and tested for
prognostic value and therapeutic response prediction. Expression of key
genes was validated by qRT-PCR in samples from two muscle-invasive and
two non-muscle-invasive bladder cancer patients.

Results: Several oxidative stress-related genes were identified as significantly
associated with survival. The risk-scoring model stratified patients into high- and
low-risk groups, accurately predicting prognosis and therapeutic responses.
qRT-PCR confirmed the differential expression of key genes in patient samples.

Discussion: The study provides a concise risk stratification model based on
oxidative stress-related genes, offering a practical tool for improving
personalized treatment in bladder cancer. Further validation is required for
broader clinical application.
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Abbreviations: NMIBC, non-muscle-invasive bladder cancer; MIBC, muscle-invasive bladder cancer;
TURBT, transurethral resection of bladder tumour; NAC, neoadjuvant chemotherapy; RFS,
recurrence-free survival; OS, overall survival; ROS, reactive oxygen species; LPO, lipid peroxidation;
MDA, malondialdehyde; OSRGs, oxidative stress-related genes; DEGs, differentially expression genes;
GO-BP, gene ontology biological process; MAPK, mitogen-activated protein kinase; ROC, receiver
operating characteristic; AUC, corresponding areas under the curve; KEGG, Kyoto Encyclopedia of
Genes and Genomes; ICB, immune checkpoint-blocking therapy; LASSO, least absolute shrinkage and
selection operator; TIDE, tumor immune dysfunction and exclusion; GSEA, gene set enrichment analysis;
H&E staining, Hematoxylin and Eosin staining.
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Introduction

Bladder cancer is one of the most common malignancies in men
worldwide. Overall, bladder cancer accounts for 3% of newly
diagnosed cancer cases, in which incidence is ~3-fold higher in
males than females (Roupret et al., 2021; Sung et al., 2021).
According to whether cancer cells invade the bladder wall,
bladder cancer can be classified into non-muscle-invasive bladder
cancer (NMIBC) and muscle-invasive bladder cancer (MIBC)
subtypes (Witjes et al., 2021). Although NMIBC has a relatively
favorable prognosis, its frequent recurrence necessitates long-term
disease monitoring for patients, which is associated with high
healthcare costs. MIBC has a much poorer prognosis with 5-year
survival ≤50% due to early occult metastatic dissemination (Sung
et al., 2021; Witjes et al., 2021; Flaig et al., 2020).

The therapeutic strategies for bladder cancer are also variable
according to the subtypes and the patient’s risk level. Based on
National Comprehensive Cancer Network guidelines, NMIBC is
usually managed through transurethral resection of bladder tumor
(TURBT) prior to an intravesical chemotherapy/immunotherapy
(Flaig et al., 2020). For patients with MIBC, more aggressive
therapies are recommended to reduce disease-specific mortality.
These include radical cystectomy, neoadjuvant chemotherapy
(NAC), postoperative systemic chemotherapy, and
immunotherapy with checkpoint inhibitors. (Patel et al., 2020).
Pathologic response after treatment, regardless of types of
bladder cancer, is closely associated with recurrence-free survival
(RFS) and overall survival (OS) (Rosenblatt et al., 2012). Currently,
clinicians are unable to identify which patients will benefit from
chemotherapy or immunotherapy. Although somatic deleterious
mutations in ERCC2 have been described to correlate with a better
response to NAC, some non-responders also have ERCC2mutations
in the same (peri-) helicase regions, suggesting other factors affect
NAC sensitivity (Kim et al., 2016; Van Allen et al., 2014). Current
classification systems also hinder personalized treatment and
management strategies for patients. For example, some patients
with occult early metastasis were pathologically classified as low-risk
diseases (Piao et al., 2022). As such, there is an urgent need for
innovative classification approaches that facilitate accurate
diagnosis, individualized treatment, and assessment of the
prognosis of bladder cancer.

Oxidative stress refers to the state of imbalance between oxidants
and antioxidants in which levels of reactive oxygen species (ROS)
exceed the antioxidant defense mechanisms of the cells (Aggarwal
et al., 2019). Accumulating studies have revealed oxidative stress
involves development of malignant diseases from initiation through
promotion and progression, until it acquires a highly malignant,
drug resistance and metastatic phenotype (Kang and Yang, 2020;
Klaunig, 2018; Zahra et al., 2021). Consistent with previous studies
on different hallmarks of cancer, oxidative stress is broadly engaged
in cancer biology processes, and it has been suggested that the
progression of bladder cancer may be associated with NOX-4 and
lipid peroxidation (LPO) products resulting from oxidative stress
(Moloney and Cotter, 2018; Shimada et al., 2011). LPO can increase
arachidonic acid metabolism, producing malondialdehyde (MDA)
due to elevated levels of cyclooxygenase-2 (Wigner et al., 2021).
Lepara Z et al. demonstrated that MDA levels correlated with the
clinical stages and grade of bladder cancer (Lepara et al., 2020;

Pande et al., 2011). Hui Deng et al. reported that lysyl oxidase-like
4 regulate oxidative stress pathway activity to impact on the multi-
chemoresistance in vitro and in vivo (Deng et al., 2014). Overall,
multiple aspects of cancer development have been identified as
correlated with oxidative stress, but less attention has been paid
to applying these genes to predict prognosis and therapeutic
efficiency of bladder cancer and re-subgrouping bladder cancer.

In this study, Oxidative stress-related genes (OSRGs) have been
identified and validated as practical molecular signatures. Through
integrative bioinformatics analysis and qRT-PCR, these signatures
can be used to construct a stratified risk prognostic model for
bladder cancer. Validation studies have demonstrated the value
of this model in assessing prognosis, classifying patients, and
predicting responses to treatments, indicating its potential utility
in facilitating individualized treatment strategies for bladder cancer.

Materials and methods

Data acquisition

A derivation cohort of 408 bladder cancer patient samples, along
with their gene expression profiles and clinical data, was sourced
from the TCGA public database (https://cancergenome.nih.gov/) for
this study. The two independent testing cohorts (GSE13507 and
GSE32894) datasets were downloaded from GEO (https://www.
ncbi.nlm.nih.gov/geo/). The Series Matrix File data of
GSE13507 involves 165 cases of BLCA samples, and the Series
Matrix File data of GSE32894 includes 224 bladder cancer
patient samples. For the purpose of identifying oxidative stress-
related genes, 2,642 genes with a Relevance Score >3 were obtained
from GeneCards. (https://www.genecards.org).

Identification of differentially expressed
gene and functional analysis

Data from 165 bladder cancer patients were downloaded from
the official website of GEO (https://www.ncbi.nlm.nih.gov/geo/)
database. Within these patients, 104 had Ta and T1 samples,
while 61 had > T1 samples. We set the fold change >1.5 and
P-value <0.05 as the inclusion criteria to determine oxidative
stress DEGs. Utilizing ClusterProfiler R package, Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses were conducted based on the oxidative stress DEGs. GO
and KEGG enrichment pathways with P and Q values less than
0.05 were considered significant categories.

Model construction and prognosis

The TCGA-BLCA cohort was set as the training cohort to
analyze the oxidative stress DEGs using univariate COX
regression analysis. A total of 72 prognostic candidates (p < 0.05)
were identified from the analysis. Further filtering using the least
absolute shrinkage and selection operator (LASSO) COX regression
analysis identified 21 genes. To enhance the effectiveness and
accuracy of prognostic prediction, the prognosis-related DEGs
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were subjected to a further analysis utilizing multivariate COX
regression. This approach yielded a final set of 11 oxidative stress
DEGs, based on which the oxidative stress risk score was calculated.

Risk score � ∑ βi × Expi( )

(i refers to the number of screened prognostic oxidative stress-
related genes, β refers to the regression coefficient of the gene).

The risk score for each sample was calculated utilizing the specified
formula, and the optimal cut-off point for the risk score was identified
with the aid of the survminer R package. Patients were classified into
high-risk and low-risk subgroups based on the optimal cut points, and
Kaplan–Meier analyses were subsequently conducted to compare
survival differences between these two subgroups. To evaluate the
prognostic value of the risk model, the time-dependent receiver
operating characteristic (ROC) curves and corresponding areas
under the curve (AUC) values were utilized in both the training and
testing cohorts. In addition, univariate andmultivariate COX regression
analyses were conducted to further validate the prognostic capability of
the risk model. The nomogram and calibration plots were constructed
based on the important clinicopathological characteristics and the risk
scores to help visualize the clinical significance of the risk model.

Gene set enrichment analysis

The Gene Set Enrichment Analysis software (version 4.3.2) was
utilized to perform the functional enrichment analysis between the
high-risk and low-risk subgroups. The normalized enrichment score
(NES) represented the degrees of over-expression of gene sets in the
low-risk subgroups. The FDR q < 0.25 and nominal
P-value <0.05 were considered statistical differences.

Drug sensitivity analysis

The pRRophetic R package was utilized to predict the
chemotherapy sensitivity of individual samples, and a
comparative analysis was conducted on the IC50 values of each
specific chemotherapeutic agents for bladder cancer, distinguishing
between the high-risk and low-risk subgroups.

Immune infiltration analysis

Immune infiltration analysis was performed using the
CIBERSORT (Cell-type Identification By Estimating Relative
Subsets Of RNA Transcripts) tool, an algorithm designed for
quantitative analysis of immune cell types within heterogeneous
tissue samples based on gene expression data.

Risk subgroup predicted the therapeutic
response of immune checkpoint
blockades (ICBs)

ICBs response scores of each sample were calculated
using Tumor Immune Dysfunction and Exclusion (TIDE)

(http://tide.dfci.harvard.edu/). Based on TCGA datasets, the
limma, reshape2, ggplot2, and ggpubr R packages were used to
analyze the correlation of the risk score with immune checkpoint
expression and visualize the results.

Bladder cancer subtyping

Partition the patients in the TCGA-BLCA dataset into high-risk
and low-risk groups, and map these groups to the molecular
subtypes of BLCA defined in TCGA. Use the BLCA subtyping R
package to predict the TCGA subtypes for patients in the GEO
dataset, assigning each patient a TCGA subtype label. Then the
distribution of TCGA subtypes among patients in the high-risk and
low-risk groups will be examined.

Tissue samples and quantitative real-
time PCR

Aiming to validate the expression of 11 candidate genes, two
MIBC and two NMIBC tissue samples obtained from the South
China Hospital of Shenzhen University were collected. RNA
extraction and reverse transcription were performed according to
the manufacturer’s instructions (Vazyme, RC112-01 and R323-01).
Relative qPCR (ΔΔCt method) was performed in triplicate using
ABI Prism7000 Sequence Detection System (Applied Biosystems).
Gene expression levels were normalized to GAPDH transcript levels
(Applied Biosystems). Primers of 11 genes were listed in
Supplementary Table S1.

Statistical analysis

Several R packages, including limma, survival, survminer,
glmnet, and timeROC, were used to perform our data analysis.
The empirical Bayesian approach of the limma R package was
utilized to identify oxidative stress-related DEGs. The survminer
package, widely used for survival analysis visualization in R, offers
the surv_cutpoint function, which finds the optimal threshold based
on the maximum selected rank statistics method and visualizes the
results. Survival curves were generated by the Kaplan-Meier method
and compared using the log-rank test. The R language (version
4.2.1) was used for all statistical studies. All statistical tests were two-
sided, and we considered a p-value less than 0.05 as a statistically
significant difference.

Results

Identification of candidate oxidative stress-
related genes in bladder cancer

To investigate which OSRGs may be involved in bladder cancer
development, Gene expression profiles were extracted from the
GSE13507 bladder cancer cohort, comprising 104 NMIBC
samples and 61 MIBC samples. In the subsequent step, a
comparison was conducted between the NMIBC and MIBC
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samples, which led to the identification of differentially expressed
genes (DEGs) that had a fold change magnitude of 1.5 or greater and
a P-value lower than 0.05. Ultimately, 184 candidate genes were
obtained through the overlap of DEGs and OSRGs for subsequent
analysis. The expression of differentially oxidative stress-related
genes was visualized via the heatmap and the volcano plots
(Figures 1A, B). Among 184 candidate genes, 146 genes were
upregulated and 38 genes were downregulated (Figures 1A, B).

In order to delve deeper into the potential functions of the
candidate genes, a total of 184 DEGs were subjected to the functional
enrichment analysis. The top 30 significant enriched gene ontology
(GO) and KEGG pathways are shown in bar charts (Figures 1C, D).
Except for oxidative stress, gene ontology biological process (GO-
BP) revealed that DEGs were mainly related to wound healing and
regulation of inflammatory response. Wound healing and
tumorigenesis are two processes that rely on similar molecular

FIGURE 1
Identification of oxidative stress-related genes in model construction. (A) Differentially expressed oxidative stress-related genes of
GSE13507 between non–muscle-invasive bladder cancer (NMIBC) andmuscle-invasive bladder cancer (MIBC) were shown in volcano plot. The blue and
red dots represented DEGs filtered based on the cutoff criteria of |fold change|≥1.5 and P-value <0.05. The grey dots represented genes that do not satisfy
the cutoff criteria. (B) The heatmap showed the oxidative stress-related DEGs. (C, D) The oxidative stress-related DEGs were analyzed by Kyoto
Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO). Significantly enriched pathways (C) and terms (D) were shown. (E) Forest plot of
72 oxidative stress-related DEGs that related to overall survival via univariate Cox regression analyses. (F) The parameter was screened by LASSO
regression. (G) LASSO regression of 72 oxidative stress-related DEGs.
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mechanisms. Tumor formation is characterized by the continuous
activation of wound healing associated pathways involved (Arwert
et al., 2012). Similar to the finding from GO enrichment analysis, the

results from KEGG enrichment analysis indicated that DEGs were
mainly associated with MAPK signaling pathway and inflammatory
response, such as IL−17 signaling pathways, TNF signaling

FIGURE 2
Evaluating the capacity of the prognostic model in survival prediction. (A, B) Risk plot distribution, survival status of patients, and heat map of
expression of included genes in the training cohort. (C, D) Risk plot distribution and survival status of patients in the testing cohort. (E–G) Kaplan–Meier
survival curves for the prognostic risk model. (H–J) The time-dependent ROC curves of the prognostic risk model.
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pathways, and toll-like receptor signaling pathways. The mitogen-
activated protein kinase (MAPK) pathways are crucial regulators of
the cellular processes that fuel the malignant transformation of
normal cells and cancer progression (Sinkala et al., 2021).

In the endeavor to establish a prognostic model, we applied the
univariate COX regression analysis to identify a total of 72 survival-
related oxidative stress-related DEGs based on 403 bladder cancer
samples from the TCGA database, and results were shown in the
forest plot (Figure 1E). Of these, 55 genes with HRs >1, indicating
risk genes, while the remaining 17 genes had HRs <1, suggesting
protection genes (Figure 1E). 21 genes were further identified using
the least absolute shrinkage and selection operator (LASSO) COX
regression analysis with λ = 0.02774709 (Figures 1F, G). Finally, to
enhance the effectiveness and accuracy of prognostic prediction, we
applied multivariate COX regression to yield a final set of
11 oxidative stress-related DEGs. Among 11 oxidative stress-
related genes, AKR1B1, CDK6, CYP1B1, EGR1, HSPB6, LDLR,
MT1A, and PHGDH were identified as risk genes, while
ALDH1A2, CARD11, and CTLA4were identified as protective genes.

A prognostic model was constructed and validated
based on selected oxidative stress-associated genes

Based on selected 11 oxidative stress-related DEGs, the risk score
was calculated. The risk score formula was as follows:

Risk score � 0.1653( )*AKR1B1 + −0.2276( )*ALDH1A2

+ −0.1243( )*CARD11 + 0.2525( )*CDK6

+ −0.6258( )*CTLA4 + 0.1737( )*CYP1B1
+ 0.1097( )*EGR1 + 0.0666( )*HSPB6

+ 0.1844( )*LDLR + 0.1056( )*MT1A

+ 0.2065( )*PHGDH

Next, the patients in both the training cohorts and the testing
cohorts were stratified into high-risk and low-risk subgroups by the
optimal cut point of risk score. We found that following the risk plot
distribution and survival status of patients, patients in the high-risk
subgroup had significantly higher mortality rates than those in the
low-risk subgroup (Figures 2A–D). For the expression of selected
OSRGs, the heatmap showed that the expressions of AKR1B1,
CDK6, CYP1B1, EGR1, HSPB6, LDLR, MT1A, and PHGDH were
higher in the high-risk subgroup, while the expressions of
ALDH1A2, CARD11, and CTLA4 were lower in the high-risk
subgroup (Figure 2B).

A deeper exploration of the credibility of risk score-based
subgrouping was conducted through the analysis of time-
dependent receiver operating characteristic (ROC) curves and
their corresponding areas under the curve (AUC) values in
both training and testing cohorts, validating the grouping based
on the prognostic model is reliable. Kaplan–Meier survival
analyses indicated that the patients in the high-risk subgroup
had shorter survival time than those in the low-risk subgroup
in both the training and testing cohorts (Figures 2E, F). The 1-, 3-,
and 5-year survival probability of the risk score was represented by
the AUC values of 0.740, 0.735, and 0.758, respectively, in the
TCGA training cohort (Figure 2H). Consistent with the results in
the training cohort, we also obtained satisfactory results in testing
cohorts. Particularly, the testing cohort (GSE13507) exhibited

AUC values of 0.740, 0.603, and 0.591 at the 1-year, 2-year, and
3-year marks, respectively. (Figure 2I). The 1-, 2-, and 3-year AUC
values of ROC curves for the prognostic risk model in another
testing cohort (GSE32894) were 0.859, 0.881, and 0.853,
respectively (Figure 2J). These findings established a feasible
prognostic model, based on selected 11 oxidative stress
associated genes.

Independent prognostic analysis and
matching with TCGA subtypes

Upon further integration of risk scores with age and clinical
characteristics, both univariate and multivariate Cox regression
analyses were conducted. Age, stage, and risk score were revealed
to be independent prognostic factors (Figures 3A, B). According to
the statistical principle, the small sample size of stage I patients in the
TCGA-BLCA cohort makes it infeasible to compare with other
stages. Hence, comparisons were limited to stages II, III, and IV, and
the risk score was found to be positively correlated with stage and
grade (Figures 3C, D). We also assigned our low-risk and high-risk
subgroups with TCGA subtypes of bladder cancer. The Sankey
diagram showed that the high-risk group mainly matched with
more malignant phenotypes like luminal_infiltrated, basal_
squamous and neuronal, while the low-risk group is prone to
matching with less malignant phenotypes, such as luminal_
papilary (Figure 3E). Consistently, the other two cohorts
(GSE32894 and GSE13507) supported Figure 3E results well
(Supplementary Figures S1A, B).

The establishment of a comprehensive
nomogram

Next, a comprehensive nomogram was developed based on the
age, stage, and risk score of bladder cancer patients (Figure 4A). The
calibration curves indicated a significant consistency between
nomogram predictions and actual observations (Figure 4B). In
addition, the 1-, 2-, and 3-year AUC values of ROC curves for
the nomogram in the TCGA cohort were 0.794, 0.772, and 0.791,
respectively (Figure 4C). To evaluate the predictive power of the
prognostic risk model for prognosis in multiple bladder cancer
subgroups, stratification survival analysis was conducted based on
age (<60 years and ≥60 years), gender (Male and Female), and stage
(Stage I ~ II and Stage III ~ IV). The Kaplan–Meier survival analyses
showed that the high-risk patients had significantly shorter overall
survival compared to the low-risk patients in all subtypes (p < 0.01;
Supplementary Figures S2A–F). Collectively, these results suggest
that the prognostic model is credible, and it has an independent
predictive value for the prognosis and subgrouping of
bladder cancer.

Gene enrichment analysis based on high-
and low-risk groups

Further validation of the credibility of the high- and low-risk
subgrouping was achieved through GSEA, which was performed
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based on DEGs identified between the two groups. The results
showed that immune-response associated process and pathway
were both enriched in the low-risk group, suggesting that
patients in the low-risk group may benefit more from
immunotherapy (Supplementary Figures S3A, C). The GO BP
enrichment results indicated that cell growth, negative
regulation of apoptotic signaling pathway, regulation of
cellular response to growth factor stimulus, and negative

regulation of oxidative stress-induced cell death were
significantly enriched in the high-risk group (Supplementary
Figure S3B). The KEGG pathway enrichment revealed
significant enrichment of cell cycle, WNT-signaling, oocyte
meiosis, and focal adhesion in the high-risk group
(Supplementary Figure S3D).Taken together, the high-risk
group exhibits more malignant characteristics, further
suggesting subgrouping-based risk score is reliable.

FIGURE 3
The clinical prognostic value of the prognostic risk model. (A) Univariate analysis. (B)Multivariate analysis. (C, D) Associations between the risk score
and tumor stage and grade. (E) Sankey diagram of subtype distributions in groups with different risk scores. *p < 0.05, **p < 0.01, ***p < 0.001.
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Treatment sensitivity analysis between
high- and low-risk groups

To explore the chemotherapy sensitivity in high- and low-risk
groups, IC50 was utilized as a measure to evaluate chemosensitivity.
The analysis revealed that there was a significant decrease in IC50 of
cisplatin in the high-risk groups, suggesting patients in the high-risk
group were more sensitive to cisplatin, consistent with findings in
the basal_squamous subtype (Figure 5A). However, the IC50 of the
high-risk group was higher than the low-risk group for Gefitinib and
Methotrexate (Figures 5B, C).

Functional enrichment analysis has shown OSRGs are
associated with immune response (Figures 1C, D). Therefore, we
further examined the difference in the efficacy of immunotherapy
between high- and low-risk groups through the ICB response
scoring (TIDE score). Lower ICB response scores were revealed
in the high-risk subgroup compared to the low-risk subgroup
(Figure 5D). To further investigate the relationships between
immune checkpoints and the risk score, expression levels of
19 immune checkpoint genes were calculated, including CD274,

CD200, CD27, CD276, CD40, CD40LG, CD44, CTLA4, LGALS9,
NRP1, PDCD1, PDCD1LG2, TMIGD2, TNFRSF14, TNFRSF25,
TNFSF15, TNFSF4, TNFSF9, and VTCN1. We observed that the
expression levels of the CD200, CD274, CD276, CD44, NRP1,
PDCD1LG2, TNFSF4, TNFSF9, and VTCN1 were higher in the
high-risk group than in the low-risk group, while the expression
of CD27, CD40, CD40LG, CTLA4, LGALS9, PDCD1, TMIGD2,
TNFRSF14, TNFRSF25, and TNFSF15 were lower in the high-risk
group (Figure 5E).

Validation of 11 candidate genes

NMIBC and MIBC tissues were employed as experimental
materials to validate the expression patterns of the 11 candidate
genes in bladder cancer. As shown in Figure 6A, tumor tissue slides
were firstly subjected to H&E staining to identify tumor phenotypes,
following that RNA was extracted from tissue slides for qRT-PCR
(Figure 6A). Hematoxylin and Eosin staining (H&E staining)
confirmed the successful collection of 2 NMIBC and 2 MIBC

FIGURE 4
Construction and validation of the nomogram. (A) The nomogrambased on age, stage and risk score to predict the 1-year, 3-year, and 5-year overall
survival. (B)Calibration plots for the overall survival nomogrammodel. (C) Receiver operating characteristic (ROC) curves for the nomogram based on the
TCGA-BLCA cohort.
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samples (Figure 6B). The results of qRT-PCR showed that AKR1B1,
CDK6, CYP1B1, EGR1, HSPB6, LDLR, MT1A, and PHGDH were
upregulated in MIBC samples, while ALDH1A2, CARD11, and
CTLA4 were downregulated in MIBC samples (Figures 6C, D).

Discussion

Current stratification methods for bladder cancer may not fully
account for the genetic and molecular diversity of the disease,
leading to patients within the same stage potentially exhibiting
vastly different biological behaviors and treatment responses. In
this study, 11 oxidative stress-related genes were selected to
establish a credible prognostic model with stratified risk for
bladder cancer, revealing that risk score is an independent
prognosis factor. The proposed model not only achieves
classification of patients into high- and low-risk subgroups,
exhibiting concordance with TCGA subtypes, but furthermore,
it serves as an effective tool for clinicians in assessing the potential
responsiveness of patients to cisplatin-based chemotherapy or
immunotherapy, relying on their risk scores.

Oxidative stress involves development of malignant diseases
from initiation through promotion and progression, until it acquires
a highly malignant, drug resistance and metastatic phenotype
(Aggarwal et al., 2019; Klaunig, 2018; Zahra et al., 2021; Moloney

and Cotter, 2018). Despite the significance of oxidative stress in
bladder cancer progression, OSRG screening for prognosis
prediction remains insufficiently investigated. Advances in
sequencing and bioinformatics facilitate a enhanced selection of
candidate genes, improving prognostic accuracy. As shown in
screened eleven oxidative stress-related DEGs, AKR1B1 is
necessary for tumor growth (Li et al., 2022) and was found to
interact with signal transducer and activator of transcription 3
(STAT3) (Zhang et al., 2021), participating in anti-cell death
processes and leading to drug resistance. Acting at the interface
of p53 and RB, CDK6 contributes to tumor initiation by promoting
cell cycle and antagonizing stress responses (Bellutti et al., 2018).
CYP1B1 upregulates in the advanced stages of bladder cancer and
participates in the activation of procarcinogen (Al-Saraireh et al.,
2021; Salinas-Sanchez et al., 2012). EGR1 has been shown to regulate
genes influencing proliferation, apoptosis, immune cell activation,
and matrix degradation, among others (Li et al., 2019).
Metallothioneins (MTs) are small cysteine-rich proteins that play
significant roles in tumor formation, progression, and drug
resistance, with MT1A being one of the functional isoforms (Si
and Lang, 2018). PHGDH is amplified in the malignant tumor and is
essential for nucleotide production and cell proliferation in highly
aggressive brain metastatic cells (Ngo et al., 2020). In addition,
ALDH1A2, CARD11 and CTLA4 are implicated in cancer immunity
and can be useful prognostic biomarkers in some cancer types

FIGURE 5
The prognostic model provides a potential guideline for therapeutic strategies of bladder cancer. (A–C) Comparison of sensitivity to Cisplatin,
Gefitinib, and Methotrexate in different risk score group. (D) Comparison of ICB response scores. (E) Comparison of immune checkpoint genes between
high - and low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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(Liu et al., 2020; Carter and Pomerantz, 2022; Zhu et al., 2022). In
this study, the 11 genes mentioned above were supported well from
clinical samples (Figures 6C, D).

Although current treatment strategies have prolonged the
overall survival of bladder cancer patients, the absolute
improvement of overall survival was limited in a subgroup of

FIGURE 6
The expressions of 11 selected genes were validated by quantitative real-time PCR (qRT-PCR). (A) Schematic representation of the H&E stainning
and RNA extraction of patient samples. (B) Results of H&E stained bladder cancer samples from two patients. (C, D) Expression of 11 genes at the mRNA
level detected by qRT-PCR.
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those who received chemotherapy/immunotherapy (Galsky et al.,
2016; Jiang et al., 2019; Kamat et al., 2017; Tran et al., 2021). These
non-responders may suffer from increased modality, making this
standard care of bladder cancer poorly applied (Galsky et al., 2011).
Through our prognostic model, if patients are identified as high risk,
clinicians can choose Cisplatin as the candidate drug, rather than
choosing immunotherapy and Gefitinib andMethotrexate. Based on
the immune infiltration results of tumor samples (Supplementary
Figure S4), patients in the low-risk group exhibit higher infiltration
of CD8+ T cells. CD8+ T cells are crucial anti-tumor immune cells
capable of directly killing tumor cells, which partly explains the
better prognosis in the low-risk group. Cisplatin can induce
immunogenic cell death in tumor cells. This process releases
tumor antigens and damage-associated molecular patterns
(DAMPs), which activate dendritic cells and subsequently
activate and recruit T cells, particularly CD8+ T cells, thereby
enhancing the anti-tumor immune response. In contrast, the
high-risk group shows insufficient CD8+ T cell infiltration in the
tumor microenvironment. The application of cisplatin can improve
the infiltration of CD8+ T cells in these patients.

Despite the achievements in this study, there are still some
limitations that should be acknowledged. Firstly, relatively small
sample size of bladder cancer patients limits the reliability and
generalizability of our prognostic model, requiring larger datasets
for future validation. Secondly, while the clinical value of the risk
model has been validated across multiple public cohorts, further
prospective clinical trials and molecular mechanism investigations
are crucial to confirm its clinical significance and elucidate the
underlying mechanisms. Finally, the significant heterogeneity of
bladder cancer poses a challenge to the model’s universal
applicability, as molecular diversity and clinical presentation
variability of tumors may lead to inconsistencies in model
predictions, thereby limiting its comprehensiveness. To address
these limitations and enhance model’s predictive accuracy, future
research endeavors should aspire to integrate a more comprehensive
set of biomarkers and clinical data into the model.

Conclusion

In conclusion, in this study, a new risk-stratification model
based on 11 oxidative stress-related genes has been successfully
developed. The risk score proved to be a reliable independent risk
factor for predicting overall survival, subgrouping patients and
closely associated with the clinical characteristics of bladder
cancer. Additionally, the findings provide valuable insights into
personalized treatment approaches for bladder cancer patients,
particularly by predicting the correlation between
immunotherapy or chemotherapy response and risk score.
Finally, the expression of 11 candidate genes has been validated
by patient samples of NMIBC and MIBC.
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SUPPLEMENTARY TABLE S1
Primers of 11 oxidative stress-related genes.

SUPPLEMENTARY FIGURE S1
Subtype distributions in groups with different risk scores. (A, B) Sankey
diagram of subtype distributions in groups with different risk scores in
GSE13507 cohort (A) and GSE32894 cohort (B), respectively.

SUPPLEMENTARY FIGURE S2
Kaplan–Meier survival curves for the different prognostic factors. (A) age<60
(B) age>60 (C) Male (D) Female (E) Stage Ⅰ~Ⅱ (F) Stage Ⅲ~Ⅳ.

SUPPLEMENTARY FIGURE S3
Gene set enrichment analysis of risk model. (A)Gene set enrichment analysis
of GOBP immunology memory process and GOBP positive regulation of
T cell receptors signaling pathway in low-risk samples versus high-risk
samples. (B) Gene set enrichment analysis of GOBP cell growth, GOBP
negative regulation of apoptotic signaling pathway, GOBP negative
regulation of oxidative stress induced death, and GOBP regulation of
cellular response to growth factor stimulus in low-risk samples versus high-
risk samples. (C) Gene set enrichment analysis of KEGG antigen processing
and presentation, KEGG primary immunodeficiency, and KEGG RIG_I like
receptor signaling pathway in low-risk samples versus high-risk samples. (D)
Gene set enrichment analysis of KEGG cell cycle, KEGG focal adhesion,
KEGG oocyte meiosis, and KEGG WNT signaling pathway in low-risk
samples versus high-risk samples.

SUPPLEMENTARY FIGURE S4
The immune infiltration results of tumor samples. *p < 0.05, **p <
0.01, ***p < 0.001.
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