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This article reviews the latest research progress on the role of mitochondrial
autophagy receptor FUN14 domain containing 1 (FUNDC1) in mitochondrial
events and kidney disease. FUNDC1 is a protein located in the outer
membrane of mitochondria, which maintains the function and quality of
mitochondria by regulating mitochondrial autophagy, that is, the selective
degradation process of mitochondria. The structural characteristics of
FUNDC1 enable it to respond to intracellular signal changes and regulate the
activity of mitochondrial autophagy through phosphorylation and
dephosphorylation. During phosphorylation, unc-51-like kinase 1 (ULK1)
promotes the activation of mitophagy by phosphorylating Ser17 of FUNDC1.
In contrast, Src and CK2 kinases inhibit the interaction between FUNDC1 and
LC3 by phosphorylating Tyr18 and Ser13, thereby inhibiting mitophagy. During
dephosphorylation, PGAM5 phosphatase enhances the interaction between
FUNDC1 and LC3 by dephosphorylating Ser13, thereby activating mitophagy.
BCL2L1 inhibits the activity of PGAM5 by interacting with PGAM5, thereby
preventing the dephosphorylation of FUNDC1 and inhibiting mitophagy.
FUNDC1 plays an important role in mitochondrial events, participating in
mitochondrial fission, maintaining the homeostasis of iron and proteins in
mitochondrial matrix, and mediating crosstalk between mitochondria,
endoplasmic reticulum and lysosomes, which have important effects on cell
energy metabolism and programmed death. In the aspect of kidney disease, the
abnormal function of FUNDC1 is closely related to the occurrence and
development of many diseases. In acute kidney injury (AKI), cardiorenal
syndrome (CRS), diabetic nephropathy (DN), chronic kidney disease (CKD)
,renal fibrosis (RF) and renal anemia, FUNDC1-mediated imbalance of
mitophagy may be one of the key factors in disease progression. Therefore,
in-depth study of the regulatory mechanism and function of FUNDC1 is of great
significance for understanding the pathogenesis of renal disease and developing
new treatment strategies.
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1 Introduction

Mitochondria are intracellular signal organelles that provide
ATP to cells through oxidative phosphorylation (Kim and Lee,
2024). They are also the main sites for fatty acid oxidation and
reactive oxygen species (ROS) formation (Song Y. et al., 2024).
When mitochondria are dysfunctional or damaged, iron
homeostasis may be affected and oxidative stress may be
induced, increasing the risk of lipid accumulation (Fang et al.,
2022). In addition, iron overload in mitochondria may cause
Fenton response, leading to the production of ROS, and the
leakage of these ROS from mitochondria may lead to cell damage
and inflammation (Takahashi et al., 2021). Therefore, excessive ROS
formation may further damage mitochondria and lead to their
dysfunction. In order to maintain cell stability and health, timely
removal of these dysfunctional mitochondria is very important.

Mitochondrial autophagy is a selective autophagy process that
maintains the balance between the number and function of
mitochondria in cells by identifying and removing damaged or
redundant mitochondria (Degli Esposti, 2024). This process is
essential for cell function, metabolic regulation and stress
response, involving both ubiquitin-dependent and non-ubiquitin-
dependent pathways. The ubiquitin-dependent pathway centers on
PINK1 and Parkin. PINK1 locates on the depolarized mitochondria
and activates Parkin when the membrane potential is damaged,
triggering autophagy (Hu et al., 2024). The non-ubiquitin-
dependent pathway is dominated by mitochondrial autophagy
receptors such as BNIP3 (Kim et al., 2021), NIX/BNIP3L
(Nguyen-Dien et al., 2023), FUNDC1 (Chen D. et al., 2024) and
PHB2 (Liu et al., 2024), which contain LC3 interactive motifs (LIR),
which directly bind to autophagy-related proteins, initiate
autophagy, regulate the quantity and quality of mitochondria,
maintain energy balance and resist cell damage (Terešak et al.,
2022). As shown in Figure 1.

As a new type of mitochondrial receptor protein in mammalian
cells, FUNDC1 can mediate mitochondrial autophagy under
hypoxia (Deng et al., 2024). As an important metabolic organ of
human body, kidney depends on a large amount of ATP produced
by tricarboxylic acid cycle to meet its high energy needs.
Mitochondrial dysfunction may lead to a variety of kidney
diseases (Govers et al., 2021). Recent studies have revealed the
close relationship between FUNDC1 and kidney disease, and
pointed out that mitochondrial dysfunction can be improved by
regulating the activity of FUNDC1, which provides a new molecular
target for the treatment of kidney disease (Wu et al., 2022). This
article will review the multifaceted role of mitochondrial autophagy
receptor FUNDC1 in mitochondrial events and renal diseases, in
order to provide a theoretical basis and new perspective for the
research and treatment of renal diseases.

2 Structure and function of
mitochondrial autophagy receptor
FUNDC1

FUNDC1 is a key protein located in the outer membrane of
mitochondria, which regulates mitochondrial autophagy through
changes in phosphorylation state. FUNDC1 consists of 155amino

acids and has three α-helical transmembrane domains. The
N-terminal of FUNDC1 is exposed in the cytoplasm and the
C-terminal is located in the gap between the inner and outer
membrane of mitochondria. The N-terminal of FUNDC1 contains
a LC3 interaction region LIR with a motif of (Y18-E19-V20-L21).
Under the normal condition of sufficient oxygen, the Tyr18 and
Ser13 sites in the LIR motif of FUNDC1 are phosphorylated by Src
and CSNK2/CK2 kinase, respectively, which leads to the inactive state
of FUNDC1, which inhibits the binding with LC3, thus preventing
mitochondrial autophagy. However, under hypoxic conditions, the
inactivation of Src and CK2 kinases and the dephosphorylation of
FUNDC1 enable them to bind to LC3 and induce mitochondrial
autophagy. Overexpression of FUNDC1 increased mitochondrial
autophagy and cell proliferation, while knocking down the
expression of FUNDC1 inhibited mitochondrial autophagy and
cell proliferation induced by hypoxia (Liu et al., 2022), which is
consistent with the results of Pan and colleagues (Pan et al., 2021). In
this process, the phosphorylation state of Tyr18 acts as a molecular
switch to regulate the interaction between FUNDC1 and LC3 (Kuang
et al., 2016). The binding mechanism induced by dephosphorylation
of FUNDC1 is contrary to that of other proteins containing LIR
motifs, whose phosphorylation usually increases the affinity for
LC3 binding. In general, FUNDC1 plays an important role in cell
response to hypoxic stress through the interaction between LIR and
LC3. Its highly conservative characteristics and high expression in a
variety of tissues make it a valuable molecular target for the study of
mitochondrial function and related diseases, especially kidney
diseases. As shown in Figure 2.

3 Proteins involved in FUNDC1-
mediated mitochondrial autophagy

FUNDC1-mediated mitochondrial autophagy is an important
intracellular quality control mechanism, which involves the
interaction of a variety of proteins. In this process, the
phosphorylation and dephosphorylation of FUNDC1 play a key
role in its activity, coordinate the regulation of mitochondrial
autophagy and maintain the stability of the intracellular
environment.

3.1 Phosphorylation of FUNDC1 inhibits
mitophagy

3.1.1 ULK1
ULK1 is activated under hypoxia or under the use of

mitochondrial uncoupling agent and transferred to damaged
mitochondria (Wu W. et al., 2014). It interacts with
FUNDC1 protein and phosphorylates at the Ser17 site of
FUNDC1, thus enhancing the binding of FUNDC1 to LC3,
which is necessary for mitochondrial autophagy (Zhu et al.,
2022). If the ULK1 binding site of FUNDC1 is mutated, it will
prevent the transfer of ULK1 and the progress of mitochondrial
autophagy. However, even in ULK1-disabled cells, mitochondrial
autophagy can be restored by using ULK1 with kinase activity and
phosphorylated mimic FUNDC1 mutants (Torii and Shimizu,
2020). This suggests that ULK1 regulates its recruitment to
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damaged mitochondria by phosphorylating FUNDC1, which is
essential for mitochondrial autophagy. ULK1 complex, composed
of ULK1 or ULK2, FIP200 and mATG13, is a bridge between
upstream nutritional or energy receptors mTOR (Deng et al.,
2023) and AMPK (Cai et al., 2022a) and downstream
autophagosomes. Over-activation of AMPK α 1/ULK1/
FUNDC1/mitochondrial autophagy pathway maintains
mitochondrial function (Yang et al., 2023), normalizes
mitochondrial fission and fusion, neutralizes the concentration
of hyperphysiological reactive oxygen species and inhibits
mitochondrial apoptosis (Cai et al., 2022a). Under the
condition of starvation or hypoxia, AMPK is activated and
mTOR is inactivated, which promotes the phosphorylation of

Ser317 (Wang W. et al., 2022), Ser467, Ser555, Ser574 and Ser637
(Wang L. et al., 2022) sites in ULK1, thus promoting autophagy,
while in the case of adequate nutrition, AMPK is inactivated, and
the binding of mTOR with ULK1’s Ser757 (Han et al., 2021) site
inhibits ULK1-AMPK interaction, resulting in ULK1 inactivation
and autophagy signal closure. Therefore, the interaction between
ULK1 and FUNDC1 and its subsequent phosphorylation events
play a central role in the occurrence and regulation of
mitochondrial autophagy.

3.1.2 Protein kinases Src and CK2
Src and CK2 are two protein kinases that play key roles in cell

growth, differentiation, proliferation and survival. Src kinase is a

FIGURE 1
Mitochondrial autophagy ubiquitin-dependent and non-ubiquitin-dependent pathways.
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tyrosine kinase, which is upregulated by autophosphorylation at
Y416 site and decreased by phosphorylation at Y507 site (Kim
et al., 2020). Src inhibits mitochondrial autophagy (Chu et al.,
2023) mediated by FUNDC1, a protein located in the outer
membrane of mitochondria, by phosphorylating Tyr18 sites
under physiological conditions.The study found that the
activation of Src is associated with the inactivation of FUNDC1
(Tang et al., 2023), which is consistent with the original findings of
Liu L et al. (Liu et al., 2012). On the other hand, CK2 is a
constitutive serine/threonine kinase (Kim and Koh, 2023),
which is related to the phosphorylation of FUNDC1 at the
Ser13 site and was initially described as an inhibitor of
FUNDC1 (Chen et al., 2014). It has been found that the
inhibition of FUNDC1-related mitochondrial autophagy is
related to the mitochondrial homeostasis interfered by CK2
(Zhou et al., 2018). Under normal conditions, the activation of
Src and CK2 kinases leads to phosphorylation of Tyr18 and
Ser13 sites of FUNDC1, which inhibits mitochondrial
autophagy. This is because the phosphorylated FUNDC1 may
conflict with the hydrophobic sac of LC3 and reduce its binding
affinity to LC3. However, under long-term hypoxia, the
inactivation of Src and CK2 kinases leads to dephosphorylation
of FUNDC1 at Tyr18 and Ser13 sites, which promotes
mitochondrial autophagy. Dephosphorylated FUNDC1 weakens
the spatial interference of interaction with LC3 through
conformational modification, resulting in co-localization of
FUNDC1 and LC3-II, thus promoting mitochondrial autophagy.

3.2 Dephosphorylation of FUNDC1 activates
mitophagy

3.2.1 PGAM5
PGAM5 in mitochondria is a key Ser/Thr phosphatase, which

participates in the regulation of mitochondrial autophagy and
mitochondrial unfolded protein response, and plays a vital role
in maintaining mitochondrial functional balance (Cai et al., 2023).
When the mitochondrial membrane potential decreases, PGAM5 is
activated, which works with PINK1 kinase to promote the transfer of
PINK1 from intima to outer membrane and bind to Parkin,
initiating the process of mitochondrial autophagy (Sekine et al.,
2012). At the same time, some studies have suggested that
PGAM5 helps to insert vacuolar cytotoxin An into the
mitochondrial inner membrane to destroy the membrane
potential, thus inducing mitochondrial autophagy (Wang L. et al.,
2022). But the intermediate link is always the same.
PGAM5 activates FUNDC1 by dephosphorylating the Ser13 site
of FUNDC1, which enhances the binding ability of FUNDC1 and
LC3 and promotes the interaction between them, which leads to the
formation of selective autophagy and the clearance of damaged
mitochondria (Ye et al., 2023). At the same time, CK2 can reverse
the dephosphorylation of PGAM5 (Chen et al., 2014) by
phosphorylating FUNDC1. Therefore, PGAM5 and CK2 jointly
constructed a feedback mechanism to connect the stress response
of mitochondria to the phosphorylation state of FUNDC1, and then
control the regulation of mitochondrial autophagy.

FIGURE 2
Molecular mechanism of FUNDC1 regulating mitophagy under adequate and hypoxic conditions.
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3.2.2 BCL2L1
BCL2L1 is an important member of the Bcl-2 family and a key

component of the mechanism of cell survival and death (Keller
et al., 2023). Its main function is to inhibit apoptosis (Moriishi
et al., 2023). Under the condition of normal oxygen content,
BCL2L1 interacts with PGAM5 through its BH3 domain to
inhibit the activation of PGAM5, thus preventing the
dephosphorylation of FUNDC1 at the Ser13 site, thereby
inhibiting mitochondrial autophagy. However, under hypoxic
conditions, BCL2L1 will degrade, resulting in the release and
activation of PGAM5. Activated PGAM5 promotes
dephosphorylation of FUNDC1 at the Ser13 site. This
dephosphorylated FUNDC1 interacts with LC3 and activates
mitochondrial autophagy (Wu H. et al., 2014). Studies have
shown that the expression level of BCL2L1 determines the level
of PGAM5-mediated FUNDC1 dephosphorylation and
mitochondrial autophagy (Ma et al., 2020). Even if the level of
BCL2L1 remains the same, PGAM5 knockout can inhibit
mitochondrial autophagy (Hashino et al., 2022). Therefore, the
BCL2L1-PGAM5-FUNDC1 axis plays an important role in
receptor-mediated mitochondrial autophagy under hypoxia.
Under different pathophysiological conditions, how cells
perceive external stimuli and regulate the dephosphorylation
state of FUNDC1, and how PGAM5/BCL2L1 gene
polymorphism affects this process, will be the focus of future
research. As shown in Figure 3.

4 The role of mitochondrial autophagy
receptor FUNDC1 in mitochondrial
events

4.1 FUNDC1 is involved in mitochondrial
fission

The health status and function of mitochondria are precisely
regulated by their kinetic balance, including fission and fusion
(Adebayo et al., 2021). Mitochondrial autophagy requires
mitochondrial fission (Fukuda et al., 2023). Mitochondrial fission
is a key process to maintain the health of mitochondria. It not only
affects themetabolic state and survival of cells, but also plays a role in
cytochrome C-mediated apoptosis (Yako et al., 2021). Dynamic
protein-associated protein 1 (DRP1, also known as DNM1L) is
recruited to the outer membrane of mitochondria and the existence
of OPA1 in the inner membrane of mitochondria, which jointly
regulates the balance of mitochondrial fission and fusion (Tsushima
et al., 2018). Studies have shown that FUNDC1 coordinates
mitochondrial fission and autophagy (Chen et al., 2016) by
interacting with the K70 residues of DNM1L/DRP1 and OPA1.
Under stress conditions, dephosphorylation of FUNDC1 promotes
its dissociation from OPA1 (Ma et al., 2023) and binding with DRP1
(Xu A. et al., 2024), which mediates the “coupling” across double
membranes and realizes the synergistic effect of mitochondrial
dynamics and quality control. Under anoxic conditions, the

FIGURE 3
Proteins involved in FUNDC1-mediated mitophagy.
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membrane structure (MAM) associated with endoplasmic reticulum
plays a key role in mitochondrial fission. FUNDC1 accumulates on
MAMs through the interaction with calcitonin, and its binding to
calnexin decreases with the progress of mitochondrial autophagy.
This process promotes the recruitment of DRP1 and completes the
mitochondrial fission (Wu et al., 2016). At the same time, USP19, a
deubiquitin enzyme, is recruited to the endoplasmic reticulum
under hypoxia, removes the ubiquitin chain from FUNDC1,
stabilizes FUNDC1 in MAM, and assists in DRP1 recruitment
(Chai et al., 2021). Although the interaction between
FUNDC1 and calcitonin and its dissociation mechanism under
hypoxia have not been fully elucidated, these processes are
essential for the occurrence of mitochondrial fission and
autophagy. Future studies need to explore how USP19 cooperates
to regulate the ubiquitin state of FUNDC1 and the potential
interaction between USP19 and calcitonin, which will contribute
to a better understanding of the relationship between mitochondrial
fission and autophagy.

4.2 FUNDC1 is involved in maintaining iron
homeostasis in mitochondrial matrix

Mitochondrial autophagy is a key process in the regulation of
iron metabolism and iron death. Under normal circumstances,
mitochondrial autophagy releases iron ions by degrading ferritin,
which are then transported to the mitochondria as a buffer
mechanism. However, when the O-GlcNAcylation modification is
reduced, the mitochondrial structure is damaged, resulting in more
mitochondrial autophagy, which releases more iron ions and
increases the sensitivity of cells to iron death (Yu et al., 2022). In
addition, mitochondria are not only the main source of intracellular
ROS, but also the accumulation of ROS can promote iron death (Fan
et al., 2024) in high-speed rail environment. Iron loss will induce
mitochondrial autophagy (Hara et al., 2020). In the mitochondrial
matrix, FUNDC1 is involved in regulating the metabolism of iron
ions in the mitochondrial matrix, which helps to maintain iron
homeostasis. This process is very important to prevent excessive
accumulation of iron ions in cells and to avoid oxidative stress and
cell damage caused by it. SongK et al. found (Song K. et al., 2024)
that extra ferrous ions are released after autophagy of mitochondria,
which destroys iron homeostasis, which aggravates lipid
peroxidation and eventually leads to iron death in cells. As the
assembly and output center of iron-sulfur cluster (ISC),
mitochondria play an important role in the regulation of
intracellular iron metabolism. In pancreatic cancer, autophagy
supports mitochondrial metabolism by regulating iron
homeostasis, while autophagy inhibition reduces ISC formation
by affecting ISC assembly protein 1 (Mukhopadhyay et al., 2023).
Iron regulatory protein 1 (IRP1) plays a key role in mitochondrial
phagocytosis induced by iron stress. IRP1 can inhibit the translation
of Bcl-xLmRNA, while Bcl-xL is an inhibitory protein of
mitochondrial phosphatase PGAM5, which can catalyze the
dephosphorylation of FUNDC1 to activate mitochondria. WuH’s
team found that disturbances in ISC biosynthesis inhibit Bcl-xL
translation through the IRP1/Bcl-xL axis, leading to
PGAM5 activation, which triggers FUNDC1-mediated
mitochondrial autophagy (Wu et al., 2020). At the same time,

targeting mitochondrial iron metabolism can also induce
mitochondrial autophagy to inhibit tumor growth and metastasis,
thus inhibit proliferation and migration and induce cell death
(Sandoval-Acuña et al., 2021).

4.3 FUNDC1 is involved in maintaining
protein homeostasis in mitochondrial matrix

Protein homeostasis is that cells ensure the correct folding and
function of proteome through a series of quality control
mechanisms, and at the same time degrade misfolded or
unnecessary proteins in time to maintain cell function and
prevent diseases. When the protein in the cell is damaged or
misfolded proteins continue to accumulate in the cell, if not
cleared in time, it will lead to protein homeostasis imbalance and
may produce protein toxicity. FUNDC1 is a protein located in the
outer membrane of mitochondria, which is very important for
maintaining protein homeostasis in mitochondrial matrix. By
interacting with the molecular chaperone protein HSC70 in the
cytoplasm, FUNDC1 promotes the mitochondrial translocation of
unfolded cytoplasmic proteins and transports them to the
mitochondrial matrix (Li et al., 2019a). This process involves the
action of LONP1 enzymes and the formation of non-aggregate
protein aggregates (MAPAs) when proteasome activity is
inhibited. Studies have shown that LONP1 and mtHSP70 with
inherent chaperone-like activity can stabilize the folding
intermediate of OXA1L and promote mitochondrial protein
folding (Shin et al., 2021). However, excessive accumulation of
unfolded proteins in mitochondria can damage the integrity of
mitochondria, which may activate AMPK and lead to cell
senescence (Li et al., 2019b). In order to maintain cell
homeostasis and function, FUNDC1-mediated mitochondrial
autophagy helps to clear damaged proteins that cooperate with
ubiquitin, especially under stress conditions (Kocaturk et al., 2022).

4.4 FUNDC1 mediates crosstalk between
mitochondria and endoplasmic reticulum

Crosstalk between mitochondrial dysfunction and endoplasmic
reticulum stress promotes mitochondrial phagocytosis (Dlamini
et al., 2021). In cell biology, FUNDC1 is a key protein (Liu et al.,
2021a) that regulates the communication between mitochondrial
autophagy and endoplasmic reticulum in mitochondrial quality
control. Mitochondrial autophagy is realized by calcium-
dependent FUNDC1 phosphorylation at the endoplasmic
reticulum-mitochondrial interface (Ponneri Babuharisankar et al.,
2023). This communication occurs in a specific region called
mitochondrial associated endoplasmic reticulum (MAMs) and is
essential for maintaining intracellular calcium homeostasis and lipid
metabolism (Bai et al., 2023). FUNDC1 promotes the stability of
MAMs and participates in calcium ion transport (Lv et al., 2022) by
interacting with inositol 1mine4 receptor 5-trisphosphate receptor
(IP3R). At the same time, the calcium signal crosstalk between
endoplasmic reticulum andmitochondria can also provide a strategy
for the development of new drugs for kidney disease (Ge et al., 2024).
Specifically, calcium ions are transported from endoplasmic
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reticulum to mitochondria through IP3R-glucose-regulated protein
75 (GRP75)-voltage-dependent anion channel 1 (VDAC1) complex
to restore mitochondrial dynamic balance and reduce neuronal
apoptosis (Xu A. et al., 2024). The IP3R-GRP75-
VDAC1 pathway will lead to calcium overload (Gao et al., 2024).
YuanM and his colleague (Yuan et al., 2022) have found that
conditional knockout of GRP75 in mouse model results in
impaired calcium transport from endoplasmic reticulum to
mitochondria, thereby reducing mitochondrial oxidative stress
and calcium overload. The interaction between FUNDC1 and
IP3R3 contributes to the stability of MAMs. FUNDC1 can
control mitochondrial integrity and cardiac function in obesity in
an IP3R3-dependent manner, and further maintain mitochondrial
calcium homeostasis (Ren et al., 2020) by interacting with FBXL2,
the receptor subunit of SCF (SKP1/cullin/F-box protein) ubiquitin
ligase complex.

4.5 FUNDC1 mediates crosstalk between
mitochondria and lysosomes

The interaction between mitochondria and lysosomes is essential
for energy metabolism, calcium homeostasis and autophagy
(Ureshino et al., 2019). Mitochondrial-lysosome contact is a key
process in the degradation of damaged mitochondria by isolating
damaged mitochondria into autophagosomes and then degrading
them in lysosomes to remove dysfunctional mitochondria and
maintain cell health (Peng et al., 2020). When AMPK is activated
by mitochondrial damage, it phosphorylates FNIP1, initiates FLCN-
FNIP1 complex and induces nuclear translocation of TFEB, which not
only promotes the expression of PGC1a and Erra mRNAs (Malik
et al., 2023), but also activates TFEB through lysosomal calcium
release, which leads to calcineurin activation and mitochondrial
autophagy (Oh et al., 2023). As the receptor of mitochondrial
autophagy, FUNDC1 connects mitochondrial autophagy with
biogenesis through PGC-1 α/NRF1 cascade regulation, and
contributes to adaptive thermogenesis, so that cells can cope with
mitochondrial damage and adjust metabolic state, thus maintaining
mitochondrial homeostasis (Liu et al., 2021b). Rab7 is mainly
distributed on lysosome, endoplasmic reticulum and mitochondrial
membrane, which is responsible for membrane transport and
regulates the maintenance or dissociation of mitochondrial-
lysosome contact (Wong et al., 2018) through its activation state.
As the GAP of RabGTP enzyme, TBC1D15 can mediate lysosome
regeneration (Bhattacharya et al., 2023) and regulate mitochondrial
fission by recruiting lysosomes from FIS1 to promote the
transformation of Rab7-GTP to Rab7-GDP, thus relieving the
contact between mitochondria and lysosomes (Wu et al., 2019).
Studies have shown that TBC1D15/RAB7-regulated mitochondrial-
lysosome interaction has a protective effect on heart injury induced by
acute myocardial infarction (Yu et al., 2020). FIS1 can mediate
TBC1D15 and DRP1 recruitment to promote mitochondrial fission
(Ihenacho et al., 2023). Mid51/Fis1 mitochondrial oligomer complex
can drive lysosome unbinding (Wong et al., 2022). FUNDC1 can
mediate the overexpression of DRP1 receptors in MiD51 and Fis1,
which are responsible for their mitochondrial recruitment, and
promote mitochondrial autophagy (Roperto et al., 2019) in
urothelial cells. Although FUNDC1 theoretically plays a key role in

maintaining mitochondrial contact with lysosome and regulating
mitochondrial fission and autophagy by regulating the expression
of related proteins, there is no direct evidence that FUNDC1/MiD51/
FIS1/TBC1D15/Rab7 pathway is involved in the regulation of
mitochondrial-lysosome contact. Therefore, future studies need to
provide more experimental data to support the effectiveness of this
pathway and to verify the authenticity of FUNDC1-mediated
interaction between mitochondria and lysosomes. As shown
in Figure 4.

5 The role of mitochondrial autophagy
receptor FUNDC1 in renal diseases

As an important excretory organ of the human body, the health
status of the kidney is very important for the balance of the whole
physiological system. The role of FUNDC1 in maintaining
mitochondrial homeostasis and regulating mitochondrial
autophagy has attracted more and more attention in recent years.
In the context of kidney disease, FUNDC1-mediated mitochondrial
autophagy may play a key role in cell response to injury and
recovery. We will discuss the role of FUNDC1 in acute kidney
injury (AKI), cardiorenal syndrome (CRS), diabetic nephropathy
(DN), chronic kidney disease (CKD), renal fibrosis (RF) and renal
anemia, aiming to provide new ideas and strategies for the treatment
of kidney diseases.

5.1 AKI

AKI is a clinical syndrome with rapid decline of renal function
caused by many factors, and renal ischemia-reperfusion injury (IRI)
is the main cause (Li et al., 2024). In addition, patients with
rhabdomyolysis and hemolysis may develop AKI (Mai et al.,
2019; Goto et al., 2024). The occurrence of AKI is closely related
to mitochondrial dysfunction, and the activation of mitochondrial
autophagy is crucial to resist IRI (Su et al., 2023). The occurrence of
AKI is closely related to mitochondrial dysfunction, and the
activation of mitochondrial autophagy is very important to resist
IRI. Studies have shown that regulating mitochondrial autophagy
during IRI-AKI helps to maintain mitochondrial homeostasis and
protect renal function (Lin et al., 2022). ZhangW and his colleague
(Zhang et al., 2024) found that mitochondrial autophagy mediated
by hypoxia inducible factor-1 α (HIF-1 α)/FUNDC1 signal
transduction in renal tubular cells contributes to the prevention
of renal IRI. LW6, a selective inhibitor of HIF-1 α, could reduce
mitochondrial autophagy induced by hypoxia/reoxygenation, but
increase apoptosis and ROS production. Hash R treatment could
increase the expression of FUNDC1 protein, while the
overexpression of FUNDC1 could reverse the effects of LW6 on
the expression of LC3BII and voltage-dependent anion channels,
block the cellular effect inhibited by HIF-1 α, and reduce apoptosis
and ROS production. It is suggested that FUNDC1 can enhance the
tolerance of cells to Hmax R condition by inducing mitochondrial
autophagy. Studies by Zhang et al. (2022) have shown that renal
ischemic preconditioning (IPC) reduces renal IRI, inflammation and
macrophage infiltration in acute kidney by enhancing the autophagy
activity of proximal renal tubular cells. Mitochondrial fission is an
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early molecular event in AKI, and its quality control, ROS oxidative
stress and mitochondrial apoptosis are all strictly controlled.
FUNDC1-induced mitochondrial autophagy may carry out IPC-
mediated renal protection (Nesovic Ostojic et al., 2024) by
weakening mitochondrial fission. IPC mediates mitochondrial
autophagy by activating FUNDC1, which alleviates IRI-induced
inflammation and renal function decline. Studies by Wang et al.
(2020) have shown that IPC activates FUNDC1-mediated
mitochondrial autophagy through ULK1 plays an important role
in renal protection. Specific knockout of FUNDC1 in proximal renal
tubules eliminates the protective effect of IPC on kidney, because
IPC needs to degrade Drp1 located in mitochondria through
FUNDC1-activated mitochondrial autophagy and inhibit IRI-
activated mitochondrial division. Knockout of Drp1 can reverse
the mitochondrial damage caused by FUNDC1 deletion and the
ineffective response of IPC. In wild-type mice, Drp1 proximal tubule
specific deletion can maintain the normal structure of mitochondria
in damaged kidney, reduce oxidative stress, inflammation,
programmed cell death and renal injury, and promote renal
tubular epithelial repair (Perry et al., 2018). Therefore, targeted
regulation of IPC-ULK1-FUNDC1-Drp1 axis has potential in
clinical management of AKI.

5.2 CRS

CRS describes the interaction between the heart and the kidney,
in which the failure of one organ affects the state of the other, which

is of concern because of its high morbidity and mortality (Gallo
et al., 2023). CRS can be divided into five types to reflect different
initiation factors and pathological processes (He et al., 2021).
Especially CRS-3 (Neres-Santos et al., 2021) and CRS-4
(Amador-Martínez et al., 2023) are closely related to the
regulation of mitochondrial autophagy. The interdependence
between the heart and the kidney is reflected in the dependence
of the heart on the fluid regulation of the kidney and the dependence
of the kidney on the blood flow and pressure produced by the heart
(Johns, 2024). It is worth noting that hemodynamic changes are key
drivers of CRS (Obi et al., 2016), such as increased central venous
pressure and decreased cardiac output, which can lead to renal
hypoperfusion and renal parenchyma hypoxia. In this low blood
flow state, autophagy is activated as a cellular adaptation mechanism
to maintain renal blood flow and slow down the development of
CRS. FUNDC1 is a key regulator of mitochondrial autophagy, and
its activation is usually related to hypoxia. Mitochondrial
dysfunction plays a central role in heart failure (HF) and CKD.
By activating mitochondrial autophagy, improving mitochondrial
biology and maintaining mitochondrial homeostasis is helpful to
break the vicious circle between HF and AKI/CKD (Shi et al., 2022).
Cai et al. (2022b) believe that mitochondrial dysfunction is the key
pathological mechanism of CRS-3 and that stimulating FUNDC1-
dependent mitochondrial mass monitoring can improve
mitochondrial function and cardiac function during CRS-3.
Studies by WangJ and his team have shown that (Wang J. et al.,
2022), Baxinhibitor-1 (BI-1) overexpression promotes myocardial
mitochondrial autophagy and unfolded protein response, reduces

FIGURE 4
Role of the mitochondrial autophagy receptor FUNDC1 in mitochondrial events.
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mitochondrial oxidative stress, improves mitochondrial energy
metabolism, and protects against heart damage caused by CRS-3.
It was found that after CRS-3, Fundc1 and mt-Keima decreased, and
mitochondrial autophagy was inhibited. However, BI-1
overexpression mice showed increased mitochondrial autophagy,
and Fundc1 or Atf6 silencing weakened the protective effect of BI-1
on cardiomyocytes. Other studies have pointed out (Shen et al.,
2023), Dapagliflozin (DAPA) can protect heart and kidney from
CRS-4-associated cardiomyopathy by activating pyruvate kinase
isoenzyme M2 (PKM2)/protein phosphatase 1 (PP1)/
FUNDC1 mitochondrial autophagy. DAPA restored FUNDC1-
dependent mitochondrial autophagy through PKM2-dependent
pathway, while knockout of FUNDC1,DAPA could not protect
myocardium and mitochondria. Although the role of
FUNDC1 in CRS-3 and CRS-4 has been confirmed, its potential
role in other types of CRS remains a mystery. CRS-1 and CRS-2 are
mainly involved in the rapid deterioration of renal function after
acute cardiac events, while CRS-5 is caused by both heart and kidney
damage caused by systemic diseases. Future research needs to
explore the role of FUNDC1 in these types of CRS and whether
it can provide protective effects similar to those observed in CRS-3
and CRS-4.

5.3 DN

DN is one of the most common microvascular complications of
diabetes, and it is also the main cause of end-stage renal disease,
which is characterized by changes in renal structure and function
(Chen J. et al., 2024). 30%–40% of patients with both type 1 and type
2 diabetes are likely to develop kidney damage (Li et al., 2021). In the
state of diabetes, the glucose metabolism of the kidney is
significantly enhanced, and 60% of the endogenous glucose
released after a meal is metabolized in the kidney, which
increases the glucose load of the kidney (Alsahli and Gerich,
2017). Podocyte is a key component of glomerular filtration
barrier, and its health status is very important to prevent the
development of DN (Wang S. et al., 2022). The disorder of
mitochondrial dynamics is an important mechanism of podocyte
injury in DN, in which the signal molecule FUNDC1 plays an
important role in regulating mitochondrial homeostasis. In the
normal state, FUNDC1 binds to the OPA1 of the mitochondrial
inner membrane, which makes the mitochondria tend to fuse; in the
stress state, FUNDC1 and OPA1 dissociate and recruit the DRP1 in
the cytoplasm to bind to the mitochondria, thus promoting
mitochondrial division. FUNDC1 can restore the homeostasis of
mitochondria bymediatingmitochondrial autophagy, regulating the
level of mitochondrial fission and inhibiting the indexes related to
mitochondrial fusion. In high glucose environment, the activation of
Src was positively correlated with renal dysfunction. ZhengT and
colleagues (Zheng et al., 2022) found that Src activation leads to
FUNDC1 phosphorylation, inhibition of mitochondrial autophagy,
podocyte damage and DN progression, inhibition of Src activity can
protect podocytes from mitochondrial damage in high glucose
environment, but FUNDC1 silencing eliminates the protective
effect of inhibiting Src activity. PAA activates mitochondrial
autophagy by down-regulating FUNDC1, increasing the levels of
LC3 and ATG5, and reducing the level of p62. The downregulation

of FUNDC1 further enhanced the protective effect of PAA on
MPC5 cells after HG treatment, indicating that downregulation
of FUNDC1-induced mitochondrial autophagy can reduce DN
podocyte injury (Wu et al., 2023). WeiX and his colleague (Wei
et al., 2020) have found that capsaicin reduces Fundc1 transcription
by activating TRPV1 and AMPK, thereby alleviating podocyte
mitochondrial dysfunction caused by hyperglycemia and
improving DN. At the same time, inhibition of AMPK or
overexpression of Fundc1 will prevent this protective effect.

5.4 CKD

CKD leads to irreversible decline of renal function with the
passage of time. The core problems of CKD are decreased
glomerular filtration rate and renal structural fibrosis (Yang et al.,
2024). Abnormal mitochondrial autophagy is a common
pathogenesis of CKD. FUNDC1-mediated mitochondrial
autophagy plays a role in this process. By clearing the damaged
mitochondria, it helps to reduce RF, protect renal function and delay
the progress of CKD. In the early stage of CKD, when the renal
oxygen supply is insufficient, the mitochondria produce ROS, which
leads to mitochondrial dysfunction. FUNDC1 activation guides the
damaged mitochondria to autophagy to prevent cell death and RF
caused by mitochondrial dysfunction. However, in the late stage of
CKD, persistent renal injury and inflammation inhibit the
expression of FUNDC1, reduce mitochondrial autophagy, lead to
the accumulation of damaged mitochondria, aggravate fibrosis and
decrease renal function. Therefore, regulating the expression and
activity of FUNDC1 and restoring mitochondrial autophagy is a
potential strategy for the treatment of CKD. Ma et al. (2021) found
that inhibition of mitochondrial autophagy activation can lead to
renal tubular necrosis and RF in CKD, while mediating
mitochondrial autophagy can effectively inhibit cisplatin-induced
CKD inflammation and RF. In a study by WeiX and his team (Wei
et al., 2023), they found the preventive effect of magnolol on chronic
kidney disease. This effect is realized by mitochondrial autophagy
and AMPK pathway mediated by BNIP3/NIX and FUNDC1.
Magnolol can inhibit the expression of BNIP3, NIX and
FUNDC1, thus reduce the phenomenon of mitochondrial
autophagy in CKD rats, and play a protective role in the kidney
of CKD rats.

5.5 RF

RF is the main pathological feature of CKD and end-stage renal
disease, involving inflammation, oxidative stress, epithelial-
mesenchymal transition (EMT), and excessive deposition of
extracellular matrix (ECM). In healthy kidneys, mitochondria
maintain their morphology and function through continuous
fusion and fission (Sun J. et al., 2024). In RF, this dynamic
balance is disrupted, resulting in increased mitochondrial fission
and abnormal autophagy. Chen H and colleagues (Chen H. et al.,
2024) found that impaired mitochondrial autophagy aggravates RF,
and the Mfn2-MAMs-FUNDC1 pathway plays an important role in
reversing RF. Vitamin D receptor can affect the integrity of MAMs
by interacting with Mfn2, thereby regulating the function of
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FUNDC1, restoring mitochondrial autophagy, reducing
mitochondrial fission, reducing mitochondrial ROS production,
and increasing mitochondrial membrane potential and ATP
production, thereby protecting RF. The role of mitochondrial
autophagy in kidney disease is complex and dual-sided. It can
play a protective or harmful role in different pathological states.
In some cases, the activation of autophagy can remove damaged
organelles and proteins and maintain the stability of the intracellular
environment, thus having a renal protective effect. As mentioned
above, restoring mitochondrial autophagy can alleviate renal
fibrosis. However, under conditions of persistent stress or injury,
excessive or persistent autophagymay aggravate cell damage and RF.
3-Methyladenine (3-MA) is a specific autophagy inhibitor that can
inhibit autophagy by blocking the formation of autophagosomes
and preventing the nucleation stage of autophagy. Studies have
found that 3-MA can not only significantly reduce the number of
autophagic vacuoles in the kidneys of diseased rats, inhibit
mitochondrial fission, reduce the expression of Drp-1, Cofilin
and F-actin, and alleviate cell apoptosis; but also reduce the
arrest of the G2/M phase of the cell cycle in the kidneys by
inhibiting autophagy, inhibit EMT, and reduce the deposition of
ECM proteins, thereby alleviating RF (Shi et al., 2020). Therefore,
therapeutic strategies targeting autophagy need to be customized
according to specific pathological conditions and disease stages.

5.6 Renal anemia

Renal anemia is one of the common complications of CKD, and its
main cause is the reduction of erythropoietin (EPO) produced by the
kidney (Hitomi et al., 2017). EPO is a key cytokine that drives
erythropoiesis in the bone marrow, and the adult kidney is its main
production site (Tomc and Debeljak, 2021). FUNDC1, as a
mitochondrial autophagy receptor, is essential for EPO-driven
erythropoiesis under stress conditions. In the CKD state, renal
EPO-producing cells (REPs) are damaged, resulting in reduced
synthesis and secretion of EPO (Schley and Hartner, 2022).
FUNDC1 helps maintain mitochondrial homeostasis and function
of REPs by promoting selective autophagy of damaged mitochondria.
When FUNDC1 function is impaired, damaged mitochondria
accumulate in REPs, leading to increased ROS levels, triggering an
inflammatory response, which in turn affects the function of renal
REPs and ultimately leads to renal anemia. In addition, impaired
FUNDC1 function further promotes the transformation of REPs into
myofibroblasts by upregulating the expression of proinflammatory
cytokines. This transformation leads to a decrease in EPO production
capacity, thereby exacerbating renal anemia. Geng G and colleagues
(Geng et al., 2021) showed that the loss of the FUNDC1 gene
exacerbated RF in cisplatin-induced renal anemia and unilateral
ureteral obstruction models, a phenomenon attributed to the
accumulation of damaged mitochondria, increased oxidative stress,
and inflammatory responses. By enhancing FUNDC1-mediated
mitochondrial autophagy, these damaged mitochondria can be
cleared, oxidative stress and inflammation can be reduced, REPs in
the kidney can be protected, and normal EPO production can be
maintained, thus providing a potential therapeutic strategy for the
treatment of renal anemia and RF. Although HIF (hypoxia-inducible
factor) plays a key role in regulating EPO expression, especially under

hypoxic conditions, HIF upregulates its expression by binding to the
enhancer region of the EPO gene (Farsijani et al., 2016), current studies
have not directly mentioned that FUNDC1-mediated processes
involve HIF. FUNDC1 mainly regulates EPO production by
affecting mitochondrial quality and autophagy, rather than directly
through theHIF pathway. However, since bothHIF andmitochondrial
function are related to the cellular response to hypoxia, theremay be an
indirect connection between them, but further studies are needed to
clarify their interaction. As shown in Figure 5.

6 Discuss

This article focuses on the role of the mitophagy receptor
FUNDC1 in maintaining mitochondrial function and kidney
disease. FUNDC1 regulates mitochondrial autophagy through
phosphorylation and dephosphorylation, which is essential for cell
energy metabolism and programmed death. The phosphorylation
status of FUNDC1 is regulated by multiple kinases and phosphatases,
including ULK1, Src, CK2, PGAM5 and BCL2L1. In mitochondrial
events, the role of FUNDC1 is not limited to promoting
mitochondrial autophagy. It also participates in mitochondrial
fission, maintains the homeostasis of iron and proteins in
mitochondrial matrix, and plays a role in crosstalk between
mitochondria, endoplasmic reticulum and lysosomes. These
functions indicate that FUNDC1 is the intersection of multiple
signal pathways in cells, and its abnormal function may lead to a
variety of cellular dysfunction. In the context of kidney disease, the
imbalance of mitochondrial autophagy mediated by FUNDC1 is
closely related to the development of AKI, CRS, DN, CKD, RF,
and renal anemia. These findings suggest that FUNDC1 may be a
potential therapeutic target and its regulation may help to restore
mitochondrial function and improve the prognosis of renal disease.

However, we also found some limitations. First, the current
understanding of the phosphorylation and dephosphorylation
mechanisms of FUNDC1 protein is incomplete, and further reviews
are needed to reveal its exact functions in various disease states. Second,
the effects of FUNDC1 may be different in different types of kidney
disease. Although we have explored the role of FUNDC1 in AKI, CRS,
DN, CKD, and RF, given that the pathogenesis of kidney disease is
closely related tomitochondrial autophagy, and there is a lack of clinical
reports on other types of kidney diseases such as hyperuricemia
nephropathy and lupus nephritis, this field needs more clinical data
to support it. Finally, how to precisely regulate the activity of
FUNDC1 and transform these research results into clinical
treatment methods will be the key direction of future research.

In recent years, studies have found that “intestinal flora
metabolism-FUNDC1-mediated mitochondrial autophagy”
pathway may be a new way to improve inflammatory damage in
renal disease. The imbalance of metabolic function of intestinal flora
may lead to oxidative stress of mitochondria and increase of ROS
(Sun Y. et al., 2024). These factors may be the key to the activation of
NLRP3 inflammatory bodies (Shi et al., 2024; Xu C. et al., 2024) and
the main pathological mechanism of inflammatory damage in renal
disease (Chang et al., 2024). The phosphorylation of FUNDC1 may
affect the activity of mitochondrial autophagy, which in turn affects
the inflammatory response of kidney disease. Based on this, the
authors propose the following hypothesis: in the process of renal
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disease, intracellular homeostasis and inflammatory damage are
affected by intestinal flora regulation and FUNDC1-NLRP3-
mediated mitochondrial homeostasis disorders. The dysfunction
of FUNDC1, such as inhibition of mitochondrial autophagy and
excessive activation of mitochondrial oxidative stress, may lead to a
vicious circle of intracellular damage mechanisms, aggravate
inflammatory response, and promote apoptosis in the
mitochondrial pathway. By regulating the abundance of intestinal
flora to activate FUNDC1-mediated mitochondrial autophagy and
inhibit NLRP3-mediated inflammation, we can adjust the
homeostasis of intracellular environment and treat renal disease.
In short, FUNDC1 is a key mitochondrial autophagy regulator, and
its role in maintaining mitochondrial function and kidney disease is
worthy of further exploration. Future research will help to better
understand its role in diseases and provide a theoretical basis for the
development of new treatment strategies.

7 Conclusion

Mitochondrial autophagy receptor FUNDC1 plays a key role in
maintaining mitochondrial function and kidney disease. Through
the dynamic regulation of phosphorylation and dephosphorylation,
FUNDC1 participates in the activation and inhibition of
mitochondrial autophagy, thus affecting the fate of cells. Its role
in the development of renal disease suggests its potential as a

potential therapeutic target. Future research needs to further
explore the molecular mechanism of FUNDC1 and its
application in the treatment of renal diseases.
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