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The context

The Fragile X Messenger Ribonucleoprotein (FMRP, previously referred to as Fragile
Mental Retardation Protein, see comments in Khandjian et al. (2022) is an RNA-binding
protein whose mutations or absence cause Fragile X Syndrome (FXS). FMRP is mainly
found in the cytoplasm and has been implicated in translation regulation. It has also been
suggested to be present in the nucleolus and have a function in ribosome biogenesis. Here
we wish to critically survey the data supporting this potentially important
secondary function.

FMRP is the archetype of a family of cytoplasmic RNA-binding proteins that includes
the Fragile X related proteins FXR1P and FXR2P. The primary transcripts of the FMR1 and
FXR1, genes undergo alternative splicing processes (Ashley et al., 1993; Verkerk et al., 1993;
Sittler et al., 1996; Kirkpatrick et al., 1999), resulting in multiple protein isoforms. Twelve
FMRP isoforms have been detected, nine for FXR1P and one for FXR2P. Members of the
Fragile X protein family are widely expressed in human tissues and in other mammals, albeit
at varying levels, and expression of their isoforms is subtly choreographed (Davidovic et al.,
2006a). FMRP is highly abundant in brain and testis but is absent in striated muscles.
FXR1P is strongly expressed in striated muscle and testis and lower levels are detected in the
brain. FXR2P expression remains almost constant in all organs and tissues. While the FMR1
gene is present on chromosome X, FXR1 and FXR2 are autosomal genes present on
chromosome 12 and 17, respectively.

In humans, mutations in the FMR1 gene are the cause of FXS, a neurodevelopmental
disorder that is characterized by development delay, intellectual disability, and in some
cases autism spectrum disorders. FXS clinical presentation is highly heterogenous. FXS also
affects peripheral tissues with patients exhibiting large everted ears, long face, increased
cranial circumference, hypotonia, hyperlaxity of ligaments and macroorchidism
(Hagerman et al., 2017). The most prevailing hypothesis regarding the physiopathology
of FXS is that the absence of functional FMRP causes dysregulation of translation (Bassell
and Warren, 2008; Darnell, 2011; Richter and Zhao, 2021). FXR1P is essential for muscle
development (Mientjes et al., 2004; Huot et al., 2005) and recessive mutations in the muscle
specific long isoform of FXR1P cause congenital multi-minicore myopathy in human and
mice (Estañ et al., 2019), possibly by altering translation since FXR1P has been involved in
translation regulation (Garnon et al., 2005; Huot et al., 2005; Vasudevan and Steitz, 2007).
FXR2P is the least studied among the FXR proteins and, although it is also associated with
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the translational apparatus (Corbin et al., 1997), its role in
translation regulation has not yet been formally determined.

The overall structure of the three proteins is very similar and
FXR1P and FXR2P share 86% amino acid identity with FMRP in the
central region, and 70% over the N-terminal region. All three proteins
contain similar functional RNA-binding domains: two central KH
domains (KH1 andKH2) and a C-terminal RGG domain. In addition,
while the three proteins exhibit N-terminal nuclear localization signals
(NLS) and a nuclear export signals (NES) between the KH and RGG
domain (see maps in Figure 1) the main isoforms are exclusively
detected in the cytoplasm. The C-termini of the three proteins are
highly divergent and Tamanini et al. (2000) reported a nucleolar
localization signal (NoLS) in FXR1P and FXR2P, which is absent in
FMRP (Tamanini et al., 2000). However, some studies have
challenged this view, and the issue of nucleolar localization of
FMRP is the subject of the present opinion.

FMRP, to be or not to be nucleolar?

Shortly after the detection of endogenous FMRP associated with
the translation apparatus (Khandjian et al., 1996), a follow-up study
reported the sub-cellular localization of FMRP based on its
overexpression after transfection with a cDNA expression vector
(Willemsen et al., 1996). Using this approach, the authors detected
the presence of FMRP in large cytoplasmic aggregates and even larger
aggregates in the nucleolus. It is important to note that the
transfection assays were performed with a vector under the control
of the strong SV40 promoter, and FMRP localization was analyzed at
72 h, an astoundingly long-time post-transfection. The likelihood that
the conclusions on FMRP subcellular distribution drawn in this study
by Willemsen et al. (1996) are generalized to endogenous FMRP is at
best questionable since overexpression most probably overloaded the
cellular machinery, resulting in the artifactual localization of FMRP in
both the nucleus and the nucleolus (see below).

More recently, Taha et al. (Taha et al., 2014; Taha and
Ahmadian, 2024) reported that endogenous FMRP can in fact be
detected in the nucleolus and suggested that cytoplasmic-nucleolar
shuttling is an important aspect of FMRP function. However, it is
questionable whether the immunofluorescence images presented in
Figure 1B of their paper support nucleolar localization of
endogenous FMRP, as the fluorescence signal is not clearly
distinguishable from background, nor does it clearly colocalize
with nucleolin, the nucleolar protein used as marker (even when
magnified at ×500). Their choice to use the ribosomal protein
RLR0 as a nucleolar marker was not judicious in the context of
the nucleolus, since this acidic protein is present only in cytoplasmic
ribosomes. They also found that an exogenously expressed truncated
fragment of FMRP, containing the N-terminal domains, but lacking
the NES, was cytoplasmic [as shown in Figure 4E of their article
(Taha et al., 2014)], in clear contrast with previous reports showing
nuclear localization for this type of constructs (Devys et al., 1993;
Bardoni et al., 1997). Based on sequence analysis, Taha et al. claimed
that FMRP possesses three previously unidentified NoLS motifs in
its C-terminal domain. NoLS3: 480HGRRGPGY489, NoLS2:
526LRRGDGRRRGG536, and NoLS1: 612NQKKEKPD619, which
all map to different C-terminal exons (Taha et al., 2014). While the
authors conclude that these motifs in FMRP are partially conserved
with the previously detected NoLS motifs in FXR1P and FXR2P
(Tamanini et al., 2000) and show motifs aligned, (see Figure 4D of
their article reference Taha et al. (2014), the FMRP and FXR1P/
FXR2P motifs appear unrelated since they show minimal sequence
homology and are derived from distinct exonic sequences.

Importantly in the present context, a study on a FXS patient
revealed a newmutation in the FMR1 gene (Okray et al., 2015). In this
patient, a Guanine (G) insertion in exon 15, at position 33020 in the
gene was identified. This mutation alters the open reading frame
creating a short C-terminal sequence, followed by a stop codon. This
results in a mutated FMRP lacking the NES and the RGG domain
similarly to the nuclear FMRP ISO6 (see below). In transfection assays
using an expression vector containing the cDNA of the truncated
mutant, this FMRP localizes exclusively to the nucleolus although this
truncated protein does not contain the sequences of the hypothetical
nucleolar localization signal (NoLS) published by Taha et al. (2014).

In support of their claims of a nucleolar localization of FMRP,
Taha et al. (2014) also analyzed the presence of FMRP in subcellular

FIGURE 1
Overexpression of two FMRP isoforms induce unusual structures
in Cos-1 transfected cells. (A)Overexpression of full length FMRP Iso1.
Shown here are three different levels of expression in transfected cells
as compared to endogenous expression in two untransfected
cells indicated by white arrow heads. Note the aggregates and
granules detected in the cytoplasm of transfected cells. (B)
Overexpression of minor FMRP ISO6. Staining of endogenous FMRP in
a non-transfected cells is shown in the left panel. Nuclear localization
of exogenous FMRP ISO6 as diffuse nuclear repartition or as round
shaped structures in the nucleolus (white arrows). Reproduced from
(24) with permission from Biochemistry and Cellular Biology. Shown
above each panel are the maps of the ISO1 full-length and the
ISO6 isoform. Note the NLS, as well as the KH1 and KH2 domains in
both isoforms.
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organelles including nucleoli and in immunoprecipitates and
reported that FMRP was as abundant in the nucleolus as in the
cytosolic fractions. However, the experimental procedure used to
obtain these organelles is highly questionable as it involved nuclear
disruption by gentle homogenization with a Balch homogenizer.
Well-established cellular fractionation procedures all agree that
nucleoli extraction requires nuclei disruption by sonification to
share the viscous chromatin and free the organelles (see seminal
work, for instance from Harris Busch, Jean-Pierre Zalta, in the 60’s).
Also, there is no universal method to purify all cell components
based on a single cell lysis technique such as the one used by Taha
et al. (2014). They also claimed that FMRP is associated with
mitochondria without controlling for the possible contamination
with the rough endoplasmic reticulum that contains polyribosomes
and by consequence FMRP. Based on these technical considerations,
we believe there are serious concerns regarding the conclusions
drawn by Taha et al. (Taha et al., 2014; Taha and Ahmadian, 2024),
which more than likely stem from over enthusiastic interpretation of
the images and the use of inadequate experimental procedures.
Finally, they concluded their study by transfection assays using a
pcDNA3 eukaryotic expression vector in which FMR1 full-length
cDNA as well several truncated forms were expressed under the
strong cytomegalovirus (CMV) promoter. The atypically shape of
the nucleoli stained with anti-nucleolin antibodies (their Figure 4 in
Taha et al. (2014), suggests that the transfected cells were likely
undergoing distress, once again questioning the conclusions drawn.

Avoiding traps to solve the problem in
future studies

Although the expression of exogenous proteins via transfection
assays is a convenient approach to study subcellular localization, we
posit that results obtained may not necessarily be generalizable to the
native endogenous protein that is subjected to natural regulation of its
expression level that is tightly linked to the cellular state (e.g., mitotic,
quiescent, metabolic, stressed . . .). Based on our long-standing
experience, overexpressing of FMRP at high levels and for extended
periods of time results in unusual if not atypical images. Our long-
standing experience related to the use of exogenous FMRP support this.
In the late 1990’s, we transfected Cos-3 cells (Khandjian, 1999)
independently with two FMR1 cDNA variants under the control of
the simian virus (SV40) promotor in the pTL1 vector to allow
expression of the longest FMRP isoform (ISO1, 632 aa) and a
minor isoform (ISO6, 537 aa) in which a frame shift at aa 425 in
the C-terminus causes a premature truncation of the protein and the
absence of the NES and RGG domains (Dury et al., 2013). After 24 h of
transfection, cells were fixed and stained with the mAb1C3monoclonal
antibody that recognizes the constitutiveN-terminal part (aa 66–112) of
FMRP present in all isoforms. In untransfected cells (white arrow heads
in Figure 1A), FMRP exhibited its classical, cytoplasmic staining while
nuclear staining was absent. In contrast, cells overexpressing
ISO1 exhibit strong reactive aggregates and granules in the
cytoplasm. Subsequently, we have shown that these granules
correspond to stress granules that sequester mRNA and many other
RNA-binding proteins (Mazroui et al., 2002). These stress granules
form in response to cellular stress (heat shock, hypoxia, arsenite, UVC,
etc.) and maintain translational repression until the stress is relieved.

Regarding FMRP ISO6, half of the transfected cells exhibited
a strong ring-shape staining surrounding the nucleolus, while the
other half exhibited a punctuate staining in the nucleus
(Khandjian, 1999). However, in the latter case, the nucleoli
appeared irregular in shape (Figure 1B). Being truncated,
FMRP ISO6 isoform only contains the N-terminal and
C-central regions and lacks the three putative C-terminal
NoLS motifs described by Taha et al. (2014) that, in contrast
to the early data, were found by these authors to be distributed
uniformly throughout nucleus and cytoplasm (their Figure 1b in
Taha et al. (2014)). Furthermore, the ring-shaped nucleolar
structures which we observed and are absent under normal
growth conditions, are reminiscent of the nucleolar detention
centers (DC) in which proteins are temporarily detained in
response to cellular stresses (Audas et al., 2012a; Audas et al.,
2012b; Jacob et al., 2013). Such structural remodeling leaves
nucleoli temporarily unable to sustain their primary function
of ribosomal biogenesis until stress is relieved. In a certain way,
formation of DC could be the nucleolar counterpart of
cytoplasmic stress granules formation (see above).

Bearing all this in mind, we have paid attention in our work to
limiting FMRP transient expression of FMRP to less than 18 h, in
contrast to many studies in the field that used up to 72 h. In this
context, the minor FMRP ISO6 clearly localizes to nucleoli (Davidovic
et al., 2006b) and Cajal Bodies (Dury et al., 2013). These two
organelles have been previously described notably a century ago
(Garcia-Lopez et al., 2010) to be in direct physical contact. Much
more recently, it was observed in HeLa cells that Cajal Bodies shuttle
in and out of nucleoli (Gall, 2000; Platani et al., 2000; Cioce and
Lamond, 2005). Our results are in line with this model.

Taking these considerations together, we suggest that there is a lack
of convincing literature-based evidence to support a nucleolar role for
full-length FMRP ISO1 in ribosome biogenesis. Rather we suggest that
the artificial transient overexpression conditions used in most studies,
disturbs cellular homeostasis and leads to FMRP mis-localization. We
hope that this opinion will serve as a reference for future studies
exploring the nuclear and more specifically nucleolar roles of FMRP.
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