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PBX1 is a transcription factor that can promote the occurrence of various
tumors and play a reg-ulatory role in tumor growth, metastasis, invasion, and
drug resistance. Furthermore, a variant generated by fusion of E2A and PBX1,
E2A-PBX1, has been found in 25% of patients with childhood acute
lymphoblastic leukemia. Thus, PBX1 is a potential therapeutic target for
many cancers. Here, we describe the structure of PBX1 and E2A-PBX1 as
well as the molecular mecha-nisms whereby these proteins promote
tumorigenesis to provide future research directions for developing new
treatments. We show that PBX1 and E2A-PBX1 induce the development of
highly malignant and difficult-to-treat solid and blood tumors. The
development of specific drugs against their targets may be a good
therapeutic strategy for PBX1-related cancers. Furthermore, we strongly
recommend E2A-PBX1 as one of the genes for prenatal screening to
reduce the incidence of childhood hematological malignancies.
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1 Introduction

Transcription factors (TFs) are a class of proteins that regulate the temporal and
spatial expression of target genes in different cells. These proteins serve as
administrators of the genome, shaping the phenotype of the organism by
modulating cell fate (Francois et al., 2020). TFs recognize specific DNA sequences
to control the local assembly of larger protein complexes, inducing or repressing the
transcription of nearby genes. TFs determine when, where, and how the gene product is
produced in response to upstream signals (Reichlmeir et al., 2021; Rothenberg, 2022).
The number of TFs in human is ~1,600. Homeodomain TFs play irreplaceable roles in
embryogenesis and differentiation. They have a homology domain that is
approximately 60 amino acids long and characterized by the inclusion of a three
amino acid loop extension (TALE) domain between the first and second α-helices.
Homeodomain TFs comprise two families, PBC (PBX1–4) and MEINOX, which are
further divided into MEIS and PREP subfamilies (Blasi et al., 2017; Bobola and
Sagerström, 2024). Among them, pre-B-cell leukemia homeobox 1 (PBX1) has
become the focus of related research. The variant of PBX1, E2A-PBX1, which is
generated by the fusion of E2A and PBX1 in the process of chromosomal
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translocation, is associated with pre-B-cell acute lymphoblastic
leukemia (ALL) (Izraeli et al., 1992; Izraeli et al., 1993; Nagel and
Meyer, 2022; Mostufi-Zadeh-Haghighi et al., 2023; Sinclair et al.,
2023). The network in the process of tumorigenesis induced by
E2A-PBX1 is complex, involving a variety of target genes and
interacting proteins. This indicates that PBX1 has an important
role in tumors and makes it a potential therapeutic target. Here,
our aim was to highlight the specific aspects that require further
investigation in this field to promote research exploring new
treatment options for PBX1-related tumors. To that aim, this
review describes the structures of PBX1 and E2A-PBX1 as well as
the regulatory networks through which these TFs promote
tumorigenesis.

2 Review

2.1 Structure of PBX1

PBX1 was first identified as the fusion partner of E2A in the t(1:
19) chromosomal translocation (Kamps et al., 1990; Veiga et al.,
2021), which functions as a HOX-cofactor in D. melanogaster; flies
with mutant PBC protein display similar homeotic
transformations to those observed in HOX-mutant animals,
without remodeling the expression of the relevant HOX genes
(Penkov et al., 2013; Grebbin and Schulte, 2017; Gulotta et al.,
2021; Olatoke et al., 2023). Lu and De Kumar et al.’s researches
excellently elucidated the interaction regions between PBX1, HOX,

FIGURE 1
Structure of PBX1and amino acid sequences in different species. (A) PBX1 primarily consists of three domains: the PBC-A and PBC-B domains for
interacting with other proteins, and the homeodomain (HD). The PBC-A domain contains a nuclear export signal (NES) structure; the PBC-B domain is
composed of helices and random coils, functioning as a switch that controls the nuclear import and export of PBX1; the HD domain includes two nuclear
localization signals (NLS) regions responsible for the translocation of PBX1 into the nucleus and its positioning on DNA. (Image B was generated by
figdraw). (B–D) In humans, rats, mice, and zebrafish, the PBX1 protein consists of 430 amino acids, and its structure shows high conservation across
different species. Among these four species, variations occur only at positions 3, 10, 12, 17, 26, 30, 33, and 37 in zebrafish. However, in the homeodomain
region (positions 232–293) and other regions, the amino acid sequences are completely identical across all four species.
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and DNA (Lu and Kamps, 1996; De Kumar and Darland, 2021).
PBX1 is about 430 residues long and, starting from the
N-terminus, contains PBC-A and B domains, which are the
sites through which PBX1 binds to other proteins to carry out
its function, and the highly conserved homeodomain (HD), a DNA
binding motif (Longobardi et al., 2014; Bruckmann et al., 2020).
The conserved regions of PBC-A (with a nuclear export signal
(NES) and PBC-B are composed of helices, whereas the non-
conserved areas are composed of random coils. The region
between PBC-A and PBC-B contains an alanine-rich stretch of
low complexity. This region has been suggested to function as a
flexible linker in complex formation with other proteins
(Mathiasen et al., 2015; Oriente et al., 2018; Kao et al., 2024).
The switch between nuclear PBX1 export and import is controlled
by the PBC-B domain, which contains some conserved serine
residues that correspond to Ser/Thr kinase phosphorylation sites.
With dephosphorylation of the serine residues, PBX1 transports to
the cytoplasm (Kilstrup-Nielsen et al., 2003). The HD domain
contains nuclear localization signals (NLS) that guide
PBX1 transport to the nucleus and binding to the DNA

sequence; depletion of the HD domain impairs the binding
between PBX1 and DNA (Farber and Mittermaier, 2011;
Alankarage et al., 2020; Bruckmann et al., 2020) (Figure 1A).
When PBX1 is free in the cytoplasm, the N-terminal and HD
regions are tightly connected, preventing PBX1 from entering the
nucleus. PBX1 protein structure in different species to is
conserved. We downloaded the PBX1 protein sequences of
human (ID: P40424), rat (ID: A0A8I5ZR45), mouse (ID:
P41778), and zebrafish (ID: H1A3Y0) from UniProt (https://
www.uniprot.org/) and analyzed these sequences using the
NCBI Multiple Sequence Alignment Viewer 1.25.1 on the NCBI
website. The analysis results showed that in humans, rats, mice,
and zebrafish, the PBX1 protein consists of 430 amino acids, and its
structure shows high conservation across different species. Among
these four species, variations occur only at positions 3, 10, 12, 17,
26, 30, 33, and 37 in zebrafish. However, in the homeodomain
region (positions 232–293) and other regions, the amino acid
sequences are completely identical across all four species
(Figures 1B–D). The results suggested that PBX1 is highly
conserved across different species.

FIGURE 2
PBX1 maintains the normal development and functional integrity of the organism. PBX1 plays crucial roles in various biological processes by
regulating target genes, including hematopoietic system development, thymus formation, spleen development, pancreatic development, cardiovascular
system regulation, kidney development, immune system function, nervous system organization, lung development, bone formation, sexual organ
development, and skin integrity. Its absence or mutation can lead to significant developmental defects and impair normal physiological functions
across multiple organ systems. (Images were designed and generated by figdraw).
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2.2 PBX1 in development

In the research history of PBX1, PBX1 has been demonstrated to
play a role in the regulation of nearly all body organs and tissues
during development (Figure 2).

2.2.1 Hematopoietic system
PBX1 has been reported to be expressed in hematopoietic

progenitor cells during mouse embryonic development. It was
reported that deletion of the PBX1 gene in mouse embryos caused
embryonic death in embryos day 15 (E15) or E16 with
handicapped hematopoiesis (Kim et al., 2002; Ficara et al.,
2013). Specifically, in PBX1-knockout embryos, hematopoietic
lineages may experience developmental defects, leading to
impaired hematopoietic function. These defects may include a
decrease in the number of hematopoietic progenitor cells and
myeloid cells, as well as defects in the differentiation and
maturation of erythrocytes and megakaryocytes. These issues
may result in severe hematopoietic defects during embryonic
development, leading to embryonic death (Ariki et al., 2014;
Dutta et al., 2021; Zhang K. et al., 2023). PBX1 supports HSC self-
renewal, and transcriptional analysis reveals that multiple stem
cell maintenance programs are disrupted in the absence of PBX1
(Ficara et al., 2008; Crisafulli et al., 2019; Dutta et al., 2021).
Although PBX1 is crucial for HSPC differentiation, the
generation of myeloid and erythroid lineages might be
compensated by other transcription factors and signaling
pathways. Myeloid and erythroid cells might rely on different
developmental pathways that involve other critical regulatory
factors in their regulatory networks, allowing them to be
generated even without PBX1. For instance, transcription
factors like RUNX1 and GATA2(GATA-binding transcription
factor 2) play key roles in the generation of myeloid and erythroid
cells and can partially compensate for the absence of PBX1.
PBX1 is indispensable in the differentiation of hematopoietic
stem cells, and the ineffective PBX1 leads to impairment of B cell
development and megakaryocyte generation (Okada et al., 2003;
Ficara et al., 2013; Zewdu et al., 2016; Cullmann et al., 2021). To
be specific, PBX1 regulates various genes related to B cell or
megakaryocyte lineage commitment and maturation, including
EBF1 (Early B-cell Factor 1) and PAX5 (Paired Box 5) or
GATA1(GATA-binding transcription factor 1) and
FOG1(Forkhead box G1). These genes are critical for the
expansion and maturation of B cell progenitors or
megakaryocytes. PBX1 works in coordination with other
transcription factors (such as members of the HOX family) to
form a complex transcriptional network that ensures the correct
formation and function of them. The absence of PBX1 leads to
downregulation of these key genes, disrupting the transcriptional
programs necessary for B cell and megakaryocytes development,
resulting in impaired generation (Familiades et al., 2009; Gregory
et al., 2010; Cullmann et al., 2021; Lee et al., 2021). In addition, it
was confirmed that both MN1(Meningioma 1 proto-oncogene)
wild-type and mutant proteins copurified with PBX1, which
indicated that PBX1 participates in the transcriptional
regulation of target genes by interacting with MN1 to regulate
body homeostasis such as HSC maintenance and self-renewal
(Xu et al., 2018; Miyake et al., 2020). Conditional loss of PBX1 in

specific hematopoietic lineages using the Cre-lox system provides
valuable insights into the role of PBX1 in these lineages
(DiMartino et al., 2001; Fischbach et al., 2005; Sanyal et al.,
2007; Grebbin and Schulte, 2017) (Table 1).

2.2.2 Thymus and spleen
PBX1 drives the proliferation of thymocytes (Penkov et al.,

2008), and it was reported that pbx1 homozygous mutants
display delayed or absent formation of the caudal pharyngeal
pouch in mice, as well as a pattern of disturbance of the third
pharyngeal pouch. In addition, in the study of Dimuthu Alankarage,
it was found that mutations in PBX1 lead to ectopic or absent
thymus and spleen in mice (Brendolan et al., 2005; Zewdu et al.,
2016; Alankarage et al., 2020). Intrinsically, PBX1 is essential for the
proliferation of thymocytes. It interacts with transcription factors
such as PAX1, regulating their expression and promoting thymocyte
proliferation (Danso-Abeam et al., 2013; Selleri et al., 2019).
PBX1 also regulates thymocyte differentiation and maturation
through interaction with genes like SMAD and Notch, which are
critical for the differentiation and maturation process. Additionally,
PBX1 controls thymocyte fate by modulating the expression of these
and other related genes, thereby determining the destiny of thymic
hematopoietic cells (Jurberg et al., 2015; McCarron et al., 2019; Mary
et al., 2023). Mice with mesenchymal-specific PBX1 inactivation in
the spleen exhibit hyposplenism which may be related to the
downregulation of Nkx2-5 and the upregulation of p15Ink4b
caused by pbx1 deletion in spleen mesenchymal progenitor cells
which resulted in cell cycle disorder (Brendolan et al., 2005; Koss
et al., 2012).

Extrinsically, PBX1 impacts the thymic microenvironment by
regulating stromal cells and other microenvironmental components
(Gao et al., 2022). It influences the signaling pathways within these
cells, affecting the overall support provided to the cells. PBX1’s role
in the stromal microenvironment includes modulating intercellular
signaling factors like BMP andWnt, which are crucial for thymocyte
and splenic cell development and function (Figueiredo et al., 2020;
Khumukcham and Manavathi, 2021; Arnovitz et al., 2022).

2.2.3 Pancreas
PBX1 is crucial during the early stages of pancreatic

development. PBX1 is involved in the morphogenesis of the
pancreas, influencing the branching and formation of pancreatic
ducts and acinar structures. It participates in the specification and
patterning of the pancreatic progenitor cells, and helps establish the
domains where the pancreas will formwithin the developing embryo
(Kim et al., 2002; Oriente et al., 2018). It was reported that PBX1 in
the pancreas promotes the proliferation and differentiation of stem
cells, and PBX1 enhances the expansion of stem cells, which leads to
the regeneration of islet cells from ductal and potentially acinar cells
in a rat pancreatic ligation model (Peters et al., 2005). In adult
pancreatic cells, PBX1 continues to play a significant role in
maintaining islet cell function and cellular homeostasis. It helps
regulate the expression of genes necessary for the normal function of
pancreatic cells. In the research of Xin Zhang, the authors provided
biochemical and transgenic data showing that the key islet
development regulation process is achieved by PBX1 through its
action on PAX6 (Zhang et al., 2006). In addition, studies have shown
that PBX1 is involved in the regulation of proglucagon gene
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expression by regulating caudal-related homeobox transcription
factor 2 (Cdx2) and ensures the expression of glucagon (Herzig
et al., 2000; Liu et al., 2006).

PBX1 is particularly important in maintaining the function of
pancreatic beta cells, which produce insulin. It ensures the proper
expression of insulin and other hormones essential for glucose
homeostasis (Kim and MacDonald, 2002; Pan and Wright, 2011;
Dai et al., 2021). It promotes the reprogramming of adipose-derived
mesenchymal stem cells into islet β cells, aiding in the directed
differentiation and functional maintenance of these cells (Dai et al.,
2022). This activity is particularly relevant for therapeutic
applications, such as in the treatment of diabetes, where
reprogrammed cells help in lowering blood sugar levels in
diabetic models (Oriente et al., 2018; Engwa et al., 2020).
PBX1 is involved in the response to pancreatic injury and
regeneration. In cases of damage or disease, such as in diabetes
or pancreatitis, PBX1 helps orchestrate the repair processes,
although its exact mechanisms and effects can vary (Scarlett
et al., 2011).

2.2.4 Cardiovascular system
PBX1 coordinates with transcriptional pathways to control

aortic patterning and cardiac outflow tract (OFT)
compartmentation in mice and pbx1-null embryos display
abnormal aorta and OFT septation failure. PBX1 regulates
PAX3 expression to control the development of the OFT in the
heart. The DNA sequence elements of PAX3 contain consensus
binding elements for PBX heterodimers and have been shown to
interact with members of the PBX family. In pbx1-deficient
embryos, a brief burst of PAX3 expression in premigratory
cardiac neural crest cells (NCC) prior to migration is lost,
ultimately determining the function of cardiac NCCs in
promoting OFT development. Disruption of the PBX1-PAX3
regulatory pathway is partly responsible for the OFT deficiency
observed in pbx1-deficient mice (Pruitt et al., 2004; Chang et al.,
2008). In a clinical study, it was found that about 33% of the patients’
families were associated with pbx1 mutations in the genetic analysis
of patients with congenital heart disease (Szot et al., 2018). Similarly,
Anne Slavotinek described 8 patients who were heterozygous for the
pbx1 variant and found that mutations in this gene cause
malformations of heart (Slavotinek et al., 2017). Similar results
were found in the study by Dimuthu Alankarage, where

mutations in PBX1 resulted in the absence of the pulmonary
valve (Alankarage et al., 2020). Endothelial cells (EC) is the
source of mesenchymal cells in the middle of the endocardial
pad, which form the structural elements of the atrioventricular
valve as well as the atria and membranous interventricular
septum (Miao et al., 2020). PBX1 is essential for proangiogenic
HOX DNA binding and transcriptional activity in EC. Increased
expression of PBX1 in ECs facilitates more efficient complex
formation on PBX1/HOX consensus DNA oligonucleotides.
Conversely, mutations in PBX1 impair the binding of the PBX1/
HOX complex to target DNA, as well as EC migration and bFGF-
induced angiogenesis in vivo (Charboneau et al., 2005).

2.2.5 Kidney
Pauline Le Tanno reported a cohort of 8 patients with pbx1

deletion. All patients presented with congenital renal and urinary
tract malformations, mainly bilateral renal hypoplasia, with or
without dysplasia (Le Tanno et al., 2017). The same findings
were also observed in the research of Friederike Petzold and
Laurence Heidet through whole genome sequencing (Heidet
et al., 2017; Petzold et al., 2022), which coincides with the
research results of Ling Nie (Nie et al., 2022). It was reported
that PBX1 regulates the development of the kidney as well as the
branching of the ureter, while deletion of pbx1 results in a
progressive reduction in kidney growth and differentiation.
Mechanistically, misexpression of c-Ret oncogene by which
PBX1 regulates mesenchymal-epithelial-induced interactions may
be correlated with impaired ureteric development in pbx1−/− kidneys
(Schnabel et al., 2003a; Hu et al., 2023). Ret regulates cell cycle
progression through Growth Factor Receptor-α 1(Gfra1) and
Wnt11. The inactivation of Ret leads to a reduction in cell
proliferation and alterations in cell cycle-related gene expression.
Ret signaling has been shown to regulate Wnt11 expression, which
maintains the normal expression level of glial cell line–derived
neurotrophic factor (GDNF), ensuring normal outgrowth and
branching of ureteric bud cells. GDNF-RET/GFRA1 dysfunction
can impact cell proliferation, migration, differentiation, survival,
and regeneration (Al-Shamsi et al., 2022; Zhao et al., 2023).

2.2.6 Immune system
PBX1 plays a critical role in the immune system by regulating

pathways and transcriptional activities essential for the maturation

TABLE 1 Conditional loss of PBX1 in specific hematopoietic lineages using the Cre-lox system.

Lineage Model Findings Mechanistic Insights

B Cell Lineage CD19-Cre
PBX1fl/fl

Significant reduction in B cell numbers
Impaired B cell maturation

PBX1 regulates key genes such as EBF1 and PAX5
Disruption in these genes’ regulation leads to impaired B
cell development

Megakaryocyte Lineage PF4-Cre; PBX1fl/fl Defects in megakaryocyte maturation. Reduced
platelet production

PBX1 influences the expression of GATA1 and FOG1
Deletion of PBX1 results in disrupted megakaryocyte
differentiation and function

Myeloid and Erythroid
Lineages

Mx1-Cre; PBX1fl/fl Vav1-Cre;
PBX1fl/fl

Myeloid and erythroid cells can still develop
Differentiation and function are not entirely
normal

Other transcription factors (e.g., RUNX1 and GATA2)
may partially compensate for PBX1 loss
PBX1 contributes to the fine-tuning of these
differentiation pathways, but its absence leads to
suboptimal cell function
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and function of various immune cells. Its involvement in both
promoting immune responses and maintaining immune tolerance
highlights its importance in both normal immune function and
autoimmune disease contexts. In dNK cells, PBX1 promotes dNK
cell maturation and furtherly promotes fetal development.
PBX1 upregulates the AKT1 pathway which activated by the
interaction of major histocompatibility complex G with the
immunoglobulin-like transcript 2 receptor (ILT2) and drives
transcription of pleiotropin and osteoglycine in dNK cells (Zhou
et al., 2020). The abnormal development of T cells and B cells caused
by the abnormal expression of PBX1 is related to the occurrence of
systemic lupus erythematosus. To be specific, PBX1 upholds the
equilibrium and constancy of T reg cells via the advancement of the
cell cycle by targeting rhotekin 2 (Rtkn2), thus impeding the
proliferation of inflammatory T cells that, if left unchecked, could
intensify the progression of lupus in the hosts (Gu et al., 2023; Choi
et al., 2024). Furthermore, PBX1 regulates the activation of T cell by
directly targeting the promoter of CD44 which results in the
production of self-reactive activated CD4+T cells (Oriente et al.,
2013; Niu et al., 2017). In lupus murine model with B cell-specific
deletion of pbx1, the downregulation of PBX1 in autoimmune B cells
has been linked to the exacerbation of systemic lupus erythematosus
(SLE). The deficiency of pbx1 in B cells leads to an exaggerated
humoral response upon immunization. SLEmice with B cell-specific
pbx1 deficiency exhibit enhanced germinal center responses,
increased plasma cell differentiation, and elevated autoantibody
production. Consequently, researchers suggested that PBX1 could
be targeted as a potential therapeutic strategy for SLE.

2.2.7 Nervous system
PBX1 is essential for the proper formation of various neural

structures, including the brain and spinal cord. Its expression
patterns during embryogenesis are tightly regulated, ensuring the
correct spatial and temporal development of the nervous system
(Selleri et al., 2004). In the mature nervous system, PBX1 continues
to be important for maintaining neural function. It regulates genes,
such as HOX, MEIS2, PAX6 and Paired-like homeodomain
transcription factor 3 (Pitx3), involved in neurotransmitter
synthesis, neural connectivity, and synaptic plasticity. By
modulating the expression of these genes, PBX1 helps sustain
normal neural activity and cognitive functions. Additionally,
PBX1 is implicated in the response to neural injury and repair
processes, highlighting its role in neural health and resilience
(Capellini et al., 2006; Grebbin et al., 2016; Hanley et al., 2016;
Villaescusa et al., 2016). In addition, by finely tuning the expression
of DCC, PBX1 fosters the development and maturation of axons in
dopaminergic neurons, a mechanism that could have profound
implications for the normal physiological functions of the nigro-
striatal system (Sgadò et al., 2012). DCC is an extracellular domain
composed of more than 1,000 amino acids, which can promote
axonal chemotaxis when combined with Netrin-1 (Wang K. et al.,
2020). The study has unveiled several conserved PBX1 binding sites
within the intron of the DCC gene, strongly suggesting that
PBX1 may directly regulate DCC transcription.

2.2.8 Lung
During embryogenesis, PBX1 is expressed in the developing

lung tissue, where it regulates the proliferation and differentiation of

lung progenitor cells. This regulation ensures the proper formation
of the bronchial tree and alveoli, which are essential for effective
respiratory function. PBX1 is involved in the regulation of the
normal development of pulmonary blood vessels. Deletion of Pbx
gene leads to the misexpression of vasoconstrictor and vasodilator in
multiple pathways, which together increase the phosphorylation of
myosin in vascular smooth muscle (VSM) cells, thus causing
persistent contraction and resulting in the failure of VSM
relaxation after birth. The specific mechanism is not very clear,
but new evidence suggests that PBX1 may achieve its regulatory role
in pulmonary vascular development by regulating T-Box domain-
containing protein 2 (TBX2) (McCulley et al., 2018; Lüdtke et al.,
2021). In addition, In the process of lung development, with the
mutual support of Meis and HOX proteins, PBX1 binds to the
promoter of Fgf10 directly to enhances Fgf10 transcription which
controls the differentiation of alveolar type II cells in the lung
epithelium (Li et al., 2014a).

2.2.9 Bone
PBX1 is expressed in osteoblast precursors and other

mesenchymal cells, where it regulates the differentiation and
proliferation of these cells. PBX1 ensures the correct formation of
bone structures by controlling the expression of genes that govern
cell growth, differentiation, and mineralization during
embryogenesis (Cheung et al., 2009). The posterior axis of the
cranial skeleton consists of a series of vertebral bodies and
intervertebral discs and adjacent ribs and sternum (Gordon et al.,
2011). PBX1 was found to be highly expressed in the notochords,
nodes, and vertebral primordia. Pbx1 mutant showed significant
flattening of all vertebral bodies, laminar thinness, loss of transverse
characteristics in all regions of the spine, and the presence of residual
ribs. PBX1 may regulate the development of posterior cranial axis
bones through PAX1 and PAX9 (Capellini et al., 2008). In process of
development of long bone, it was suggested that collaboration with
Gli3, HOXA11 and HOXD11, PBX1 was involving in regulating the
morphology of long bones (Eyal et al., 2019). In addition, recent
research indicated that PBX1 modulates limb phenotypes through
binding interactions with cofactors such as HAND2, which confers
limb bud functions and the absence of PBX1 may potentially induce
the occurrence of limb defects (Losa et al., 2023). However,
PBX1 plays a time-dependent role in regulating osteogenic gene
expression during osteogenesis. For instance, PBX1 inhibits
HOXA10’s ability to activate osteoblast-associated genes, thus
establishing temporal gene expression regulation during
osteogenesis (Gordon et al., 2010). Nevertheless, the precise
regulatory details at specific time points during osteogenesis still
need further exploration.

2.2.10 Sexual organs
PBX1 plays a significant role in the differentiation and growth of

reproductive systems. In males, PBX1 is essential for the proper
formation of the testes and the development of Sertoli and Leydig
cells, which are vital for sperm production and hormone secretion,
respectively. The normal development of the gonads is predicated on
PBX1. In addition, PBX1 is essential for maintaining the function of
interstitial cells in the testis, and PBX1 deficiency damages testis
structure and causes abnormal spermatogenic tubule organization.
PBX1 directly regulates the transcription of genes that play crucial
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roles in steroidogenesis, such as Prlr, Nr2f2, and Nedd4 (Moisan
et al., 2022; Wang FC. et al., 2024). In females, PBX1 contributes to
the development of the ovaries and the maturation of ovarian
follicles, which are critical for ovulation and hormone
production. In females, the absence of PBX1 significantly reduces
the growth of the urogenital ridge, leading to the absence of the
Müllerian duct, but the mechanism underneath is not clear
(Schnabel et al., 2003b; Ma et al., 2011; Kia et al., 2019).
Moreover, PBX1 is also crucial for maintaining the normal
function of the uterus. PBX1 drives the transcription of
pleiotrophin and osteoglycin in uterine natural killer (dNK) cells,
furtherly promoting fetal development (Zhou et al., 2020).

2.2.11 Skin
PBX1 has been reported to have low levels in the skin

throughout development, with its expression continuing to
decrease in adult skin, and most of the signal located in basal
cells of the epidermis (Kömüves et al., 2000). Although its
expression levels are low, PBX1 is important for skin
development and maintaining the structural integrity and
function of the skin. In our previous researches, we found that,
PBX1 plays a crucial role in promoting the proliferation of hair
follicle stem cells and delaying their aging. It enhances the
proliferation and reprogramming of hair follicle mesenchymal
stem cells by activating the AKT/glycogen synthase kinase
signaling pathway (Jiang et al., 2019). In another study, we found
that PBX1 may help maintain the stemness of hair follicle stem cells
and delay their aging by counteracting ROS-induced oxidative stress
and reducing DNA damage by activating SIRT-PARP1 axis (Wang
et al., 2021; Wang et al., 2023). In addition, we further verified the
role of PBX1 in hair follicle stem cells by preparing TAT-PBX1
fusion protein and acting on hair follicle stem cells in vitro (Wang B.
et al., 2020).

3 PBX1 in tumors

3.1 PBX1 fusion protein (E2A-PBX1) in ALL

It has been reported that 25% of children with ALL have a t(1;
19) (q23; p13) chromosomal translocation. This causes the fusion of
E2A and PBX1 coding sequences to form E2A-PBX1, and this site-
specific fusion is defined as a major pathogenic incident in t(1; 19),
which is related to the prognosis (Hunger et al., 1991; Zhang H. et al.,
2023; Migita et al., 2023).

E2A protein is a TF that regulates the specific development of
cell lineages and is critical in the process of instructing lymphocyte
development. E2A encodes E12 and E47 proteins, and each member
contains a C-terminal basic helix-loop-helix (bHLH) domain and
two activation domains (AD1, AD2) (Aronheim et al., 1993; Belle
and Zhuang, 2014). bHLH plays an important role in protein
dimerization and identifies the E-box DNA sequence, while the
activation domains adjust the transcription of target genes in the
presence of cell recruitment cofactors (Murre, 2019; Hao et al.,
2021). The E2A-PBX1 protein includes the N-terminal region of
E2A, which contains the AD1 and AD2 domains, and most of the
PBX1 structure (LeBrun, 2003). Expression of E2A-PBX1 affects the
central regulatory path of the hematopoietic process, affecting

signaling molecules such as WNT, cell cycle control signals, or
apoptosis, which contributes to the development and progression of
hematologic malignancies (Diakos et al., 2014) (Figure 3).

The oncogenicity of E2A-PBX1 is AD activation domain-
dependent; the helical portion of AD1 directly interacts with the
transcriptional coactivator ring AMP response element-binding
protein (CBP) to promote immortalization of primary bone
marrow cells (Bayly et al., 2006). There is a conserved 17-residue
area in AD1, called the PCET motif, which binds to the KIX domain
of the transcriptional coactivator CBP/p300, causing epigenetic
changes in cells critical for leukemogenesis (Denis et al., 2012; Pi
et al., 2020). However, p300/CBP catalyzes the acetylation of
H3K18Ac and H3K27Ac histones, and regulates the expression
of HDAC2 to change the metabolism of tumor cells and promote
their growth (Tang et al., 2019; Cai et al., 2021; Nicosia et al., 2023)
(Figure 3A). General control nonderepressible 5 (GCN5) and p300/
CBP-related factors are members of the same family.
GCN5 acetylates E2A-PBX1 and increases the steadiness of E2A-
PBX1 in tumor cells (Holmlund et al., 2013) (Figure 3A).

SETDB2 maintains expression as a direct target gene of the
fusion transcription factor E2A-PBX1, and SETDB2 depletion
sensitizes E2A-PBX1-positive cell lines to kinases and epigenetic
inhibitors (Lin et al., 2018). SETDB2 represses the expression of the
cell cycle inhibitor CDKN2C through histone H3K9 trimethylation,
establishing an oncogenic pathway (Lin et al., 2018) (Figure 3A).

PBX1 binds to DNA by interacting with cofactors containing
TALE-binding domains, including HOX, MEIS, and
Prep. Therefore, E2A-PBX1 is also thought to dimerize with
other TALE proteins for DNA binding. Together with HOX
proteins, it was reported that E2A-PBX1 may activate the
transcription of downstream target genes (Pi et al., 2020).
However, E2A-PBX1 does not heterodimerize with Meis/
PREP1 proteins because fusion to E2a deletes the PBX1 sequence
required for cooperative DNA binding with Meis1 (Knoepfler et al.,
1997; Calvo et al., 1999) (Figure 3A).

Similar to PBX1, HOX proteins also participate in the
functioning of E2A-PBX1. E2A-PBX1 binds to the DNA
sequence ATCAATCAA through the PBX1 moiety and in
cooperation with HOX proteins such as HOX-A5, HOX-B7,
HOX-B8, HOX-C8, and HOX-D4 (Van Dijk et al., 1993; Lu
et al., 1995; Pi et al., 2020). Moreover, it binds to HOX through
a HOX consensus motif (HCM, a sequence in the PBX1 HD). HCM
is crucial for the transcriptional activity and oncogenic potential of
E2A-PBX1 in cells, and its deletion or mutation abolishes the ability
of E2A-PBX1 to activate the transcription of target genes, indicating
that HCM is required for E2A-PBX1-induced tumorigenesis (Chang
et al., 1997; Lin et al., 2019). Controversially, however, emerging
evidence suggests that the HCM is dispensable for E2A-PBX1
binding to DNA, and that E2A-PBX1 can enhance its DNA-
binding stability through oligomer self-association to induce
tumorigenesis (Lin et al., 2019).

The role of the PBX1 DNA-binding domain is twofold; on the
one hand, it directly binds and activates a specific set of genes; on the
other hand, it mediates the interaction with RUNX1. The E2A-PBX1
construct without the PBX1 DNA-binding domain has no
transforming activity and is unable to activate the activator or
RUNX1 sites through the PBX site (Calvo et al., 1999; Licht,
2020). E2A-PBX1 is recruited to gene-binding sites by RUNX1,
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and RUNX1 is a target gene of E2A-PBX1, which upregulates the
expression of RUNX1 and promotes the transformation and
proliferation of leukemia cells. The mechanism is related to the
enhancement of the binding of coactivators (p300 and MED1) and
the acetylation of H3K27 by E2A-PBX1 and RUNX1, while the
binding of E2A-PBX1 to gene enhancers depends on the interaction
of RUNX1 (Guo et al., 2012; Pi et al., 2020). MED1 is required for the
growth of E2A-PBX1+ leukemia cells. E2F5 is a cell cycle regulator
highly expressed in a variety of cancers, while knockdown of
E2F5 can interrupt the growth of leukemia cells. RUNX1 recruits
E2A-PBX1 to target gene sites, such as E2F5, and cooperates with
MED1 to promote the transcriptional activation of E2F5 (Lee et al.,
2021; Qi et al., 2021) (Figure 3A).

E2A-PBX1 in B cell progenitors enhances self-renewal, while
impeding the differentiation of B cell progenitors, leading to
genomic aberrations. E2A-PBX1 is always accompanied by the

loss of PAX5 (approximately 44%), which is associated with the
activation of the JAK/STAT signaling pathway (Liu et al., 2014;
Duque-Afonso et al., 2015). The mutation of PAX5 occurs in 6.9% of
E2A-PBX1+ B-ALL patients, while an increased copy number of
AKT3 occurs in 92%, which is closely related to relapsed and
refractory leukemia (Zhou et al., 2021).

BMI-1 is known as a lymphoid oncogene, whose product acts as a
transcriptional repressor of the INK4A-ARF tumor suppressor locus
(Jacobs et al., 1999; Dhawan et al., 2009). Studies have shown that E2A-
PBX1 upregulates the expression of BMI-1, while Bmi-1-deficient
hematopoietic progenitor cells show resistance to E2A-PBX1-induced
tumor metaplasia. In addition, the negative effects of E2A-PBX1 on pre-
B cell survival and differentiation are partly evaded by enforced utterance
of p16Ink4a. These findings suggest that E2A-PBX1 may promote the
transformation of pre-B cells through the downregulation of INK4A-
ARF mediated by BMI-1 (Smith et al., 2003) (Figure 3A).

FIGURE 3
E2A-PBX1 promotes ALL cell proliferation, while increasing its malignancy. (A) E2A-PBX1 promotes ALL cell proliferation capacity by regulating
downstream genes. (B) E2A-PBX1 promotes ALL malignancy by regulating target genes and exerting inhibitory apoptosis, promotional clonogenesis,
enhanced migration, increased drug resistance, and immune evasion functions.
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E2A-PBX1 can target angiopoietin 3, which regulates the
proliferation of vascular endothelial cells. Mouse angiopoietin
3 also induces events that promote cell proliferation, such as
increasing the number of rough endoplasmic reticula, polysomes,
and mitochondria in cells (Fu et al., 1999). Apparently, additional
angiogenesis is not required in E2A-PBX1-induced ALL. However,
whether Angiogenin-3 causes the increase in the number of
endoplasmic reticula and mitochondria in ALL cells and provides
favorable conditions for the survival of ALL cells should be explored.

The mitotic regulator aurora kinase is closely related to
childhood acute leukemia, especially in E2A-PBX1+ ALL cases.
Inhibition of Aurora B using shRNA leads to proliferation arrest
and apoptosis (Hartsink-Segers et al., 2013). Throughout the
G2 phase, Aurora B regulates the formation and function of
protein complexes, ensures proper connectivity between
microtubules and centromeres, checks for the presence of
unattached centromeres, and regulates chromatid segregation (Fu
et al., 2007). Therefore, E2A-PBX1maymaintain the replication and
proliferation of tumor cells by regulating the expression of Aurora
B (Figure 3A).

3.2 E2A-PBX1 enhances tumor malignancy

E2A-PBX1 exerts its inhibitory apoptosis, promotional
clonogenesis, enhanced migration, increased drug resistance, and
immune evasion functions by regulating target genes, thus
increasing the malignancy of ALL (Figure 3B).

E2A-PBX1 regulates the expression of PIK3CD, which is
encoded by p110δ, by binding to a leukocyte-specific promoter,
and its expression acts as an oncogenic driver in tumors (Eldfors
et al., 2017; Xenou and Papakonstanti, 2020). PIK3CD activates cell
growth and migration by activating the AKT/GSK-3β/β-catenin axis
in tumor cells, and this may also be one of the reasons why leukemia
cancer cells are able to evade immune surveillance (Chen et al., 2019;
Wu et al., 2021; Grüninger et al., 2022). E2A-PBX1 attaches to an
enhancer element upstream of CXCR4, which regulates the
expression of CXCR4 in the cells that possess the chimeric gene.
CXCL12, a chemokine generated by bone marrow stromal cells,
binds to the receptor CXCR4 on the cell surface to regulate cell
activity. CXCR4/CXCL12 mediates the adherence between leukemia
cells and stromal cells, which eventually leads to the generation of
adhesion-mediated drug resistance. CXCR4 overexpression can only
be observed when the tumor relapses, indicating that E2A-PBX1
works together with other synergistic factors to regulate the
expression of CXCR4 and enhance the drug resistance of tumor
cells (Eldfors et al., 2017; Szekely et al., 2018; Nengroo et al., 2021).

The expression of granulocyte colony-stimulating factor
receptor (G-CSFr) is especially increased in E2A-PBX1-
expressing pre-B cells (de Lau et al., 1998). However, G-CSF
contributes to the proliferation and metastasis of tumor cells by
activating STAT3, which directly acts on the corresponding target
genes and microRNA genes that control cell differentiation and
stemness. In addition, STAT3 antagonizes the effect of p53 through
different mechanisms, disrupting the cell cycle and apoptosis
(Agarwal et al., 2015; Karagiannidis et al., 2021).

E2A-PBX1 may delay the senescence of tumor cells. Whole-
genome sequencing data from paired samples of 653 pediatric

patients across 23 cancer types suggested that E2A-PBX1 may
lengthen tumor cell telomeres. Telomere shortening leads to
increased genomic instability and induced senescence. In cancer
cells, activation of telomerase (TERT) can reverse telomere
shortening, thereby keeping telomere length and allowing cells to
divide permanently (Wang Z. et al., 2020). Whether E2A-PBX1
prolongs the telomeres of tumor cells in this way needs further study.

PLCγ2 is a central enzyme in B cell receptor signaling in
developed B cells, and its hyperactivation in E2A-PBX1+

leukemia cells plays an important role in leukemogenesis. E2A-
PBX1 promotes sustained upregulation of ZAP70, SYK, and LCK,
which are located upstream of PLCγ2. Their depletion results in
decreased pPLCγ2 expression and reduced colony formation in an
E2A-PBX1+ALL cell line (Duque-Afonso et al., 2016). Activation of
PLCγ and subsequent IP3 generation promotes the release of the
calcium accumulated in the ER, which results in activation of
calcineurin and various protein kinase C (PKC) isoforms to
promote B cell activation (Baba and Kurosaki, 2011; Feske et al.,
2012; Dhami et al., 2022). Mature B cells express both SERCA2b and
SERCA3-type calcium pumps; however, SERCA3 is downregulated
in E2A-PBX1+ ALL cells, which can be reversed by PKC activators.
E2A-PBX1 may downregulate the expression of SERCA3 and block
the differentiation of pre-B cells by inactivating PKC (Aït Ghezali
et al., 2017; Chen et al., 2021). The role of PLCγ in E2A-PBX1+ and
normal B-cell progenitors seems contradictory. The different
outcomes may be caused by the hyperphosphorylation of PLCγ
in E2A-PBX1, which leads to changes in the cellular metabolic
network (Jing et al., 2021).

WNT-16 is generally expressed in peripheral lymphoid organs
rather than bone marrow. Interestingly, WNT-16 transcription is
very high in the bone marrow and cell lines of E2A-PBX1-positive
pre-B ALL patients. However, blocking of E2A-PBX1 expression
results in a marked decrease in WNT-16 mRNA levels, which
weakens the proliferation of tumor cells (McWhirter et al., 1999;
Schwaller, 2006). WNT16 is considered a hidden molecule
mediating cisplatin resistance. Increased Wnt16 expression in
cancer promotes the generation of drug resistance (Sun et al.,
2016; Hu et al., 2017; Zhou et al., 2023). In summary,
WNT16 may promote drug resistance in E2A-PBX1+ ALL and
increase the malignancy of tumors.

Furthermore, E2A-PBX1 upregulates the expression of BCL6,
which is present in a subset of B-lymphoblastic leukemias,
particularly in the cases covering the t(1; 19) translocation.
BCL6 drives malignant phenotypes by regulating target genes
involved in cell proliferation, DNA damage perception, and
resistance to apoptosis (Deucher et al., 2015; Guo et al., 2021),
such as the tumor suppressor gene PTEN. Increased expression of
BCL6 further suppresses the transcription of PTEN, which
enhances drug resistance of cancer cells (Liu et al., 2022a).

E2A-PBX1-positive ALL cells can interact with other cells to
avoid death. Human osteoblasts secrete GAS6, which induces the
migration of E2A-PBX1-positive ALL cells. GAS6, a ligand for
members of the TAM (TYRO3, AXL, MER) receptor tyrosine
kinase family, supports E2A-PBX1-positive ALL cell survival by
inducing dormancy and prevents chemotherapy-induced apoptosis
(Shiozawa et al., 2010). The GAS6-AXL complex participates in the
preservation of cancer cell survival, inducing cytoskeletal
rearrangements, facilitating cell spreading and elongation, and
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driving invasion (Zdżalik-Bielecka et al., 2021; Bellomo et al., 2022).
In addition, GAS6-AXL contributes to tumor cell evasion of
immune surveillance and secretion of immunosuppressive factors
(Tanaka and Siemann, 2020). Therefore, GAS6 may serve as a
therapeutic target for E2A-PBX1 tumors.

3.3 PBX1 and E2A-PBX1 in other tumors

PBX1, initially identified for its role in childhood acute
lymphoblastic leukemia, has since been implicated in the
overexpression of various solid tumors, including esophageal
cancer, breast cancer, melanoma, adrenocortical carcinoma,
prostate cancer, gastric cancer, colorectal cancer, pancreatic
cancer et al. (Magnani et al., 2011; Chen et al., 2012; Feng et al.,
2015; Magnani et al., 2015; Francis et al., 2021; Shen et al., 2021; Dai
et al., 2023; Crisafulli et al., 2024; Kao et al., 2024). Here, we

summarized the expression levels of PBX1 in various cancer
types (Figure 4A) (data derived from TCGA), and plotted
survival curves for patients with high PBX1 expression that
exhibited statistically significant differences (Figures 4B–D) (Gene
expression profiles were obtained from TCGA. Survival analysis
were analyzed via Gene Expression Profiling Interactive Analysis
(GEPIA) (http://gepia.cancer-pku.cn)). The results from the survival
curves indicate that high PBX1 expression is associated with survival
rates in these cancer patients.

E2A-PBX1may act on T lymphocytes to induce blood disease. A
study has found that E2A-PBX1 transgenic mice develop T cell
lymphoma at 5 months of age, resulting in their death. This was
thought to be related to the insertion of Pmi1. The specific
underlying mechanism is not very clear, but other unknown
factors must be working together with E2A-PBX1 and Pmi1 to
induce T lymphocyte leukemia (Dedera et al., 1993; Feldman et al.,
1997). The cooperation between E2A-PBX1 and HOX also has a

FIGURE 4
The expression levels of PBX1 in cancers and survival curves of patients with high PBX1 expression. (A) The expression level of PBX1 varies among
different types of tumors. ACC (Adrenocortical carcinoma), BLCA (Bladder Urothelial Carcinoma), BRCA (Breast invasive carcinoma), CESC (Cervical
squamous cell carcinoma and endocervical adenocarcinoma), CHOL (Cholangiocarcinoma), COAD (Colon adenocarcinoma), DLBC (Lymphoid
Neoplasm Diffuse Large B-cell Lymphoma), ESCA (Esophageal carcinoma), GBM (Glioblastoma multiforme), HNSC (Head and Neck squamous cell
carcinoma), KICH (Kidney Chromophobe), KIRC (Kidney renal clear cell carcinoma), KIRP (Kidney renal papillary cell carcinoma), LGG (Brain Lower Grade
Glioma), OV (Ovarian serous cystadenocarcinoma), MESO (Malignant mesothelioma), LIHC (Liver hepatocellular carcinoma), LUAD (Lung
adenocarcinoma), LUSC (Lung Squamous cell carcinoma), PAAD (Pancreatic adenocarcinoma), PRAD (Prostate adenocarcinoma), READ (Rectum
adenocarcinoma), SARC (Sarcoma), SKCM (Skin Cutaneous melanoma), LAML (Acute myeloid leukemia), TGCT (Testicular germ cell tumors), THCA
(Thyroid carcinoma), THYM (Thymoma), STAD (Stomach adenocarcinoma), UCEC (Uterine Corpus Endometrial Carcinoma), UVM (Uveal Melanoma).
(B–D) High expression of PBX1 is associated with worse survival rates in patients with adrenocortical carcinoma (ACC) (HR(High) = 2.6, p(HR) = 0.024,
n(High) = 38, n(Low) = 38), while better survival rates in patients with Kidney renal clear cell carcinoma(KIRC) (HR(High) = 0.53, p(HR) < 0.0001, n(High) =
258, n(Low) = 258) and Head and Neck squamous cell carcinoma (HNSC) (HR(High) = 0.73, p(HR) = 0.023, n(High) = 259, n(Low) = 259).

Frontiers in Cell and Developmental Biology frontiersin.org10

Liu et al. 10.3389/fcell.2024.1442052

http://gepia.cancer-pku.cn
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1442052


certain contribution to the induction of T cell leukemia, as T cell
leukemia in Hoxb4 compound transgenic animals is more obvious
(Bijl et al., 2008). Stem cell factor may be one of the synergistic
factors participating in the development of T lymphocyte leukemia.
Studies have shown that E2A-PBX1 can induce the rapid
proliferation of mouse pro-T cells and acute T lymphocytic
leukemia, but this change is stem cell factor-dependent and is
accompanied by the loss of the DNA binding function of E2A-
PBX1 (Sykes and Kamps, 2004). However, there are few reports on
the relationship between E2A-PBX1 and T cell leukemia. Thus, their
relationship and molecular mechanism needs to be further explored.

E2A-PBX1 may also play a role in solid tumors. A study on lung
cancer showed that, after investigating the expression of E2A-PBX1
in tumor tissues of 184 patients with non-small cell lung cancer,
12.5% of the patients showed the presence of E2A-PBX1, while the
positive rate of E2A-PBX1 in the 13 non-small cell lung cancer cell
lines reached 23.1%. In addition, smoking is a risk factor for the
occurrence of the E2A-PBX1 fusion gene in women (Mo et al.,
2013). This suggests that E2A-PBX1 is not restricted to inducing
hematological neoplasia, but also plays a role in the occurrence of
solid tumors. In addition, E2A-PBX1 may not necessarily appear at
birth, but may be produced because of exposure to risk factors.

3.4 Potential mechanisms of PBX1 in
regulating development of tumors

This transcription factor is crucial in the onset and progression
of multiple cancers, promoting tumor cell proliferation through
interactions with specific proteins or by modulating the
transcription of target genes (Figure 5).

For example, PBX1 facilitates the epithelial-mesenchymal
transition in esophageal carcinoma by partnering with FoxC1 to
recruit it to the ZEB2 promoter. Conversely, suppressing
PBX1 enhances the radiosensitivity of esophageal squamous cell
carcinoma by targeting STAT3, inhibiting tumor cell proliferation
and tumor growth (Zhu et al., 2017; Yu et al., 2020). In
myeloproliferative neoplasms, PBX1 influences the stem cell
transcriptional program, driving tumor progression (Muggeo
et al., 2021). Notably, PBX1 is highly expressed in melanoma
cells, and its restorative expression can counteract the growth
inhibition mediated by the promyelocytic leukemia zinc-finger
protein. Moreover, inactivation of PBX1 by specific small
interfering RNA or blockade of the PBX1 promoter region G-4
quadruplex structure by small molecule inhibitors can significantly
suppress the growth of melanoma cells. (Shiraishi et al., 2007; Sui
et al., 2023). PBX1 also plays a critical role in lung cancer by
regulating the expression of invasive transcription factors
SMAD3 and Fos-associated antigen 1, involved in metastasis,
through its interaction with PREP1. Therefore, developing small
molecule inhibitors targeting PBX1 transcriptional signaling could
be a novel therapeutic strategy for PBX1-associated cancers
(Risolino et al., 2014).

The role of PBX1 in tumor progression varies across different
cancer types. In ovarian cancer, PBX1 promotes proliferation and
survival through the Notch3 pathway (Park et al., 2008; Fang et al.,
2020). While in gastric cancer, it increases tetrahydrobiopterin levels
to promote tumor growth and metastasis (Liu et al., 2022b). In renal
carcinoma, PBX1 overexpression enhances cell proliferation
through the JAK2/STAT3 signaling pathway (Wei et al., 2018).

PBX1 may affect carcinogenesis through its interaction with
RNAs. It was found that miR-198 transcription is reduced in

FIGURE 5
The mechanisms by which PBX1 and E2A-PBX1 promote tumor development. (A, B) PBX1 and E2A-PBX1, are associated with the occurrence of
multiple tumors and enhance tumor malignancy by affecting multiple pathways including cell cycle regulation, apoptosis inhibition, EMT and drug
resistance. (Images were generated by figdraw).
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pancreatic cancer and that miR-198 inhibition increases PBX-1 and
VCP expression; dysregulation of the PBX-1/VCP axis enhances
tumorigenicity. Through an EZH2/PBX1 signaling pathway,
lncRNA NEAT1 facilitating immune evasion in multiple
myeloma cells (Marin-Muller et al., 2013; Wang QM. et al.,
2024). MiR-650 is upregulated in Helicobacter pylori+ tissues and
cells, and inhibition of miR-650 attenuates cell proliferation,
invasion, and migration, but enhances apoptosis. PBX1 is
overexpressed and promotes miR-650 transcription in H. pylori-
associated gastric carcinoma tissues and cells. Overexpression of
PBX1 abolishes the effects of miR-650 inhibitors on gastric cancer
cells (Liu et al., 2021).

Cancer cells overexpressing PBX1 exhibit enhanced growth,
invasion, epithelial-mesenchymal transition (EMT), and cisplatin
resistance, whereas PBX1 silencing exhibits the opposite effect. The
Phe252 hydrophobic residue in the first helix of the TALE homology
domain of PBX1 is responsible for EMT, migration, and
invasiveness. PBX1-interacting proteins increase cancer cell
proliferation/M cell cycle transition through the activation of
G1/S and G2, which is accompanied by an increase in the levels
of positive cell cycle regulators, such as cyclin D1, cyclin A, and
cyclin B. PBX1 interacts with estrogen receptor (ER) and its
overexpression partially alleviates the inhibitory effect of ER
antagonists on tumor cells and aggravates the tumor-promoting
effect of estrogen on cancer cells (Magnani et al., 2013; Feng et al.,
2015; He et al., 2017; Zhao et al., 2022). PBX1 expression is high in
malignant hemangiomas and upregulates the expression of VEGF-
A, base bFGF, flt-1 and flk-1 (the receptors of VEGF-A), and FGFR-
1 (Kodama et al., 2009a; Kodama et al., 2009b). This may lead to a
poor prognosis of the tumor because the ingrowth of blood vessels
provides rich nutrients for the proliferation of tumor cells.
Expression profiling and knockdown experiments in patients
with Hodgkin lymphoma and cell lines have revealed that
TLX2 is a target gene activated by PBX1. TBX15, which has anti-
apoptotic effects, can be activated by TLX2 (Nagel et al., 2021). This
may be one of the mechanisms whereby PBX1-related tumor cells
escape death, and may be a new therapeutic target. Radiation
resistance in oesophageal squamous cell carcinoma (OSCC) is a
key factor leading to poor patient prognosis. The downregulation of
PBX1 inhibits the expression of STAT3 and p-STAT3. The
downregulation of PBX1 increases the radiosensitivity of oral
squamous cell carcinoma cells and xenograft tumors through the
PBX1/STAT3 pathway (Yu et al., 2020).

Thus, development of small molecule inhibitors targeting
PBX1 transcriptional signaling could serve as a novel therapeutic
strategy for PBX1-associated cancers (Shen et al., 2021). Interestingly,
PBX1 does not always play an oncogenic role in tumors. It has been
reported that PBX1 was inhibited in colorectal cancer.
Mechanistically, PBX1 can inhibit the expression of Double cortin
domain-containing protein 2 (DCDC2) and suppress spindle
function. At the same time, the PBX1-DCDC2 axis controls the
Wnt pathway in CRC cells. The overexpression of
DCDC2 restores the proliferation, migration capabilities, and Wnt
pathway of colorectal cancer cells (CRC). Overall, this study indicates
that PBX1, as a transcription factor, inhibits DCDC2 expression and
suppresses cell proliferation and migration in CRC by disrupting
spindle function and the Wnt pathway (Martinou et al., 2022; Dai
et al., 2023). A similar situation has also been found in non-small cell

lung cancer (NSCLC). PBX1 is downregulated in NSCLC tissues and
inhibits the proliferation and migration of NSCLC cells. Yuening Sun
and colleagues discovered that PBX1 can bind to TRIM26 and
undergo ubiquitination mediated by TRIM26, leading to
proteasomal degradation. TRIM26 can inhibit the transcriptional
activity of PBX1 and suppress its downstream gene RNF6, thereby
promoting the proliferation and migration of NSCLC (Sun et al.,
2023). Another research has revealed that PBX1-specific siRNA
fosters an increase in the proliferation of these cells, while an
overexpression of PBX1 conversely impedes their proliferation and
inhibits DNA synthesis. These findings collectively emphasize PBX1’s
role as a suppressor of lung cancer cell proliferation (Li et al., 2014b).
The downregulation of M- and N-cadherin expression is considered
to be related to the migration and invasion ability of tumor cells, and
knockdown of pbx1 markedly downregulates the expression of
M-cadherin but upregulates N-cadherin expression (Thuault et al.,
2013; Lin et al., 2021), which illustrates the complexity of PBX1 in
tumor development.

4 Conclusion

Here, we have described the structure of PBX1 and its variant
E2A-PBX1 as well as their roles in development or tumorigenesis,
and have shown that their structure determines their functions. In
summary, PBX1 and its variant E2A-PBX1 act as transcription
factors, partnering with other proteins like HOX, Meis, and
PREP to regulate gene expression. This regulation is vital for the
maintenance and differentiation of various cell types. PBX1 plays a
crucial role in controlling cell proliferation and differentiation,
particularly in hematopoietic lineages, ensuring proper cell cycle
progression and development. Both PBX1 and E2A-PBX1 have been
implicated in cancer, where they may drive oncogenic processes
through aberrant gene regulation and interactions with oncogenic
partners. These interactions can induce the development of highly
malignant solid and blood tumors that are difficult to treat, by
stimulating a variety of targets in cooperation with co-factors, which
induce the development of highly malignant solid and blood tumors
that are difficult to treat by stimulating a variety of targets in
cooperation with co-factors. In the future, researches on
PBX1 and its variant will develop in the following directions: 1)
Elucidation of mechanistic pathways: Further research is needed to
fully understand the specific mechanisms by which PBX1 and its
variants regulate different cellular processes. This includes
identifying all interaction partners and target genes. 2) Role in
disease progression: Investigating the role of PBX1 variants in
disease, especially cancer, could reveal novel therapeutic targets.
3) Understanding how PBX1 contributes to tumorigenesis and
metastasis could lead to new treatment strategies. 4) Therapeutic
potential: Exploring PBX1 as a therapeutic target, either by
modulating its activity or by targeting its downstream pathways,
holds promise for treating diseases associated with its dysregulation.
We believe that as research progresses and understanding of the
oncogenic mechanisms of PBX1 and E2A-PBX1 deepens, the
development of specific drugs against their targets would be key
to treating their related cancers. The therapeutic effects of some
small molecule drugs against the targets have also been verified, but
there is still more work to be done. More and better drugs are
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needed. Based on the findings, we strongly recommend E2A-PBX1
as one of the genes for prenatal screening to reduce the incidence of
childhood hematological malignancies.
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