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Alzheimer’s disease (AD) is a neurodegenerative disorder caused by a variety of
factors, including age, genetic susceptibility, cardiovascular disease, traumatic
brain injury, and environmental factors. The pathogenesis of AD is largely
associated with the overproduction and accumulation of amyloid-β peptides
and the hyperphosphorylation of tau protein in the brain. Recent studies have
identified the presence of diverse pathogens, including viruses, bacteria, and
parasites, in the tissues of AD patients, underscoring the critical role of central
nervous system infections in inducing pathological changes associated with AD.
Nevertheless, it remains unestablished about the specific mechanism by which
infections lead to the occurrence of AD. As an important post-transcriptional RNA
modification, RNA 5-methylcytosine (m5C) methylation regulates a wide range of
biological processes, including RNA splicing, nuclear export, stability, and
translation, therefore affecting cellular function. Moreover, it has been
recently demonstrated that multiple pathogenic microbial infections are
associated with the m5C methylation of the host. However, the role of m5C
methylation in infectious AD is still uncertain. Therefore, this review discusses the
mechanisms of pathogen-induced AD and summarizes research on the
molecular mechanisms of m5C methylation in infectious AD, thereby
providing new insight into exploring the mechanism underlying infectious AD.
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1 Introduction

Alzheimer’s disease (AD) is a complex neurodegenerative disorder typically manifesting
as memory loss, cognitive decline, and behavioral abnormalities. Although its exact etiology
has not yet been fully clarified, AD has been strongly associated with a multitude of factors,
including age, genetic predisposition, cardiovascular disease, traumatic brain injury, and
environmental factors (Lane et al., 2018; Soria Lopez et al., 2019; Graff-Radford et al., 2021;
Scheltens et al., 2021; Author Anonymous, 2023). Available studies of AD have centered on
the overproduction and accumulation of amyloid-β (Aβ) peptides and the
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hyperphosphorylation of tau protein in the brain (Brody, 2011;
Mantzavinos and Alexiou, 2017; Rostagno, 2022). Additionally, the
pivotal role of infections in the etiology of AD is gaining widespread
attention and being intensively studied because of increasing
relevant evidence (Lim et al., 2015; Eimer et al., 2018; Mancuso
et al., 2019; Huang et al., 2021a; Piekut et al., 2022; Baranova
et al., 2023).

Although the infectious etiology of AD was first proposed back
in 1907, it has not been widely accepted for a long time (Woods et al.,
2020). Of note, advances in modern research techniques have
enabled deeper investigation into the potential role of infections
in AD. Numerous studies have unveiled that various pathogens are
involved in the pathological process of AD via direct or indirect
mechanisms. For example, cognitive decline in AD is also associated
with viruses such as herpes simplex virus (HSV-1, 2, 6A/B), human
cytomegalovirus, Epstein-Barr virus, hepatitis C virus, influenza
virus, and severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), bacteria (including T. pallidum, B. burgdorferi, C.
pneumoniae, P. gingivalis, P. intermedia, Tannerella forsythia, F.
nucleatum, Aggregatibacter actinomycetemcomitans, E. corrodens,
Treponema denticola, and H. pylori), and even some parasites (T.
gondii) in eukaryotic single cells (Sochocka et al., 2017; Piekut et al.,
2022). These pathogens are involved in the pathological changes of
AD by regulating multiple pathways. Viral and bacterial infections
may trigger chronic inflammatory responses, leading to neuronal
damage and Aβ peptide overproduction (Piekut et al., 2022). Aβ
peptides have long been considered to predominantly have a
contributing role to the development of AD since they form
neurotoxic plaques that compromise neuronal function when
over-accumulated in the brain of AD patients (O’Brien and
Wong, 2011; Tiwari et al., 2019). Nevertheless, recent studies
have demonstrated that Aβ peptides are not entirely detrimental
and also have a spectrum of protective effects in the body. For
instance, Aβ peptides can exert antimicrobial activity, protect
against infections, repair leaks in the blood-brain barrier (BBB),
promote recovery from brain injury, and modulate synaptic
function (Eimer et al., 2018; Chen et al., 2022; Shi et al., 2022).
Therefore, Aβ peptides may be protective against AD in certain
situations. In addition, some pathogens directly infect brain tissues,
destroying neurons and BBB and further accelerating the
pathological process of AD (Piekut et al., 2022). In conclusion,
the role of infections in AD is being increasingly scrutinized and
studied. Further research in this field not only is beneficial in better
understanding the complex etiology of AD but also provides new
ideas for the prevention and treatment of AD.

Although inflammation is a well-recognized mechanism linking
infections to AD, epigenetic modifications have also been recently
highlighted to play a vital role in pathological processes by regulating
gene expression (Cummings et al., 2023). Among these
modifications, RNA methylation, particularly N6-
methyladenosine (m6A) and RNA 5-methylcytosine (m5C), has
emerged as an area of intense interest (Li et al., 2022;
PerezGrovas-Saltijeral et al., 2023; Yin et al., 2023; Knight et al.,
2024). Emerging evidence underscores that m5C methylation,
though less studied, is critical in various pathogen infections
(Estibariz et al., 2019; Eckwahl et al., 2020; Jia et al., 2021; Jiang
et al., 2023). Considering the growing interest in RNAmodifications
and their potential role in neurodegenerative diseases, we chose to

discuss m5C methylation in the context of AD. As one of the major
post-transcriptional RNA modifications, m5C methylation has
gradually attracted extensive attention in recent years.
Reportedly, m5C methylation is involved in regulating diverse
biological processes, including splicing, nuclear export, stability,
and translation of RNA and biogenesis of microRNAs (miRNAs),
further affecting cell differentiation, embryonic development,
spermatogenesis, sex determination, learning and memory, cancer
onset and progression, and replication and dissemination of
pathogenic microbes (Zhao et al., 2017; Bohnsack et al., 2019;
Huang et al., 2021b; Wang et al., 2023a; Wang et al., 2023b; Feng
et al., 2023; Yan et al., 2023; Xiong et al., 2024). Moreover, recent
studies have unveiled those pathogenic microbial infections, as an
external factor, affect epigenetic modifications including m5C
methylation. For example, pathogenic microbial infections change
the level of m5C methylation in host cells, such as hepatocytes
infected with hepatitis viruses (Feng et al., 2023; Chen et al., 2024;
Ding et al., 2024). The level of m5C RNAmethylation plays a crucial
role in the anti-infective immune response of the host (Cui et al.,
2022; Yu et al., 2022; Chen et al., 2023).

In recent years, researchers have begun to explore the role of
RNA methylation in AD and have found the important role of m5C
methylation in the pathology of AD (PerezGrovas-Saltijeral et al.,
2023), which provides novel perspectives for understanding the
pathogenesis of AD and presents the possibility of developing
new therapeutic strategies for AD.

Overall, m5C methylation is emerging as a hotspot in
neuroscience and disease research as research deepens. Therefore,
this review deeply analyzes the influence of pathogenic microbes on
the development of AD and the link between m5C methylation and
pathogenic microbes, providing a promising research direction for
mechanisms underlying infectious AD.

2 Risk, prevention, and treatment of AD

As the leading cause of dementia, AD is a progressive
neurodegenerative disease mainly characterized by cognitive
dysfunction, memory loss, language impairment, and behavioral
disorders (Scheltens et al., 2021). According to an updated report on
the epidemiology of AD released by the World Health Organization
in 2013, approximately 35.6 million people worldwide suffered from
AD in 2010, and the number of people living with dementia is
expected to triple by 2050 to about 115 million worldwide.
Additionally, the prevalence of dementia increases significantly
with age. Concretely, the prevalence of AD is 5%–8% among
people over the age of 65 years and rises to 25–50% in older
people aged above 85 years. Likewise, there is a gender difference
in the prevalence of AD, and the prevalence rate is 19–29% lower in
men than in women (Khan et al., 2020; Scheltens et al., 2021).

The main factors associated with AD can be categorized into
several major types, such as genetic factors, disease factors, poor
lifestyle, psychological and mental status, and nutritional status,
among which hypertension, sleep disorders, and cardiovascular
disease are critical risk factors for the development of AD
(Armstrong, 2019; Silva et al., 2019; Zhang et al., 2021).
Cardiometabolic and genetic risk factors assume a significant role
in the occurrence and progression of AD (Malik et al., 2018).
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Cardiometabolic risk factors include diabetes mellitus, mid-life
obesity, mid-life hypertension, and hypercholesterolemia, which
have been associated with cognitive decline in AD patients
(Pasqualetti et al., 2022). Prior studies have reported that
increased high-density lipoprotein cholesterol concentrations and
high systolic blood pressure are associated with a higher risk of
developing AD (Malik et al., 2018; Xicota et al., 2019; Luo et al.,
2023). In addition, diet is an important nonpharmacological risk-
modifying factor for AD (McGrattan et al., 2019; Rusek et al., 2019;
Katonova et al., 2022; Stefaniak et al., 2022). Ecological research has
revealed that fat and meat from high-energy diets and resultant
obesity are key risk factors for AD and that the incidence of AD
peaks 15–20 years after consumption of high-energy diets (Grant
and Blake, 2023). An observational study assessed the risk of AD in
individuals with different dietary patterns and unraveled that the
risk of AD was increased by the higher intake of saturated and total
fats, meat, and ultra-processed foods but was reduced by the higher
intake of fruits, legumes, nuts, and vegetables (Grant and Blake,
2023). Therefore, light diets of low-animal products, as well as low-
glycemic load foods, may be effective in preventing AD.

Although anti-amyloid therapies have yielded some favorable
results in recent years, it remains highly indispensable to develop
comprehensive strategies for combating neurodegenerative diseases.
While some preliminary studies have investigated the effects of
various compounds and treatments on AD, these findings must be
approached with caution. For example, Azizi et al. that carvacrol
elevated cell viability, repressed oxidative stress, and ameliorated
memory impairment in AD. It is important to emphasize, however,
that these findings are obtained based on early-stage research,
primarily in cell and animal models of AD, hinting that further
studies, particularly clinical trials, are warranted to validate the
therapeutic potential of carvacrol for AD (Azizi et al., 2020).
Likewise, type 2 diabetes mellitus is tightly correlated with the
pathobiology of AD. Some basic science research and clinical
trials have elucidated that certain antidiabetic drugs, such as
insulin, metformin, and glucagon-like peptide-1 agonists, may
reduce the risk of developing AD (Diniz Pereira et al., 2021; Li
et al., 2021; Takeishi et al., 2021; Zheng et al., 2021; Du et al., 2022;
Kopp et al., 2022). Nonetheless, current evidence is derived largely
from hypothetical papers or studies in mouse and cell models. Due
to the lack of robust clinical evidence, it is premature to draw
definitive conclusions about the efficacy of these antidiabetic drugs
in the prevention and treatment of AD.

In summary, the epidemiologic features of AD are complex and
diverse and influenced by many factors. It is essential to
continuously and intensively investigate the etiology and risk
factors of AD and cautiously explore new treatment and
prevention methods for AD, thereby addressing this serious
public health challenge more effectively in the future.

3 Pathogenic mechanisms underlying
pathogen infection-induced AD

AD is primarily pathologically characterized by the abnormal
deposition of Aβ protein and the neurofibrillary tangles of Tau
protein in the brain. Aβ protein deposition disrupts dynamic
homeostasis, provoking neuronal death and inflammatory

responses. Tau protein hyperphosphorylation leads to the
formation of neurofibrillary tangles, compromising cell structure
and function. Abnormal changes in Aβ and Tau proteins are
essential features of AD, and their interaction triggers intra- and
extracellular cascade reactions. Accordingly, investigation into this
process is critical for understanding the treatment and diagnosis of
AD (Brody, 2011).

3.1 Pathological changes in viral infection-
induced AD

SARS-CoV-2 enters the central nervous system (CNS) through
multiple routes, including blood-borne transmission and trans-
synaptic transport, affecting BBB integrity and then causing a
bewildering array of neurological symptoms (including headache,
olfactory loss, and dysgeusia) and even severe neurological diseases
(such as corticospinal tract lesions, Guillain-Barre syndrome,
ischemic stroke, encephalopathy, and meningoencephalitis)
(Shehata et al., 2021; Baranova et al., 2023). This infectious
ability of SARS-CoV-2 is contingent upon the mechanism that it
utilizes angiotensin-converting enzyme 2 (ACE2) and
transmembrane protease serine 2 (TMPRSS2) to enter host cells
(Ata et al., 2023). Notably, ACE2 upregulation is associated with
disease progression in AD patients. In addition to ACE2 and
TMPRSS2, other host proteins such as neuropilin 1 (NRP1) and
dipeptidyl peptidase 4 (DPP4) also serve as potential targets of
SARS-CoV-2 in relation to the pathogenesis of AD (Ding et al., 2020;
Wicik et al., 2020; Lim et al., 2021). SARS-CoV-2-induced
coronavirus disease 2019 (COVID-19) has an impact on the
selection of therapies for AD patients. For example,
ACE2 activators and Ang II receptor blockers increase the risk of
SARS-CoV-2 infections, and certain medications such as donepezil
and galantamine elevate the activity of SARS-CoV-2 when used
concomitantly with drugs for COVID-19 (Piekut et al., 2022;
Edmiston et al., 2023; Le et al., 2024). The COVID-19 pandemic
negatively affects the cognitive exercise and mental status of AD
patients, particularly in specific populations (Joo et al., 2022). These
findings implicate SARS-CoV-2 infections in the pathogenesis of
AD. Nonetheless, further studies are required to determine the exact
effects and mechanisms of SARS-CoV-2 infections in AD.

Viruses such as HSV have been discovered in the brain tissues of
AD patients, especially HSV-1 in Aβ plaques (Piacentini et al., 2014;
Mancuso et al., 2019; Zhu and Viejo-Borbolla, 2021). These viruses
elevate Aβ levels by interfering with Aβ protein metabolism and
disturb the normal function of neurons, partaking in the
pathogenesis of AD. HSV-1 also contributes to tau protein
hyperphosphorylation, further accentuating neurodegenerative
changes (Sait et al., 2021). In addition, the immune response to
HSV also potentiates neurodegenerative changes (Mancuso
et al., 2020).

Viruses such as cytomegalovirus and varicella zoster virus are
also implicated in the development of AD by mediating insulin-
degrading enzyme activity or inducing inflammatory responses (de
Tullio et al., 2008; Holtappels et al., 2016; Cairns et al., 2022; Mody
et al., 2023). hepatitis C virus infections are associated with AD due
to the neurotoxic or inflammatory effects of the virus. Specifically,
hepatitis C viruses evoke neurodegenerative changes by directly

Frontiers in Cell and Developmental Biology frontiersin.org03

Teng et al. 10.3389/fcell.2024.1440143

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1440143


exerting toxic effects on nervous tissues or inducing CNS or systemic
inflammation (Vos et al., 2013; Frölich et al., 2017; Huang et al.,
2022). Certain hemagglutinins in influenza A viruses participate in
the development of AD possibly by enhancing neuroinflammatory
and degenerative changes through interactions with Aβ42 (Weksler
et al., 2002).

Collectively, these viruses are engaged in the pathogenesis of AD
via a range of mechanisms, including direct toxic effects on nervous
tissues, impact on Aβ and tau protein metabolism, and induction of
inflammatory responses. However, further studies are needed to
identify the exact association of these viruses with AD and the
related mechanisms.

3.2 Pathological changes in prokaryotic
infection-induced AD

The relationship between prokaryotes and AD is a research area
of high interest. Spirochetes are a group of Gram-negative bacteria
and include B. burgdorferi and T. pallidum (Brorson et al., 2009).
These bacteria enter the CNS through many routes, leading to
infections and latent infections. B. burgdorferi and T. Pallidum
have been detected in the cerebral cortex of AD patients
(MacDonald, 2006; Miklossy, 2011; Luo et al., 2015; Herrera-
Landero et al., 2019; Senejani et al., 2022). Yet, their relationship
with AD is uncertain, which calls for additional research. As a Gram-
negative intracellular pathogen associated with CNS infections, C.
pneumoniae has been found in the brain tissues of AD patients,
which contributes to neuroinflammation and is associated with the
pathology of AD (Shima et al., 2010; Woods et al., 2020). However,
the exact mechanism of C. pneumoniae in AD remains under
investigation. The oral cavity is an important reservoir of
microbes, and oral bacterial dysbiosis leads to diseases of distal
organs. Periodontal disease is a common oral disease that is
associated with AD. AD patients with periodontal disease present
with higher levels of inflammatory responses, which in turn impedes
the function of the nervous system. Moreover, specific oral bacteria,
such as C. acnes, are also associated with the risk of AD (Kornhuber,
1996; Moné et al., 2023). H. pylori is a ubiquitous gastrointestinal
bacterium, with certain associations with AD as well. Prior studies
revealed that the level of anti-H. pylori antibodies was higher in AD
patients and thatH. pylori infections resulted in neuroinflammation,
contributing to AD pathology (Santos et al., 2020; Xie et al., 2023).
Altogether, the relationship between prokaryotes and AD is intricate
and diverse. Prokaryotes impair the nervous system through
multiple pathways, playing a role in the pathogenesis of AD.
However, additional studies are required to ascertain the exact
link between prokaryotes and AD and their mechanism in AD.

3.3 Pathological changes in eukaryotic
infection-induced AD

As a eukaryote, Toxoplasma gondii is associated with AD
(Nayeri et al., 2021). As reported, long-term exposure to
Toxoplasma gondii enhances the risk of neurodegenerative
diseases such as AD, as well as other psychiatric disorders
including schizophrenia, migraine, and affective disorders. T.

gondii infections are responsible for numerous neurobiological
and behavioral changes, including synaptic loss, decreased nerve
fiber density, and behavioral alterations such as anxiety andmemory
impairment (Nayeri et al., 2021). T. gondii adversely affects
neurological function and causes AD-like symptoms via a myriad
of mechanisms, including interference with the transmission of
neurotransmitters such as glutamate, dopamine, and gamma-
aminobutyric acid (GABA) (Jung et al., 2012). To be specific, T.
gondii infections impair the function of N-methyl-D-aspartate
receptors, eliciting disturbances in the glutamatergic
neurotransmitter system, which in turn compromises
neurotransmission and synaptic plasticity (Lucchese, 2017; Lang
et al., 2018). In addition, T. gondii infections abnormally alter
dopamine levels by affecting the dopamine system, thereby
interrupting motor control and cognitive function. Meanwhile,
abnormalities in the GABAergic system are also implicated in
cognitive decline (Brooks et al., 2015). Nevertheless, although T.
gondii infections are correlated with AD, they have not been
observed to promote the aggregation of pathological proteins
such as Aβ and tau. Instead, some studies have elucidated that
chronic toxoplasmosis reduces the burden of Aβ plaques and
functions as a potential protective factor against cognitive decline
(Möhle et al., 2016), which is achieved by modulating the levels of
anti-inflammatory cytokines. To summarize, T. gondii infections
impede neurological function through several pathways,
participating in the pathogenesis of AD. Nonetheless, further
research is still required to reveal the specific mechanisms
underlying the complex relationship between T. gondii infections
and AD and develop possible therapeutic and prevention
strategies for AD.

4 Effects of infections on m5C RNA
methylation

The discovery of m5C RNAmethylation can be dated back to the
1950s, predating the discovery of the double helix structure of DNA.
m5C, a key RNA methylation modification, has emerged as a hot
research topic in recent years. Because of the development of
methylation sequencing technology, massive m5C methylation
has been identified in both coding and non-coding RNAs. m5C
RNA methylation is regulated by methyltransferases, demethylases,
and m5C-binding proteins, which modulates RNA stability,
translocation, translation, and stress and is involved in tumor
development, pathogenic microbial replication and dissemination,
and the biological functions of immunomodulation (Zhao et al.,
2017; Bohnsack et al., 2019).

4.1 Basic features of m5C RNA methylation

m5C methylation is formed by adding an active methyl group
from the donor, usually S-adenosyl-methionine, to the carbon-5
position of the cytosine base in RNA (Zhao et al., 2017), which is an
RNA modification widely present in messenger RNA (mRNA) and
non-coding RNAs including transfer RNA (tRNA), ribosomal RNA,
long non-coding RNA, small nuclear RNA, miRNA, and enhancer
RNA. The distribution of m5Cmethylation varies across species. For
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instance, m5C methylation is more in eukaryotic tRNA and mRNA
than in bacterial mRNA and tRNA (Song et al., 2022).

m5C methylation is found in both the nucleus and cytoplasm. In
the nucleus, m5C methylation primarily occurs in mRNA, tRNA, and
rRNA, where it modulates RNA stability, splicing, and export. In the
cytoplasm, m5C methylation is mainly present in tRNA and mRNA,
where it influences translation and RNA stability (Zhao et al., 2017;
Bohnsack et al., 2019). m5C methylation is mainly mediated by three
classes of proteins: methyltransferases (writers), demethylases
(erasers), and m5C-binding proteins (readers). Methyltransferases
(writers) consist of DNA methyltransferase 2 (DNMT2), tRNA-
specific methyltransferase (TRDMT) family members, and NOL1/
NOP2/SUN domain (NSUN) family members (NSUN1-7 and
NSUN5a/b/c) and utilize adenosylmethionine as a methyl donor to
form m5C by transferring the methyl group to a cytosine (Bohnsack
et al., 2019). Enzymes in the NSUN and DNMT families contain
conserved motifs IV and VI, possess complementary target
specificities, and catalyze cytosine-5 methylation (Xu et al., 2010).
Demethylases (erasers), including enzymes in the ten-eleven
translocation (TET) family (such as TET1, TET2, and TET3),
oxidize m5C to exert a reversible effect, therefore mediating RNA
demethylation. TET1 can oxidize 5-formylcytosine to 5-
carboxycytosine in RNA, and TET2 can inhibit the effect of 5-
methylcytosine on double-stranded RNA formation (Shen et al.,
2021; Yang et al., 2022; Li et al., 2023; Lin et al., 2024).
Additionally, ALKBH1 is responsible for the demethylation of
tRNA (Chen et al., 2021). m5C-binding proteins (readers), such as
Aly/REF export factor (ALYREF) and Y-box binding protein 1
(YBX1), exert biological effects by recognizing and binding to m5C
sites. ALYREF recognizes m5C in RNA and contributes to the export
of RNA to the cytoplasm (Yang et al., 2017). YBX1 is an m5C-reading
protein that specifically targets cytoplasmic mRNA and increases its
stability (Li et al., 2024).

Comparatively, m6Amethylation is the most ubiquitous internal
modification in eukaryotic mRNA, which has been extensively
studied. m6A is added by methyltransferase complexes containing
METTL3 andMETTL14 (writers), removed by demethylases such as
FTO and ALKBH5 (erasers), and recognized by reader proteins such
as YTH domain family proteins (Zhao et al., 2017; Jiang et al., 2021a;
An and Duan, 2022). Both m5C and m6A modifications mediate
RNA stability, splicing, export, and translation (Zhao et al., 2017).
However, m6A primarily regulates mRNA metabolism and assumes
a pivotal role in processes including stem cell differentiation,
circadian rhythm, and stress responses (Zhao et al., 2017),
whereas m5C is involved in a broader range of RNA species and
has distinct roles in tRNA function and RNA transport, hinting at
the unique regulatory capacity of each modification (Bohnsack et al.,
2019; Delaunay et al., 2022). These features of m5Cmethylation shed
light on the importance of m5C RNA methylation in the regulation
of gene expression and cellular functions, as well as its diverse roles
in different biological processes.

4.2 Relationship between m5C methylation
and pathogen infections

Viral infections have diverse and intricate effects on m5C RNA
methylation. Infections with Zika virus and HSV markedly reduce

m5C methylation levels in host cells, which contributes to defenses
against viral infections, thereby inhibiting viral infections and
replication (Wang et al., 2023c). Hepatitis B virus infections
significantly affect the distribution of m5C methylation in human
hepatocytes, suggesting that the effect of infections may be related to
the type of host cells (Feng et al., 2023; Chen et al., 2024; Ding et al.,
2024). A prior study showed that SARS-CoV-2 infections
prominently reduced NSUN2 mRNA levels in host cells (Wang
et al., 2023c). In viral infections, NSUN2 assumes a pivotal role in
regulating m5C methylation, influencing gene expression and viral
replication. For example, NSUN2 mediates m5C methylation,
affecting viral replication in murine leukemia virus infections
(Eckwahl et al., 2020). In human immunodeficiency virus-1
infections, NSUN2 modulates m5C RNA methylation to impact
multiple stages of viral replication (Courtney et al., 2019; Winans
and Beemon, 2019). Additionally, viruses such as flavivirus, hepatitis
C virus, and Zika virus are also orchestrated by NSUN2 (Hagist
et al., 2009; Wang et al., 2023c). Furthermore, Sinefungin and its
related metabolite A9145C are competitive inhibitors of
S-adenosine-L-methionine-dependent enzymes with much lower
inhibition constants than S-adenosine-l-homocysteine, which
represses the replication of dengue and Zika viruses (Pugh et al.,
1978; Wnuk et al., 2020). Malaria is a parasitic disease attributed to
plasmodium infections and, together with acquired
immunodeficiency syndrome and tuberculosis, constitutes the
three major global infectious diseases. Of note, malaria is
endemic in nearly 90 countries and territories worldwide (Savi,
2022). Through the functional clustering analysis of m5C target
genes, a prior study demonstrated that m5C methylation was
involved in the sexual reproduction process of plasmodium and
that NSUN2 was a key methyltransferase responsible for m5C RNA
methylation in plasmodium. In addition, this study also exhibited
that NSUN2 deletion directly lowered the level of m5C methylation
in target gene transcripts related to the development of plasmodium
gametophytes, drastically reducing the ability of plasmodium to
produce mature gametophytes, and that infections with NSUN2-
knockout parasites also substantially decreased the number of
plasmodium at all stages of sexual development, ultimately
suppressing malaria transmission (Liu et al., 2022).

The effects of infections on m5C RNA methylation levels are
diverse and complex, depending on the type of the pathogen and
host cell or tissue involved. In the context of AD, m5C methylation
can be altered in cells in the CNS (such as neurons and glial cells)
and circulating immune cells, potentially impacting both direct and
indirect pathways involved in the pathogenesis of AD. Hence, future
studies should focus on the complex interactions between infections
and RNA modifications, providing novel ideas and directions for
research on the mechanisms of viral infections and the development
of new therapeutic strategies for AD.

4.3 Role of m5C RNA methylation in
immunomodulation

m5C RNAmethylation is essential for the host immune response
against infections (Cui et al., 2022; Yu et al., 2022; Chen et al., 2023).
mRNA methylation orchestrates protein expression in dendritic
cells. Dendritic cells are activated when exposed to non-self
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components. Dendritic cell activation can be stimulated by RNA
transcribed in vitro (such as RNA in mammalian necrotic cells) but
can be attenuated or eliminated by RNAs with m5C methylation.
Hence, higher methylation levels are associated with the stronger
repressive effect of methylation on dendritic cell activation (Kariko
et al., 2005). Chen et al. discovered that NSUN5-mediated m5C
methylation of GPX4 activated cGAS-STING signaling in cancer
immunotherapy of colon adenocarcinoma (Chen et al., 2023).
Zhang et al. observed that in infections with RNA viruses (such
as respiratory syncytial virus, vesicular stomatitis virus, human
metapneumovirus, and Sendai virus) and DNA viruses (including
HSV), NSUN2 diminished the levels of specific non-coding RNAs,
particularly RPPH1 and 7SL RNAs, and altered the level of m5C
methylation, which directly or indirectly regulated type I interferon
(IFN) responses mediated by the retinoic acid-inducible gene I
pathway and therefore enhanced antiviral responses (Zhang et al.,
2022). Another study displayed that NSUN2 specifically
orchestrated m5C methylation of interferon regulatory factor 3
(IRF3) mRNA and accelerated its degradation, declining the
levels of IRF3 and downstream IFN-β, and that knockout or
knockdown of NSUN2 increased the production of type I IFN
and downstream IFN-stimulated genes during various viral
infections in vitro (Wang et al., 2023c).

Naive CD4+ T cells (Th0 cells) leave the thymus and
differentiate into different cell subpopulations, including T
helper cells (Th1, Th2, Th9, Th17, and Th22), T follicular
helper cells (Tfh), and T regulatory cells (Treg), in response to
variable activation signals (Zhu and Zhu, 2020). Several studies
have reported that m5C methylation modulates the biological
processes of CD4+ T cells and their multiple subpopulations.
For instance, a former study unveiled that m5C methylation
levels and NSUN2 expression were reduced in CD4+ T cells of
patients with systemic lupus erythematosus and that m5C
hypermethylation was closely associated with immune- and
inflammation-related diseases, such as systemic lupus
erythematosus, via pathways including the immune system,
cytokine signaling, and IFN signaling (Guo et al., 2020).
Another study revealed that deletion of the m5C
methyltransferase NSUN2 in mouse CD4+ T cells specifically
depressed Th17 cell differentiation and relieved Th17 cell-
induced colitis (Yang et al., 2023). Although multiple studies
have unraveled that m5C RNA methylation has an essential role
in the function of immune organs and provided new insights into
the molecular mechanisms behind immune responses (Wang et al.,
2022), little is known about the regulatory mechanisms and
targeted therapies of m5C RNA methylation in AD. In
conclusion, m5C RNA methylation plays a key role in
regulating host antiviral responses, dendritic cell activation,
CD4+ T cell differentiation, and immune-related diseases.
However, future studies need to further probe the specific
mechanisms of m5C RNA methylation in AD and its potential
applications in the treatment of AD.

5 m5C methylation in AD

Accumulating evidence unravels that the occurrence of
neurocognitive disorders is associated with changes in m6A

and m5C methylation systems. As previously reported,
familial mutations in the m6A methylation-related gene
METTL5 and m5C methylation-related genes NSUN2,
NSUN3, NSUN5, and NSUN6 are implicated in intellectual
developmental disorders. Moreover, these genes form a
protein complex with the m5C methylation reading protein
ALYREF. The expression of m5C methylation-related writing
and reading proteins NSUN6, NSUN7, and ALYREF varies
across individuals with AD, high neuropathological burden,
or traumatic brain injury. These findings elucidate that the
RNA methylation system may underlie neurocognitive
disorders by impairing neural and synaptic function via a
series of molecular mechanisms (Jiang et al., 2021b; Deng
et al., 2021; Li et al., 2022; Liu et al., 2023; Yin et al., 2023;
Knight et al., 2024).

In a prior study, RNA sequencing data of 31 effector proteins
from four brain regions of 51 AD patients were analyzed to
investigate the role of 5mC/5hmC and m5C effector proteins in
the neuropathology of AD. Additionally, gene expression
profiles were compared between AD patients and control
individuals. The results displayed that the expression of RNA
methylation-related writers NSUN6 and NSUN7 was
significantly different in AD and, along with the expression of
the reader ALYREF, different for the neurodegenerative
ranking. These results illustrate that in AD, the regulation of
protein pathways is disrupted via multiple pre- and post-
transcriptional mechanisms, potentially involving tRNAs,
enhancer RNAs, nuclear-cytoplasmic shuttling, and cytoplasmic
translational control. Accordingly, targeting these processes can
open up new avenues for the treatment of neurodegenerative
conditions (PerezGrovas-Saltijeral et al., 2023).

In AD, the changed level of m5C RNAmethylation is believed to
be involved in neuropathological alterations, including neuronal and
synaptic dysfunction, thus forming the basis of neurocognitive
disorders. However, the causes of changes in m5C RNA
methylation levels are still poorly understood, which calls for
more studies on the potential mechanisms in this field.

6 m5C methylation as a potential
mechanism for infectious AD

As a prevalent neurodegenerative disorder, AD has a
complex pathogenesis that has not yet been fully elucidated.
In recent years, the relationship between pathogen infections
and AD has garnered growing attention, leading to the
emergence of a new theory known as the infectious etiology
of AD, which posits that pathogen infections may promote the
onset of AD through various mechanisms. Notably, the infection
theory is independent of other mechanisms of AD pathogenesis
and may interact with other theories such as the amyloid cascade
hypothesis and the tau protein hypothesis, collectively
participating in the progression of AD. Additional research is
warranted in the future to further explore the specific correlation
and mechanisms between pathogen infections and AD, therefore
providing new strategies for the prevention and treatment of
AD. As summarized above, pathogen infections can result in
changes in m5C RNAmethylation levels in the host, as evidenced

Frontiers in Cell and Developmental Biology frontiersin.org06

Teng et al. 10.3389/fcell.2024.1440143

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1440143


by alterations in m5C RNA methylation levels in AD patients
observed in recent research. The mechanism by which pathogen
infections cause the onset and progression of AD is still under
investigation, with pathogen infection-m5C methylation-AD as
a promising research direction in the field of AD. No relevant
research results have been reported, necessitating increasing
attention to this direction in the future.
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