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TRPM4 is a calcium activated non-selective cation channel, impermeable to Ca2+,
in neurons it has been implicated in the regulation of the excitability and in the
persistent firing. Cholinergic stimulation is also implicated in changes in
excitability that leads neurons to an increased firing frequency, however it is
not clear whether TRPM4 is involved in the cholinergic-induced increase in firing
frequency. Here using a combination of patch clamp electrophysiology, Ca2+

imaging, immunofluorescence, fluorescence recovery after photobleaching
(FRAP) and pharmacological approach, we demonstrate that carbachol (Cch)
increases firing frequency, intracellular Ca2+ and that TRPM4 inhibition using 9-Ph
and CBA reduces firing frequency and decreases the peak in intracellular Ca2+

induced by Cch in cortical pyramidal neurons in culture. Moreover, we
determined that cholinergic stimulation reduces TRPM4 recycling and
stabilizes TRPM4 in the plasma membrane. Together our results indicate that
cholinergic stimulation increases firing in a TRPM4 dependent manner, and also
increases the TRPM4 stability in the membrane, suggesting that TRPM4 is locked
in microdomains in the membrane, possibly signaling or cytoskeleton proteins
complexes.
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Introduction

Neuronal intrinsic excitability is established by the number and distribution of ion
channels, it determines action potential (AP) firing and synaptic transmission properties,
and it coordinates neuronal activity, thus controlling the information flow through the
circuits. The intrinsic excitability is a dynamic process finely regulated by neurotransmitters
and neuromodulators such as the cholinergic transmission, which modulates neuronal
excitability through the inhibition of the M currents driven by KCNQ2/3 channels (Bordas
et al., 2015; Lezmy et al., 2017; Ye et al., 2022), by the afterdepolarization, through the
activation of TRPC and TRPM (Haj-Dahmane and Andrade, 1999; McQuiston and
Madison, 1999; Smith and Araneda, 2010; Dasari et al., 2013; Kim et al., 2013; Lei
et al., 2014; Carver et al., 2021) or by increasing the activity of the G protein-coupled
inwardly rectifying potassium channels (GIRK) (Luo et al., 2022), among other
mechanisms. Overall, ion channels and neurotransmitters act together to modulate
information flow.

Cholinergic stimulation activates an afterdepolarization potential dependent on
calcium-activated non-selective cation currents (ICAN) that triggers persistent firing in
pyramidal neurons of the prefrontal cortex layer 5 (Haj-Dahmane and Andrade, 1999).
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Similarly, Lei et al. (2014) determined that the Transient Receptor
Potential Melastatin 4 (TRPM4), an ICAN channel, has a small
contribution in the carbachol induced afterdepolarization (ADP)
in the layer five pyramidal neurons of the prefrontal cortex.
Moreover, Kim et al. (2013) reported a depolarization-induced
slow current dependent on TRPM4 which participates in the
depolarization after potential in cerebellar Purkinje neurons.
Similarly, in layer 2/3 pyramidal neurons, TRPM4 is activated
after a train of depolarization and induces an afterdepolarization
which increases the AP firing (Riquelme et al., 2021). Recently,
Combe et al. (2023), determined that TRPM4 modulates the AP
adaptation dependent on muscarinic activation in CA1 pyramidal
neurons, shifting from earlier to later firing, suggesting that
cholinergic modulation could trigger place cell firing. Overall,
TRPM4 enhances excitability and increases AP firing in various
neuronal populations, implicating its involvement in neural circuit
dynamics and potentially cognitive processes like spatial
representation.

Changes in channel expression and trafficking are critical for
determining the excitable properties of neurons and their response
to synaptic stimuli. In this regard, Kuba et al. (2010) determined that
auditory deprivation increases Nav current and the axon initial
segment (AIS) length. Similarly, it also reduces Kv1 and increases
Kv7 in the AIS (Kuba et al., 2015), thereby reducing shunting
conductance and increasing neuronal excitability. Similarly,
glutamate stimulation induces rapid dephosphorylation of Kv2.1,
increasing its lateral translocation and dispersing the channel, thus
enhancing its activation and controlling the homeostatic plasticity of
the neuron (Misonou et al., 2004). Moreover, synaptic plasticity
reduces Ih currents in the dendrites, normalizing membrane
resistance along the dendrites (Campanac et al., 2008). This
mechanism of regulating excitability is widely distributed across
several neuronal types, brain areas, and channels (Campanac et al.,
2008; Grubb and Burrone, 2010; Lezmy et al., 2017; Puhl et al., 2023).
Conversely, TRPM4 trafficking has been widely described in non-
excitable cells (Crnich et al., 2010; Cho et al., 2014; Rixecker et al.,
2016; Bianchi et al., 2018; Blanco et al., 2019; Hwang et al., 2023), but
there is no information about neurons and how stimuli such as
cholinergic transmission modulate its traffic and function.

Here, we investigated whether cholinergic stimulation alters the
distribution of TRPM4 in neurons using a combination of
electrophysiological recordings, Ca2+ imaging, immunofluorescence,
and fluorescence recovery after photobleaching (FRAP) analysis. We
found that the cholinergic-induced increase in firing frequency is
sensitive to CBA and 9-Ph, two TRPM4 inhibitors. Moreover,
TRPM4 inhibition reduces the carbachol-induced increase in
intracellular calcium. The increase in excitability is related to a
reduction in the retrograde trafficking of TRPM4 and a decrease in
its mobility in the plasma membrane. Together, these results indicate
that cholinergic stimulation reorganizes TRPM4 in the plasma
membrane to modulate its excitability, likely by increasing
TRPM4 availability in the plasma membrane.

Methods

All experiments were conducted according to animal protocols
approved by the Ethics Committee of the Universidad de Santiago

de Chile (N° 301/2018), following the rules and guidelines of the
National Research and Development Agency (ANID). Male and
female C57BL/6J mice were housed in a temperature- and humidity-
controlled facility with a 12/12 h light/dark cycle, with water and
food ad libitum.

Cortical neuron culture

Primary frontal cortical neurons were prepared from
E18 C57BL/6J mouse embryos. The frontal cortices were
dissected in Hank’s balanced salt solution (HBSS) and digested in
trypsin (0.25%) plus DNase I (0.03 mg/mL) for 8 min at 37°C,
triturated, and plated in Minimum essential media (MEM)
supplemented with horse serum (10%), glucose (0.1%), sodium
pyruvate (0.5 mM), HEPES (10 mM), and penicillin-
streptomycin (100 I.U./mL). Neurons were plated at a density of
50,000 cells per well on 12 mm coverslips pre-coated with poly-D-
lysine (30 μg/mL) and laminin (2 μg/mL). After 6 h of plating, the
media was replaced with Neurobasal medium supplemented with
B27 (2%), GlutaMAX-I (1%), and penicillin-streptomycin (100 I.U/
mL). Neurons were cultured at 37°C with 5% CO2. Half of the
culture media was replaced every 3 days. Experiments were
performed between days in vitro (DIV) 14–18.

Electrophysiology

Neurons were recorded in Krebs buffer (in mM): 140 NaCl,
5 KCl, 1.3 MgCl, 2.5 CaCl2, 10 HEPES, 11 Glucose, pH 7.4, and
~300 mOsm/kg. Neurons were placed in a recording chamber and
mounted on a Nikon Ti2 microscope. They were continuously
perfused with Krebs (2–3 mL/min) at 34°C ± 2°C. Whole-cell
recordings were performed from cortical pyramidal neurons
between DIV14-18 using borosilicate glass pipettes pulled to a
resistance between 4–6 MΩ. For current-clamp recordings, the
intracellular solution contained (in mM): 130 potassium-
gluconate, 10 KCl, 10 HEPES, 0.5 EGTA, 2 Mg-ATP, 0.3 Na-
GTP, 10 phosphocreatine, with pH 7.2 adjusted with KOH
(~300 mOsm/kg). The liquid junction potential was 16.4 mV,
calculated using LJPcalc (https://swharden.com/LJPcalc) and not
subtracted from the recordings. Cells showing changes >20% in the
series resistance (Rs) were discarded from the analysis. Current-
clamp recordings were performed using an Axopatch 200B and
digitized using a National Instruments PCIe-6323. Data was filtered
at 10 kHz and acquired at 50 kHz usingWinWCP5.7 (https://github.
com/johndempster/WinWCPXE/releases/tag/V5.7.8). TRPM4 was
inhibited using 10 µM 4-Chloro-2-[[2-(2-chlorophenoxy)acetyl]
amino]benzoic acid (CBA), and 10 µM 9-Phenanthrol (9-Ph).

Ca2+ imaging

Neurons were incubated with 3 µM Fluo4-AM in the Krebs
buffer for 30 min at RT. Then, excess Fluo4-AM was washed out by
incubating the neurons with Krebs buffer for 20 min at RT before
imaging. Images were acquired using a Nikon TE300 attached to a
Lambda DG-4 and controlled by Micromanager 2.0 through an
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Arduino interface (Edelstein et al., 2014). Changes in [Ca2+]i were
observed using a ×40 objective (PlanNeofluar, 0.75N.A.) during
exposure to 470 nm, and the intensity of the fluorescence emission at
505 nm was recorded using an Orca-ER CCD camera. Neurons were
constantly perfused at 2–3 mL/min with Krebs buffer at 34°C ± 2°C.
The fluorescence intensity was calculated using Fiji-ImageJ, and the
results are presented as the ratio of normalized fluorescence
[(F-F0)/F0].

Immunofluorescence and
membrane staining

Neurons were fixed in 4% paraformaldehyde for 15 min at room
temperature and then washed in phosphate buffered saline (PBS).
Subsequently, the cells were permeabilized for 5 min with 0.1%
Triton X-100 and blocked for 1 h in 10% goat serum. Neurons were
then incubated with the primary antibodies diluted in 10% goat
serum: EEA1 (Early endosome A1 antigen, 1:500; Synaptic Systems
RRID:AB_2744647) and TRPM4 (1:100; RRID:AB_2040250)
overnight at 4°C. Afterward, they were incubated with the
appropriate secondary antibodies: Goat anti-Guinea Pig IgG,
Alexa Fluor 555 (1:1,000; ThermoFisher RRID:AB_2535856), and
Donkey anti-rabbit IgG, Alexa Fluor 488 (1:1,000; ThermoFisher
RRID:AB_2535792) for 1 h at room temperature and washed.
Coverslips were mounted in Prolong Gold. For membrane
staining, after immunolabeling with the TRPM4 antibody,
coverslips were incubated with the membrane dye CellBrite
Orange (1:200, Biotium) for 15 min at RT and washed three
times in PBS. The coverslips were then imaged in PBS. Images
were acquired using a laser scanning confocal microscope (Zeiss
LSM 800) with proper excitation and emission filters, pinhole set to
1, and a 40x (1.4NA) oil immersion objective. Laser power and gain
settings were adjusted to prevent signal saturation.

Cortical neuron transfections

Neurons were transfected using Lipofectamine 2000 (Invitrogen/
Thermo Fisher) between DIV 5–7 with the pEGFP-N1-
mTRPM4 vector encoding mouse TRPM4 fused with EGFP protein
at the N-terminal under the control of the cytomegalovirus promoter
(TRPM4-EGFPN1) (Gerzanich et al., 2009). Briefly, 1 µg DNA was
mixed with 2.5 µL Lipofectamine (ratio 1:25) in 50 µL non-
supplemented Neurobasal (ratio 1:50) and incubated for 20 min at
room temperature. Neuron media were saved and replaced with fresh
non-supplemented neurobasal. The mixture was then added to the
neurons and incubated for 1 h at 37°C with 5% CO2. Next, the
transfection media was removed, neurons were washed with fresh
neurobasal, the original media was added, and neurons were
maintained at 37°C in 5% CO2 until the experiments.

Fluorescence recovery after
photobleaching (FRAP)

EGFP-TRPM4 recovery after photobleaching (FRAP)
experiments were performed using a Zeiss LSM 800 confocal

microscope with a ×63 objective with a numerical aperture of
1.4 and digital zoom of 3. One region of interest (ROI) on the
plasma membrane was selected and bleached for 10 s with a 488 nm
laser at 1 W. The fluorescence was measured for 3 min with image
acquisition set at 2 s. Cch stimulation was performed 2 s after the
photobleaching and kept until the end of the image acquisition.
Neurons were constantly perfused at 2–3 mL/min with a Krebs
buffer at 34°C ± 2°C using a gravity-driven perfusion system.

FRAP analysis

The mean ROI intensity of the bleached area was obtained and
corrected with background values and the bleaching during image
acquisition. Data were normalized with control fluorescence
averaged over 10 initial frames before bleaching and stated as
one intensity. Correction and normalization were performed
using the easyFRAP script, using Matlab (Rapsomaniki et al.,
2012). Recovery time was calculated by an exponential one-phase
association fit (increasing exponential). The mobile phase value was
calculated as plateau/maximum fluorescence.

Colocalization image analysis

Colocalization analysis was conducted in Fiji ImageJ using the
EzColocalization plugin (Stauffer et al., 2018). Using the plugin, we
defined a somatic ROI (for early endosome) or a ROI surrounding
the membrane (for plasma membrane) in each image of the stack,
and we obtained the Pearson’s correlation coefficient (PCC) and
Manders’ colocalization coefficients 1 and 2 (M1 and M2), setting
the threshold using the Costes algorithm.

Data analysis

All numbers of experiments are indicated in the figure caption as
the number of individual neurons (n) and the neuron cultures (N);
in some graphs it is shown the number of individual cultures as solid
color symbols and in open symbols and light color the individual
cells from each culture. Electrophysiological data were analyzed
using Python 3.7. Data are reported in the text as mean ± standard
deviation and in the graph as a median±95% confidence interval
(C.I.), unless stated otherwise. Statistical significance between group
means was evaluated using one-way ANOVA followed by multiple
comparison post hoc tests, in some cases, t-tests were used. Statistical
significance was determined using a p < 0.05. All statistical tests were
performed on GraphPad Prism 7.

Results

TRPM4-dependent increase in firing
frequency after cholinergic stimulation

Among the TRP family, only TRPM4 and TRPM5 are directly
activated by Ca2+i (Ullrich et al., 2005). These channels play critical
roles in the afterdepolarization potential, firing frequency, and the
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resting membrane potential (RMP). However, it is not clear whether
TRPM4 participates in cholinergic-induced increases in AP firing.
To address this question, we recorded the activity of cortical
pyramidal neurons in DIV14-18 in response to the cholinergic
agonist carbachol (Cch) and in the presence of the
TRPM4 pharmacological inhibitors CBA or 9-Ph (Figure 1). We
observed that 10 µM Cch increases the firing frequency
approximately tenfold; this effect is reduced by the perfusion of
10 µM CBA (Basal = 0.58 ± 0.34 Hz, Cch = 6.04 ± 4.02 Hz, Cch +
CBA = 0.75 ± 0.89 Hz, Figures 1A, B). Moreover, we observed that
Cch depolarizes the RMP by approximately 13 mV, but the
application of 10 µM CBA restores the RMP to its basal levels
(Basal = −68.1 ± 9.7 mV, Cch = −55.5 ± 8.03 mV, Cch +

CBA = −67.1 ± 7.9 mV, Figure 1C) but is not recovered to the
basal levels after CBA washout. Additionally, we tested 9-Ph; we
found that this inhibitor produces a similar effect as CBA on both,
the frequency (Basal = 1.6 ± 0.14 Hz, Cch = 4.8 ± 1.1 Hz, Cch+9-
Ph = 1.7 ± 0.55 Hz, Figures 1D, E) and RMP (Basal = −69.9 ±
7.4 mV, Cch = −59.9 ± 8.7 mV, Cch+9-Ph = −64.7 ± 7.2 mV,
Figure 1F), moreover, we found that Cch effect in frequency was
recovered after drugs washout but not the RMP. Additionally,
continuous Cch stimulation shows no statistically significant
rundown of the activity (Supplementary Figure S1A), supporting
the observed effect due to TRPM4 inhibition. To determine the
involvement of synaptic activity in the effect of Cch, we measure the
spontaneous activity in the presence of 0.5 µM TTx and 10 µM Cch

FIGURE 1
Cholinergic dependent increase in excitability mediated by TRPM4. (A) Representative voltage recordings at cortical pyramidal neurons at DIV14-18,
top trace shows the AP evoked by 10 µMCch and the effect of 10 µMCBA, bottom traces show a zoomed area of the events recorded. (B) Summary graph
of the frequency of the AP and the RMP (C) at basal (n = 5, N = 5), 10 µMCch (n = 5, N = 5), 10 µMCch+10 µMCBA (n = 5, N = 5) and the recovery after CBA
(n = 5, N = 5). (D) Representative voltage trace showing the effect of 10 µM Cch and 10 µM Cch+10 µM 9-Ph, bottom traces show a zoomed area of
the events recorded. (E) Summary graph of the frequency of the AP and the RMP (F) at basal (n = 7, N = 7), 10 µMCch (n = 7, N = 7), 10 µMCch+10 µM9-Ph
(n = 7, N = 7), and the recovery after 9-Ph (n = 7, N = 7). In (C,F) data are presented as the mean ±95 C.I. p-values are shown above each graph. Statistical
significance was evaluated using one-way ANOVA, with a Tukey post hoc.
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and measure the AP firing, we found that TTx completely reduce
basal activity and obliterates the effect of Cch in firing (Basal = 1 ±
1.1 Hz, TTx = 0.1 ± 0.2 Hz, TTx + Cch = 0.001 ± 0.002 Hz,
Supplementary Figure S1B), Together, these data indicates that
TRPM4 contributes to the cholinergic-induce increase in AP
firing and suggest a combination between synaptic activity and
intrinsic excitability in the origin of the AP firing.

TRPM4 inhibition reduces cholinergic-
induced intracellular Ca2+ increase

TRPM4 is activated by Ca2+i but is impermeable to Ca2+. This
characteristic enables it to control intracellular calcium levels by
fluctuating the Ca2+ driving force in non-excitable cells (Launay et al.,
2004) and through the activation of voltage-gated calcium channels
(VGCCs) by its effect on the RMP in excitable cells (Fliegert et al., 2007).
In this regard, cholinergic stimulation increases Ca2+i through nicotinic
receptors or Gq protein-coupled muscarinic receptors (via IP3R)
(Colangelo et al., 2019). Since TRPM4 participates in the increase in
firing rate after cholinergic stimulation, we hypothesized that

TRPM4 inhibition must decrease intracellular calcium levels. To
corroborate this hypothesis, we measured intracellular calcium levels
in response to 10 µM Cch (1 min) and then in the presence of 10 µM
Cch with 10 µM CBA or 10 µM 9-Ph (Figure 2). We found that Cch
induces a robust response, showing Ca2+i oscillations that last several
minutes after the Cch washout. The perfusion of Cch + CBA reduces
Cch-induced maximal response by 2.6 times (Cch = 3.01 ± 0.83, Cch +
CBA = 1.12 ± 0.3, Figures 2A, B). Similarly, we found that 9-Ph reduces
the Cch-induced increase in Ca2+i by 1.5 times (Cch = 2.32 ± 0.9, Cch+9-
Ph = 1.5 ± 0.67, Figures 2C, D), these changes are not related to a change
induced by repetitive stimulation as two pulses of 10 µM Cch produce
similar maximal responses (Supplementary Figure S1C). Together, these
results indicate that TRPM4 activation regulates cholinergic-induced
Ca2+i increase.

Cholinergic stimulation reduces
TRPM4 recycling

The Cch-induced effects on TRPM4 in the firing frequency
observed in cortical neurons could be explained by changes in the

FIGURE 2
TRPM4 inhibition reduces cholinergic induced Ca2+i increase. (A) Representative Ca2+ imaging trace showing the increase in the fluorescence after
10 µM Cch stimulation for 1 min following a washout and the coapplication of 10 µM Cch+10 µM CBA for 1 min. (B) Summary graph showing the
quantification of the peak of the Ca2+ signal (n = 56, N = 5). (C) Representative Ca2+ imaging trace showing the increase in the fluorescence after 10 µM
Cch stimulation for 1 min following a washout and the coapplication of 10 µM Cch+10 µM 9-Ph for 1 min. (D) Summary graph showing the
quantification of the ratio of fluorescence of the peak of the Ca2+ signal (n = 77, N = 7). Red traces showed the averaged signal, gray traces show the
individual cells recorded in all experiments. In (B,D) data are presented as the mean ±95 C.I. Statistical significance was tested using paired t-test.
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FIGURE 3
TRPM4 trafficking after cholinergic stimulation. (A) Representative confocal image of pyramidal neurons in culture at DIV14 showing the effect of
10 µM Cch at 0, 1, 5, and 10 min in the TRPM4 localization in the plasma membrane using the Cell Brite membrane marker. (B) Shows the Manders’ 1, (C)
Manders’ 2 and (D) Pearson’s coefficient for TRPM4-CellBrite colocalization. (E) Representative confocal image showing the effect of 10 µMCch at 0, 1, 5,
and 10 min in the TRPM4 localization in the early endosome using the EEA1 marker. (F) Shows the Manders’ 1, (G) Manders’ 2 and (H) Pearson’s
coefficient for TRPM4-EEA1 colocalization. Data is presented as the mean ± 95% C.I, stars indicate statistical significance between 0 min and the time
indicated, statistical significance was tested using one-way ANOVA with a Dunnett’s post hoc test, n = 22, N = 5. “*” in the graphs indicates p < 0.05.
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trafficking of the channel. To address this hypothesis, we treated cortical
neurons with saline or 10 µM Cch for 1, 5, or 10 min. Then, we fixed
and immunostained the neurons for TRPM4 along with either Cell
Brite (plasma membrane marker) or EEA1 (early endosome marker).
After this, we quantified the colocalization using Pearson’s, Manders’ 1
(M1), and Manders’ 2 (M2) correlation coefficients. We used
M1 coefficients to assess the overlap between the plasma membrane
and TRPM4, and M2 for the fraction of TRPM4 that overlaps with the
plasmamembrane. For both coefficients we obtained values higher than
0.5, indicating amedium to high colocalization rate, the Cch stimulation
has no effect in the colocalization (M1, 0min = 0.85 ± 0.12, 1min-Cch=
0.85 ± 0.1, 5 min-Cch = 0.84 ± 0.13, 10 min-Cch = 0.79 ± 0.11; M2,
0min = 0.88 ± 0.14, 1min-Cch = 0.89 ± 0.12, 5min-Cch = 0.875 ± 0.15,
10 min-Cch = 0.795 ± 0.08, Figures 3A–C). Moreover, we also used the
Pearson correlation coefficient and found values around 0.4, indicating
medium to low correlation of the signals and Cch had no effect in this
parameter (0 min = 0.41 ± 0.25, 1 min-Cch = 0.43 ± 0.2, 5 min-Cch =
0.49 ± 0.23, 10 min-Cch = 0.32 ± 0.13, Figures 3A, D).

Next, we measured the colocalization of TRPM4 and EEA1. With
M1, we evaluates the amount of EEA1 that is present in the
TRPM4 signal, we found a decrease at 5 min Cch, indicating that
EEA1 colocalization with TRPM4 is reduced, suggesting a decrease in
the amount of EEA1 containing vesicles or an increase of TRPM4 in
other areas (0 min = 0.78 ± 0.15, 1 min Cch = 0.72 ± 0.18, 5 min-Cch =
0.66± 0.09, 10min-Cch= 0.72± 0.19, Figures 3E, F).WithM2,we found
a decrease in the colocalization at 5 and 10min post Cch (0min = 0.77 ±
0.16, 1 min-Cch = 0.62 ± 0.29, 5 min-Cch = 0.57 ± 0.21, 10 min-Cch =
0.57 ± 0.25, Figures 3E, G), this data indicates that TRPM4 is less
colocalized with EEA1, suggesting that TRPM4 decreases its endocytosis
after Cch stimulation. Moreover, we also used the Pearson correlation
coefficient and found a lower correlation between TRPM4 and EEA1
(0 min = 0.29 ± 0.2, 1 min-Cch = 0.17 ± 0.17, 5 min-Cch = 0.13 ± 0.13,
10 min-Cch = 0.2 ± 0.18, Figures 3E, H), which is expected as the
majority of the TRPM4 signal is outside of the vesicles containing EEA1.
Together, these results indicate that Cch stimulation reduces
TRPM4 recycling while sustaining a constant level of TRPM4 in the
plasma membrane, suggesting that cholinergic stimulation affects the
stability of TRPM4 in the plasma membrane.

Cholinergic stimulation reduces
TRPM4 membrane mobilization

The observation that cholinergic stimulation has no effect on
TRPM4 content in the plasma membrane but reduces its recycling in
the early endosome indicates that cholinergic stimulation has a low
effect on TRPM4 trafficking. Despite this, it does not rule out the
possibility of dynamic changes of TRPM4 within the membrane, such
as lateral diffusion. To determine the effect of cholinergic stimulation
on TRPM4 kinetics in the plasma membrane, we performed FRAP
experiments in cortical pyramidal neurons expressing EGFP-TRPM4
at DIV14. Following the bleaching (10 s), we found that non-
stimulated neurons present a highly mobile TRPM4 fraction with
a time of recovery that fits to a single exponential. The application of
Cch reduces the mobile phase (Basal = 0.71 ± 0.21, Cch = 0.28 ± 0.25,
Figures 4A–C) with no changes in the recovery time constant (Basal =
66.5 ± 52.02 s, Cch = 53.9 ± 61.7 s, Figures 4A, B, D). This data
indicates that a significant portion of TRPM4 is engaged in an

immobile fraction and after cholinergic stimulation this fraction
increases, suggesting that they are not readily interchanged, likely
as a result of a diffusion restriction via protein interaction and/or
molecular crowding within the plasma membrane of the neuron.

Discussion

Here, we demonstrate that cholinergic stimulation increases
pyramidal neuron firing through a mechanism dependent on
TRPM4, furthermore, TRPM4 inhibition reduces cholinergic induced
Ca2+i increase. Interestingly, the increase in firing is accompanied by a
reduction in TRPM4 recycling and an immobilization of the channel in
the plasma membrane. These observations indicate that cholinergic
transmission stabilizes TRPM4 in the plasma membrane, enhancing
its availability during neuronal activity, suggesting a role in the
modulation of neuronal response.

The recording of neuronal firing after cholinergic stimulation
revealed a steady increase in action potential (AP) firing frequency.
However, TRPM4 inhibition reduces AP firing, suggesting that
TRPM4 participates in the sustained AP firing. Several studies
support this, proving that TRPM4 plays a role in AP firing, like in
preBötzinger neurons, where it mediates ICAN, and its inhibition
reduces the burst firing magnitude during respiratory rhythm
(Picardo et al., 2019). Similarly, O’Malley et al. (2020) showed that
TRPM4 drives the ICAN responsible for the plateau potential driving
the persistent firing in the thalamic reticular nucleus neurons.

The aforementioned observations are generated by cell-intrinsic
firing mechanism, however, TRPM4 also participates in the synaptic
driven firing, in this regard, TRPM4 inhibition reduces firing
induced by mGluR type 1 activation in preBötzinger neurons
(Mironov, 2008), contributes to the afterdepolarization induced
by high-frequency synaptic stimulation, increasing AP firing
frequency in pyramidal neurons in layer 2/3 of the medial
prefrontal cortex (Riquelme et al., 2021) and partially
contributing to the muscarinic-induced slow afterdepolarization
in layer five pyramidal neurons of the prefrontal cortex,
suggesting that TRPM4 participates in regulating AP firing in
response to increased intracellular Ca2+ (Lei et al., 2014).

In our experiments, the effect of cholinergic stimulation on AP
firing could be direct, through the activation of cholinergic receptors
in postsynaptic neurons, or indirect, through the activation of
cholinergic receptors in presynaptic neurons leading to increased
glutamate release onto postsynaptic neurons. Our results suggest a
mixed effect, as cholinergic activation in the presence of TTx did not
trigger APs but induced a small depolarization. In this context,
synaptic activity may start AP firing, while TRPM4 may sustain it.
However, further investigation is needed to fully determine the
underlying mechanism of this effect.

While we cannot rule out off-target effects of the inhibitors, to our
knowledge, only one study describes off-target effects of 9-Ph in
TMEM16A calcium-activated chloride channels. However, we did
not observe a depolarization with 9-Ph as expected by a Cl− channel
inhibition in neurons (Burris et al., 2015). On the other hand, a recent
study indicates that CBA has a species-specific effect on TRPM4,
inhibiting human TRPM4 but having no effect on mouse
TRPM4 overexpressed in TsA201 kidney cells (Prakash et al., 2021).
However, the experimental conditions differed from those used in our
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experiments and others reported previously. The characterization was
performed in the inside-out patch clamp, where several intracellular
components aremissing. Additionally, the experiments were performed
at room temperature. This is a key point because a recent study indicates
that TRPM4 is inhibited by ATP at 20°C–22°C but is less sensitive at
37°C (Hu et al., 2024). Contrary to this, in our experiments presented in
this work and in two other studies (O’Malley et al., 2020; Combe et al.,
2023), CBA shows inhibitory effects on TRPM4 in mouse neurons in
experiments performed in whole-cell and at 37°C. In this context, our
results strongly suggest that TRPM4 participates in the initiation of AP
firing following cholinergic stimulation.

TRPM4 has been widely described as a modulator of the Ca2+i
during periods of activity in different cell types. While most studies
indicates that the absence or inhibition of TRPM4 increases Ca2+i
amplitude, while obliterating Ca2+i oscillations (Launay et al., 2002;
2004; Cheng et al., 2007; Shimizu et al., 2009) its effect is highly
dependent on the RMP, i.e., in non-excitable cells, TRPM4 inhibition
increases Ca2+i (Fliegert et al., 2007), but in neurons, it reduces Ca2+i
through the activation of VGCC channels (Li et al., 2021).

Moreover, since our cortical culture are a mix of different types
of neurons, we observed heterogeneous responses, like oscillatory
behavior in ~34% of the cells, in this regard, the effect of

TRPM4 inhibition appears to be both, a reduction in the peak
response and a disruption of the Ca2+i oscillation, both responses are
in line with the reported effect of TRPM4 inhibition in non-
neuronal cells.

In isolated atrial cardiomyocytes, the inhibition or knockdown
of TRPM4 reduces AP duration by 50% (Simard et al., 2013), and
reduces the AP frequency in sinoatrial node cells (Demion et al.,
2007; Hof et al., 2015), and mutation impairing endocytosis produce
progressive familial heart block type 1 (Kruse et al., 2009). Moreover,
in artery smooth muscle cells, the activation of TRPM4 increases the
contraction of the artery and is regulated by IP3R which increases
Ca2+ in nanodomains formed by the sarcoplasmic reticulum and
plasma membrane junctions. While this effect has not been
described in neurons, the activation of TRPM4 through receptors
inducing IP3R has been extensively described (Launay et al., 2002;
Gonzales and Earley, 2012; Gonzales et al., 2014; Provence et al.,
2017). On the other hand, TRPM4 participates in the smoothmuscle
membrane depolarization inducing the activation of VGCC and
inducing contraction, this effect is mediated by an increase in
trafficking induced by the activation of PKCδ (Crnich et al.,
2010). Moreover, in pancreatic beta cells, glucose induces the
activation of TRPM4 depolarizing the cell further than the KATP

FIGURE 4
In vitro FRAP shows the mobile fraction of TRPM4 in the plasma membrane. (A) Representative images of pyramidal neurons expressing EGFP-N1-
TRPM4 and the time course of fluorescence recovery in control and Cch stimulated condition. (B) Summary graph showing the time course of the
fluorescence in control (N = 7) and in response to 10 µM Cch (N = 9). Solid lines represent the single exponential fitting. (C) Shows the summary graph of
the mobile phase and (D) the recovery time constant. In (B) data is presented as the mean ± SD and in (C,D) is presented as the mean ±95% C.I.
p-values are shown above the graph and the statistical significance was tested using unpaired t-test.
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closure and activating VGCC thus producing pulsatile insulin
secretion (Cheng et al., 2007), in neurons, the activation of
TRPM4 depolarizes neurons and participates in the activation of
VGCC. These effects in the excitability of non-neuronal cells are like
those observed in neuronal cells, and as such the traffic of
TRPM4 channel plays a critical role in its physiological function.

Changes in TRPM4 localization and distribution are critical for its
activity and impact neuronal physiology. In this regard,
TRPM4 trafficking has been extensively investigated in non-excitable
cells where it participates in epithelial cell migration and wound healing
(Blanco et al., 2019), and insulin vesicle release (Cheng et al., 2007),
however its role in neuronal physiology is not completely understood.
Our experiments indicate that cholinergic stimulation reduces
TRPM4 recycling, while the plasma membrane content remains
constant, suggesting that TRPM4 in non-stimulated conditions is
constantly recycled but when engaged in cholinergic neuronal activity,
it remains stable in the plasma membrane, favoring neuronal activity.

Similarly, synaptic activity stabilizes AMPA receptor in the
synaptic terminal and induces receptor lateral movement which
populate the synapsis after long term potentiation (Heine et al.,
2008), moreover, this receptor has a tunable highly mobile and
immobile fraction that allow neurons to respond to different
stimulus (Chen et al., 2021). In the case of Kv2.1, neuronal
activity induces a declustering of the channel and a repopulation
of the membrane, keeping the channel away from signaling
complexes and avoiding its phosphorylation, thus increasing the
excitability of the neurons (Misonou et al., 2004). In this regard,
TRPM4 activation in CA1 neurons requires muscarinic activation
and depolarization-induced Ca2+i increase, with no involvement of
IP3R or RyR, to induce an acceleration of the AP firing (Combe et al.,
2023). Similarly, our results suggest that TRPM4 traffic is highly
regulated by cholinergic stimulation.

The localization of the channels is critical for its neuronal
physiology, through local regulation of the membrane potential,
excitability and by placing the channels in the proximity of local
signaling complexes that canmodulate its activity or expression. Our
data indicates that cholinergic stimulation stabilizes TRPM4 in the
plasma membrane, reducing its mobility. This data suggests that
cholinergic stimulation may engage TRPM4 in signaling pathways
or increase its association with cytoskeleton proteins that can
facilitate TRPM4 activity. Moreover, our results suggest that
TRPM4 may be forming microdomains after cholinergic
stimulation. The observation that TRPM4 is locked in the
membrane came from the increase in the immobile phase in the
FRAP experiments; previous reports using TIRF-FRAP indicates
that TRPM4 in non-stimulated condition recovers its signals mainly
by the incorporation of vesicles carrying TRPM4 but no through
lateral diffusion (Ghosh et al., 2014). Our results showed no increase
in TRPM4 signal in the plasma membrane related to the control, but
a reduction in early endosome, strongly suggesting that Cch does not
increase vesicle fusion but reduces mobility and recycling.

This study indicates that TRPM4 is activated by cholinergic
transmission and induce an increase in the channel locked in the
plasmamembrane and reducing the channel recycling, this produces
an efficient increase in excitability and its inhibition affect the global
excitability of the neuron, reducing the cholinergic-induced increase
in Ca2+i, thus reducing excitability at all levels. These results
implicate that TRPM4 is critical for oscillatory behavior in

several brain regions, thus giving clues to a new level of control
of the excitability in a Ca2+ dependent way modulated by
acetylcholine and potentially other neuromodulators, providing
an added level of control during neuronal activity.
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